Epipolar Geometry

A lot of slides from Noah Snavely + Shree Nayar's YT series: First principals of Computer Vision

CS180: Intro to Computer Vision and Comp. Photo Angjoo Kanazawa & Alexei Efros, UC Berkeley, Fall 2023

So how do we get depth?

- Find the disparity! of corresponding points!
- Called: Stereo Matching

Left/Right Camera Images

Disparity Map (Ground Truth)

Where is the corresponding point going to be?

Hint

Epipolar Line

HON. ABRAHAM LINCOLN, President of United States.

epipolar lines

Two images captured by a purely horizontal translating camera (rectified stereo pair)

 x_1-x_2 = the *disparity* of pixel (x_1, y_1)

Your basic stereo algorithm

For every epipolar line:

For each pixel in the left image

- · compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match *windows*, + clearly lots of matching strategies

Your basic stereo algorithm

Determine Disparity using Template Matching

Template Window T

Left Camera Image E_l

Search Scan Line L

Right Camera Image E_r

Correspondence problem

Parallel camera example - epipolar lines are corresponding rasters

Source: Andrew Zisserman

Intensity profiles

Clear correspondence between intensities, but also noise and ambiguity

Correspondence problem

Neighborhood of corresponding points are similar in intensity patterns

Use Normalized Cross Correlation (NCC)
 or a distance in some descriptor within a window

Source: Andrew Zisserman

Correlation-based window matching

Source: Andrew Zisserman

Dense correspondence search

For each epipolar line

For each pixel / window in the left image

- compare with every pixel / window on same epipolar line in right image
- pick position with minimum match cost (e.g., SSD, correlation)

Adapted from Li Zhang Grauman

Textureless regions

Source: Andrew Zisserman

Effect of window size

W = 3

W = 20

Want window large enough to have sufficient intensity variation, yet small enough to contain only pixels with about the same disparity.

Issues with Stereo

Surface must have non-repetitive texture

Foreshortening effect makes matching a challenge

Stereo Results

Data from University of Tsukuba

Scene Ground truth

Results with Window Search

Window-based matching (best window size)

Ground truth

Better methods exist...

Energy Minimization

Boykov et al., <u>Fast Approximate Energy Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999.

Ground truth

Summary

- With a simple stereo system, how much pixels move, or "disparity" give information about the depth
- Correspondences to measure the pixel disparity

Many problems in 3D

Camera Calibration

Stereo (w/2 cameras); Multi-view Stereo / Triangulation

Camera helps Correspondence: **Epipolar Geometry**

Correspondence gives camera: **Epipolar Geometry**

Recap

We covered:

- How to estimate the camera parameters
 - "Calibration"
 - Solve for intrinsics & extrinsics
- With a simple stereo, correspondences lie on horizontal lines
- depth is inversely proportional to disparity (how much the pixel moves)

What Depth Map provides

Monocular Depth Prediction [Ranftl et al. PAMI'20]

More cool things with Depth

3D photo AR

Next: General case

- The two cameras need not have parallel optical axes.
- Assume camera intrinsics are calibrated

Same hammer:

Find the correspondences, then solve for structure

Option 1: Rectify via homography

- reproject image planes onto a common plane
 - plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation
- Two homographies, one for each input image reprojection
 - C. Loop and Z. Zhang. <u>Computing</u>
 <u>Rectifying Homographies for</u>
 <u>Stereo Vision</u>. CVPR 1999.

Option 1: Rectify via homography

Original stereo pair

Then find correspondences on the horizontal scan line

General case, known camera, find depth: Option 2

- 1. Find correspondences
- 2. Triangulate

General case, known camera, find depth: Option 2

1. Find correspondences

2. Triangulate

Can we restrict the search space again to 1D?

What is the relationship between the camera + the corresponding points?

Where do epipolar lines come from?

Stereo correspondence constraints

 Given p in left image, where can corresponding point p' be?

