
MVS & Neural Radiance Fields

CS180/280A: Intro to Computer Vision and Computational 
Photography

Angjoo Kanazawa and Alexei Efros
UC Berkeley Fall 2023

Lots of content from Noah Snavely and  ECCV 2022 Tutorial on Neural Volumetric Rendering for Computer Vision

Video from the original ECCV’20 paper

https://sites.google.com/berkeley.edu/nerf-tutorial/home?pli=1


Logistics

• Project 4 due tonight! Good luck!



Multi-View Stereo



What if we want solid models?

Slide credit: Noah Snavely



Multi-view Stereo (Lots of calibrated images)

• Input: calibrated images from several 
viewpoints (known camera: intrinsics and 
extrinsics)

• Output: 3D Model

Figures by Carlos Hernandez

Slide credit: Noah Snavely

In general, conducted in a controlled environment with multi-camera 

setup that are all calibrated



Slide credit: Noah Snavely





Multi-view Stereo

Binocular Stereo Multi-view stereo

Problem formulation: given several images of the 

same object or scene, compute a representation of 

its 3D shape

Slide credit: Noah Snavely



Examples: Panoptic studio

http://domedb.perception.cs.cmu.edu/



reference view neighbor views

Source: Y. 

Furukawa

Is this a 

surface 

point?

Multi-view stereo: Basic idea



Source: Y. 

Furukawa

reference view neighbor views

Multi-view stereo: Basic idea

Patch from 

reference View

Corresponding 

patches at depth 

guess in other 

views

Evaluate the likelihood of geometry at a particular 

depth for a particular reference patch:

?



reference view neighbor views

Source: Y. 

Furukawa

Multi-view stereo: Basic idea
Photometric 

error across 

different 

depths



reference view neighbor views

Source: Y. 

Furukawa

Photometric 

error across 

different 

depths

Multi-view stereo: Basic idea



reference view neighbor views

Source: Y. 

Furukawa

In this manner, solve for a depth 

map over the whole reference view

Photometric 

error across 

different 

depths

Multi-view stereo: Basic idea



Multi-view stereo: advantages over 2 view

• Can match windows using more than 1 other image, giving a 
stronger match signal

• If you have lots of potential images, can choose the best 
subset of images to match per reference image

• Can reconstruct a depth map for each reference frame, and the 
merge into a complete 3D model

Source: Y. Furukawa



width of 

a pixel

Choosing the baseline

•What’s the optimal baseline?

• Too small:  large depth error

• Too large:  difficult search problem

Large Baseline Small Baseline

all of these

points project

to the same 

pair of pixels

Slide credit: Noah Snavely



Single depth map often isn’t 

enough

Source: N. Snavely



Really want full coverage

Source: N. Snavely



Idea: Combine many depth maps

Source: N. Snavely



Volumetric stereo

Discretized 

Scene Volume

Input Images

(Calibrated)

Goal:  Assign RGB values to voxels in V
photo-consistent with images



Space Carving

•Space Carving Algorithm

Image 1 Image N

…...

• Initialize to a volume V containing the true scene

• Repeat until convergence

• Choose a voxel on the outside of the volume

• Carve if not photo-consistent

• Project to visible input images

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999

http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf


Space Carving Results

Input Image (1 of 45) Reconstruction

ReconstructionReconstruction Source: S. Seitz



Space Carving Results

Input Image
(1 of 100) 

Reconstruction
Source: S. Seitz



Tool for you: COLMAP

https://github.com/colmap/colmap

A general SfM + MVS pipeline

https://github.com/colmap/colmap


Multi-View Stereo

Camera 
(Motion)

Correspondences

3D Points 
(Structure)



Volumetric “Neural” Rendering

Camera 
(Motion)

Correspondences

3D Points 
(Structure)

Does not use explicit correspondences, 

relies on reconstruction loss (Analysis-by-Synthesis)



Neural Radiance Fields

Video from the original ECCV’20 paper



Capturing Reality

Earliest cave painting (45,500 years old) in Sulawesi, Indonesia



Capturing Reality

Monet’s Cathedral series: study of light 1893-1894



Capturing Reality

First self-portrait Cornelius 1839 First Movie - Muybridge 1878



Capturing Reality – in 3D

Building Rome in a Day, Agarwal et al. ICCV 2009



Capturing Reality – in 3D (MVS – last lecture)

Google Earth 2016~



What is next?



2020: Neural Radiance Field (NeRF)

Mildenhall*, Srinivasan*, Tancik*, Barron, Ramamoorthi, Ng, ECCV 2020



It has been three years
• Original NeRF paper: 4200+ citations in 3 years



Nerf-W [Martin-Brualla et al. CVPR 2021] 

Handling Appearance Changes



Video from PlenOctrees [Yu et al. CVPR 2021] 

Real-time Rendering



Real-time Inference



@karenxcheng, with 

InstantNGP [Müller et 

al., SIGGRAPH 2022] 





NSFF [Li et al., CVPR 2021]

HyperNeRF [Park et al., SigAsia 2021]
Nerfies [Park et al., ICCV 2021]

[Xian et al., CVPR 2021]

Dynamic NeRFs



EG3D: Efficient Geometry-aware 3D Generative 

Adversarial Networks, Chan et al. CVPR 2022

Generative 3D Faces



Wang et al. SIGGRAPH 2022



BlockNeRF 

[Tancik et al. 

CVPR 2022]

City-Scale NeRFs



RawNeRF 

[Mildenhall et al. 

CVPR 2022]



Robotics

Dex-NeRF: Using a Neural Radiance field to Grasp 

Transparent Objects, [Ichnowski and Avigal et al. CoRL 2021]
Vision-Only Robot Navigation in a Neural Radiance World  

[Adamkiewicz and Chen et al. ICRA 2022]

NeRF-Supervision: Learning Dense Object Descriptors from Neural 

Radiance Fields, [Yen-Chen et al. ICRA 2022]



Generating 

3D scenes 

with 

diffusion 

models

DreamFusion 

[Poole et al. 

ICLR 2023]



Querying with Language

[Kerr* and Kim* et al. LERF, ICCV 2023]



Editing with Instructions

[Haque, Tancik, Efros, Holynski, Kanazawa, ICCV 2023]



Goals of the next few lectures

• Visit the fundamentals in Neural Volumetric Rendering by 

abstracting away recent developments

• Provide first principles + background for you to go and read 

these papers & play around with the tools

• New Project 5!! Implement these concepts yourself



Birds Eye View & Background

Capture of UC Berkeley redwoods with



Birds Eye View

• What is NeRF? 

• How is it different or similar to existing approaches?

• What is its historical context? 



Output: 

A 3D scene representation that 

renders novel views

Input: 

A set of calibrated Images

Problem Statement





Three Key Components

Neural Volumetric 3D 
Scene Representation

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹Ω

Objective: Synthesize 
all training views

Differentiable Volumetric 
Rendering Function

3D volume

𝑡𝑁

Camera

Ray

Optimization via 
Analysis-by-Synthesis



Representing a 3D scene as a continuous 5D function

MLP

9 layers, 

256 channels

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹Ω

{Spatial 

location
{

Viewing 

direction

Output 

color

{

Output 

density

{

What kind of a 3D representation is this?



It is not a Mesh

Not a point cloud 

either

It is volumetric

It’s continuous voxels made of shiny transparent cubes



What is the problem that is being solved? 



Plenoptic Function

Q: What is the set of all things that we can ever see?
 

A: The Plenoptic Function (Adelson & Bergen ‘91)

Slide credit: 
Alyosha Efros

Figure by Leonard McMillan



A holographic movie 

• is intensity of light 
• Seen from ANY position and direction

• Over time

• As a function of wavelength
Slides from Alyosha Efros

P(,t,VX,VY,VZ)



The plenoptic function

7D function, that can reconstruct every position & direction, 

at every moment, at every wavelength

= it recreates the entirety of our visual reality! 

Slides from Alyosha Efros

P(,t,VX,VY,VZ)



Goal: Plenoptic Function from a set of images

• Objective: Recreate the visual reality

• All about recovering photorealistic pixels, not about 

recording 3D point or surfaces

—Image Based Rendering aka Novel View Synthesis



Goal: Plenoptic Function from a set of images

It is a conceptual device

Adelson & Bergen do not discuss how to solve this



Plenoptic Function

Let’s simplify: 

1. Remove the time

2. Remove the wavelength & let the function output RGB colors

P(,t,VX,VY,VZ)

7D function:
2 – direction
1 – wavelength
1 – time 
3 – location

P(,VX,VY,VZ)

Look familiar 

?



Lightfield / Lumigraph

• Previous approaches for modeling the Plenoptic Function

• Take a lot of pictures from many views

• Interpolate the rays to render a novel view

Levoy and Hanrahan, SIGGRAPH 1996

Gortler et al. SIGGRAPH 1996

Stanford Gantry 

128 cameras
Lytro camera



Lightfield / Lumigraph

• Previous approaches for modeling the Plenoptic

Function

• Take a lot of pictures from many views

• Interpolate the rays to render a novel view

Levoy and Hanrahan, SIGGRAPH 1996

Gortler et al. SIGGRAPH 1996

Stanford Gantry 

128 cameras
Lytro camera Figure from Marc Levoy



Lightfield / Lumigraph
Levoy and Hanrahan, SIGGRAPH 1996

Gortler et al. SIGGRAPH 1996

Figure from Marc Levoy

• Previous approaches for modeling the Plenoptic

Function

• Take a lot of pictures from many views

• Interpolate the rays to render a novel view

Stanford Gantry 

128 cameras
Lytro camera



Surface Camera

No Change in 

Radiance

Lighting

Big Assumption: a ray does not change color

True if there is no occlusion or fog



With this assumption: Ray Reuse

Infinite line
• Assume light is constant (vacuum)