Stereo correspondence constraints

 Given p in left image, where can corresponding point p' be?

Where do we need to search?

Epipolar Geometry

Figures by Carlos Hernandez

If you get confused with the following math, look at this picture again, it just describes this.

Stereo correspondence constraints

Epipolar constraint

- Potential matches for *p* have to lie on the corresponding epipolar line *l*′.
- Potential matches for p' have to lie on the corresponding epipolar line l.

Source: M. Pollefeys

Stereo correspondence constraints

•Geometry of two views allows us to constrain where the corresponding pixel for some image point in the first view must occur in the second view.

Epipolar constraint: Why is this useful?

Reduces correspondence problem to 1D search along conjugate epipolar lines

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Parts of Epipolar geometry

- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- = vanishing points of the baseline

The Epipole

Example

Example: converging cameras

As position of 3d point varies, epipolar lines "rotate" about the baseline

Example: Parallel to Image Plane

Epipoles infinitely far away, epipolar lines parallel

Example: Forward Motion

Epipole is focus of expansion / principal point of the camera.

Epipolar lines go out from principal point

Example: forward motion

Epipole has same coordinates in both images.

Points move along lines radiating from e: "Focus of expansion"

Motion perpendicular to image plane

http://vimeo.com/48425421

Ok so where were we?

- Setup: Calibrated Camera (both extrinsic & intrinsic)
- Goal: 3D reconstruction of corresponding points in the image
- We need to find correspondences!
- → 1D search along the epipolar line!

Ok so what exactly are I and I'?

Step 0: Normalized image coordinates

- Let's factor out the effect of K (do everything in 3D)
- Since we know the intrinsics K, apply its inverse to x with depth = 1
- This is called the *normalized* image coordinates. It may be thought of as a set of points with K = Identity

$$x_{\text{norm}} = K^{-1}x_{\text{pixel}} = [I \ 0]X, \qquad x'_{\text{norm}} = K'^{-1}x'_{\text{pixel}} = [R \ t]X$$

Assume that the points are normalized from here on

The vectors x, t, and x' are coplanar

What can you say about their relationships, given $n = t \times x$?

$$\mathbf{x'} \cdot (\mathbf{t} \times \mathbf{x'}) = 0$$

$$\mathbf{x'} \cdot (\mathbf{t} \times (R\mathbf{x} + \mathbf{t})) = 0$$

$$\mathbf{x'} \cdot (\mathbf{t} \times R\mathbf{x} + \mathbf{t} \times \mathbf{t})) = 0$$

$$\mathbf{x'} \cdot (\mathbf{t} \times R\mathbf{x}) = 0$$

Recall:
$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a}_{\times}]\mathbf{b}$$

The vectors x, t, and x' are coplanar

The vectors x, t, and x' are coplanar

- Ex is the epipolar line associated with x (I' = Ex)
 - Recall: a line is given by ax + by + c = 0 or

$$\mathbf{l}^T \mathbf{x} = 0$$
 where $\mathbf{l} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

- E x is the epipolar line associated with x (I' = E x)
- E^Tx' is the epipolar line associated with x' ($I = E^Tx'$)
- E e = 0 and $E^{T}e' = 0$
- **E** is singular (rank two)
- E has five degrees of freedom

Recall that we normalized the coordinates

$$x=K^{-1}\hat{x}$$
 $x'=K'^{-1}\hat{x}'$ $\hat{x}=\begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$

where \hat{x} is the image coordinates

- But in the uncalibrated case, K and K' are unknown!
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$x'^{T}Ex = 0$$

$$(K'^{-1}\hat{x}')'^{T}E(K^{-1}\hat{x}) = 0$$

$$\hat{x}'^{T}K'^{-T}E(K^{-1}\hat{x}) = 0$$

$$\hat{x}'^{T}F\hat{x} = 0$$

$$F = K'^{-T}EK^{-1}$$

Fundamental Matrix

(Faugeras and Luong, 1992)

- $F \hat{x}$ is the epipolar line associated with $\hat{x} (I' = F \hat{x})$
- $\mathbf{F}^T \widehat{\mathbf{x}}'$ is the epipolar line associated with $\widehat{\mathbf{x}}'$ ($\mathbf{I} = \mathbf{F}^T \widehat{\mathbf{x}}'$)
- Fe = 0 and $F^{T}e' = 0$
- **F** is singular (rank two)
- F has seven degrees of freedom

Where are we? (in the original setup)

We have two images with calibrated cameras, want the 3D points!