The 5D function
• 3D position

• 2D direction

is now 4D
• 2D direction

• 2D position

• non-dispersive medium

Slide by Rick Szeliski and Michael Cohen



Ray Reuse Assumption
Levoy and Hanrahan, SIGGRAPH 1996

Gortler et al. SIGGRAPH 1996

Because of this it only models the 

plenoptic surface:

It’s like



Synthesizing novel views

Slide by Rick Szeliski and Michael Cohen



Lumigraph / Lightfield

Outside convex space

4D
Stuff

Empty

Slide by Rick Szeliski and Michael Cohen



Lumigraph - Organization 

2D position

2D direction

s


Slide by Rick Szeliski and Michael Cohen



Lumigraph - Organization 

2D position

2D position

2 plane parameterization

s
u

Slide by Rick Szeliski and Michael Cohen



Lumigraph - Organization 

2D position

2D position

2 plane parameterization

us

t s,t

u,v

v

s,t

u,v

Slide by Rick Szeliski and Michael Cohen



Lumigraph - Organization

Hold s,t constant

Let u,v vary

An image

s,t u,v
Slide by Rick Szeliski and Michael Cohen



Lumigraph / Lightfield



Novel View Synthesis

For each output pixel

• determine s,t,u,v

• either

• use closest discrete RGB

• interpolate near values
s u

Slide by Rick Szeliski and Michael Cohen



How NeRF models the Plenoptic Function

NeRF takes the same input as the Plenoptic Function!

It allows rays to change color. Hence we can fly into the glass 
bowl (if we had enough observation)

Look familiar 

?
P(,VX,VY,VZ)



Plenoptic Function
NeRF

A subtle difference

So NeRF requires the integration along the viewing ray to compute the Plenoptic Function

Bottom line: it models the full (5D) plenoptic function! 



MLP

9 layers, 

256 channels

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹Ω

{

Spatial 

location

{
Viewing 

direction
Output 

color

{

Output 

density

{



Visualizing the 2D function on the sphere

Outgoing radiance distribution 

for point on side of ship

Outgoing radiance distribution 

for point on water’s surface



Baking in Light

• NeRF can capture non-Lambertian (specular, shiny surfaces) because it 

models the color in a view-dependent manner

• This is hard to do with meshes unless you model the physical materials 

& lighting interactions

• But, with Image Based Rendering — All lighting effects are baked in



NeRF in a Slide

Volumetric 3D Scene 
Representation

Optimization via 
Analysis-by-Synthesis

Differentiable Volumetric 
Rendering Function

Objective: Reconstruct 
all training views

3D volume

𝑡𝑁

Camera

Ray



Unmentioned caveat so far

• Training a NeRF requires a calibrated 

camera!!!!

• Need to know the camera parameters: 

extrinsic (viewpoint) & intrinsics (focal 

length, distortion, etc)

How do we get this from images?



Structure from Motion
Or Photogrammetry (1850~) 

Long history in Computer Vision



NeRF is AFTER Structure from Motion

• In order to train NeRF you need to run SfM/SLAM on the images to 

estimate the camera parameters

• In this sense, the problem category is same as that of Multi-view Stereo

Colmap: Schönberger et al. 2016



Multi-view Stereo

• Problem: Given calibrated cameras, recover highly detailed 3D surface model

• Dense photogrammetry, often the output is textured meshes

Figures by Carlos Hernandez, Yasutaka Furukawa



Multi-View Stereo
Solutions to MVS is what you see for any existing 3D scanning system, ie 

sketchfab, or what’s in your video game



Multi-View Stereo
Because they often model surfaces, struggles on Thin / Amorphus / Shiny objects 





Conventional 

Graphics Pipeline

NeRFs 

Where NeRF stands

Appearance Based 

Reconstruction

(Image Based 

Rendering)

Physics based 

Reconstruction

(3D Surface 

Modeling)

Lightfield/Lumigraph

(No 3D representation)
One 3D Surface, 

Single Albedo 

Texture
One 3D Surface, 

View-Dependent 

Texture Mapping

Layered Depth 

Images (LDIs)

Multi-Plane 

Images (MPIs)

• can do Image Based Rendering well, while 

also being a 3D representation

• Does not suffer from limitations of surface 

models

• Easy to optimize from images 



Analysis-by-Synthesis

• History goes way back to the first Computer Vision paper! 

Roberts: Machine Perception of Three-Dimensional Solids, MIT, 1963



Power of Analysis-by-Synthesis

● Space Carving: A MVS method that used Colored voxels
● But the optimization method was bottom up then.
● Key is optimization via Analysis-by-Synthesis [Plenoxels, Yu et al. 2022]

Kultulakos and Seitz, A Theory of Shape by Space Carving IJCV 2000



Analysis-by-Synthesis

• With custom differentiable renders

Blanz & Vetter 1999



Analysis by Synthesis Requires 

Differentiable Renderers

Next: Deep dive into Volumetric Rendering Function



Where we are

1. Birds Eye View & Background 

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes 

4. Signal Processing Considerations

5. Challenges & Pointers



Volume Rendering

115



Neural Volumetric Rendering

116



Neural Volumetric Rendering

117

computing color along rays 

through 3D space

What color is this pixel?
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