- Solve for correspondences using epipolar constraints from known camera (1D search)
 - Now we know the exact equation of this line
- 2. Triangulate to get depth!

Finally: computing depth by triangulation

We know about the camera, K₁, K₂ and [R t]:

and found the corresponding points: $x \leftrightarrow x'$

$$x = KX \qquad x' = K'X' \\ = K'(RX + T)$$

How many unknowns + how many equations do we have?

only unknowns!

Solve by least squares

Triangulation Disclaimer: Noise

Ray's don't always intersect because of noise!!!

Least squares get you to a reasonable solution but it's not the actual geometric error (it's how far away the solution is from Ax = 0)

In practice with noise, you do non-linear least squares, or "bundle adjustment" (more than 2 image case, next lecture..)

X s.t.

$$x = PX, x' = P'X$$

Slide credit: Shubham Tulsiani

Summary: Two-view, known camera

0. Calibrate the camera.

1. Find correspondences:

- Reduce this to 1D search with Epipolar Geometry!

2. Get depth:

- If simple stereo, disparity (difference of corresponding points) is inversely proportional to depth
- In the general case, triangulate.

What if we don't know the camera?

What if we don't know the camera?

Assume we know the correspondences:

 \hat{x}' and \hat{x} in the image

$$\hat{x}'^T F \hat{x} = 0 \qquad \hat{x} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} u' & v' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0$$

How many correspondences do we need?

Estimating the fundamental matrix

The eight-point algorithm

$$\mathbf{x} = (u, v, 1)^{T}, \quad \mathbf{x}' = (u', v', 1)$$

$$\begin{bmatrix} u' & v' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} u'u & u'v & u' & v'u & v'v & v' & u & v & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{21} \end{bmatrix} = 0$$
Solve homogeneous

Enforce rank-2 constraint (take SVD of *F* and throw out the smallest singular value)

linear system using

eight or more matches

The Bible by Hartley & Zisserman

The Fundamental Matrix Song

http://danielwedge.com/fmatrix/ https://www.youtube.com/watch?time_continue=8&v=DgGV3I82NTk&feature=emb_title

Going from F to the Camera

Get the essential matrix with K (or some estimates of K)

$$E = K'^T F K$$
.

How the 2D lines relate with 3D lines is captured by intrinsics!

Essential matrix can be decomposed

$$E = T_xR$$

If we know E, we can recover t and R

$$\begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Given that T_{\times} is a Skew-Symmetric matrix ($a_{ij} = -a_{ji}$) and R is an Orthonormal matrix, it is possible to "decouple" T_{\times} and R from their product using "Singular Value Decomposition".

This completes: Corresp to Camera

What about more than two views?

The geometry of three views is described by a 3 x 3 x 3 tensor called the *trifocal tensor*

The geometry of four views is described by a 3 x 3 x 3 x 3 tensor called the *quadrifocal* tensor

After this it starts to get complicated...

Putting it all together

Structure-from-Motion: You know nothing! (except ok maybe intrinsics)

(Next lecture) Ultimate: Structure-from-Motion/SLAM

The starting point for all problems where you can't calibrate actively

(after that): Neural Rendering

A form of multi-view stereo, more on this in the NeRF lecture.

Next: Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).

Total reconstruction time: 23 hours

Number of cores: 352

Building Rome in a Day, Agarwal et al. ICCV 2009

Slide courtesy of Noah Snavely

Large-scale structure from motion

