Neural Radiance Fields pt 2

Video from the original ECCV’20 paper

CS180/280A: Intro to Computer Vision and Computational Photography
Angjoo Kanazawa and Alexei Efros

UC Berkeley Fall 2023

Lots of content from Noah Snavely and ECCV 2022 Tutorial on Neural Volumetric Rendering for Computer Vision



https://sites.google.com/berkeley.edu/nerf-tutorial/home?pli=1

Logistics

* Project 5 out today!!



| ast lecture

* Big picture of what NeRF does

« what does this view direction mean?
* How is it different from multi-view stereo (photogrammetry)?
* How is it different from lightfields?
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“"Neural Radiance Fields”

How an image is made (“Inference”)

Volumetric 3D

Representation 0
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Analysis-by-Synthesis

A

Larry Roberts Input image 2x2 gradient operator computed 3D model
“Father of Computer Vision” rendered from new viewpoint

» History goes way back to the first Computer Vision paper!
Roberts: Machine Perception of Three-Dimensional Solids, MIT, 1963



“"Neural Radiance Fields”

Forward Function: How an image is made (Inference)

Volumetric 3D

Representation 0

Differentiable
Volumetric Rendering

“Training” Objective (aka Analysis-by-Synthesis):
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Differentiable Rendering

* How to change 0 (network parameter) so that we get the final

image? W '

 Gradient Descent "Hiking”

Same idea here, "hiking” now means you're going to
change the network parameter little by little.

The “Mountain” or the “Loss” comes from the , g -
reconstruction loss. S —

L=|I"=1]

oL oLl I'=f(x;6)
00 ~ oI' 06

Chain rule, aka Back propagation




“"Neural Radiance Fields”
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“"Neural Radiance Fields”

Volumetric 3D Representation 8




“"Neural Radiance Fields”

(X,y,Z,H,¢)—> —V(l/',g,b, )
e\ g/ \————

Spatial Viewing Output Output

location direction FQ color density

MLP
9 layers,
256 channels



Let's simplify, do this in 2D:

(x,y) =—> —> (7, 9,D)

o

MLP



Let's simplify, do this in 2D:

Retrieve color from this
network for every pixel

y)y=> ¢ —>0g9b) —

Rendered Image:
II

FQ
MLP

Optimize with “Training” Objective (aka Analysis-by-Synthesis):

oL o(rgb —rgpy D] EEE | —| S ||
a6 36 g

Straight forward to implement with Pytorch




ML Recap: Multi-layer perceptrons / Fully-Connected Layer




Multi-layer perceptrons / Fully-Connected Layer
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2. Apply Non-Linearity x — f (Z) — maX(O, z) IS identity?



Multi-layer perceptrons / Fully-Connected Layer

”Cat”
—

4 o
W2©W3©
O

In each layer:

_ U Il
1. Linear Transform Z = Wl -1 + b Sualy What are the

f — RELU(Z) learnable

2. Apply Non-Linearity x = f(Z) — maX(O, Z) parameters?



In our 2D case:

X
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In each layer:

_ U Il
1. Linear Transform Z = Wl -1 + b Sualy What are the

= RELU(z
2. Apply Non-Linearity X — f(Z) f: maX(O’ (Z)) :::r;nr?\lers?



Coordinate Based Neural Network

Input ® Value at
Coordinate & Coordinate
&

Multi Layer Perceptron
MLP



Image Representation
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Challenge:

How to get MLPs to represent higher
frequency functions?

Rahaman et al. 2019. Basri et al. 2020



what happens if you naively
optimize this network



MLP output Supervision image
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Positional Encoding

Standard input Positionally Encoded input
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Fourier Features ~(p) = (sin(2%7p), cos(2%7p), - - - , sin(2X~'7p), cos(2-~mp) )



Standard MLP MLP with Fourier features



Why does positional encoding help?

I's

Target Image




Why does positional encoding help?

Input Target 0
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Why does positional encoding help?

Input Target 0 1
X oy
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Why does positional encoding help?

Input Target _
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Why does positional encoding help?

Input Target
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A 11 L
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Project 5 Part 1

* Fit a Neural Network to a single image

* Implement this network, and Positional Embedding (PE) and
reconstruct an image:

- ol ®

(2D)  pg RelU

&

®

-.»rgb

Sigmoid (3D)

RelLU RelLU

Linear Linear Linear Linear
(256) (256) (256) (3)



Coordinate-based MLPs can replace any low-dimensional array

Without Encoding

With Encoding




NeRF with and without positional encoding
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NeRF (Naive) NeRF (with positional encoding)



NeRF Network Architecture

Next section you will implement this:

, »density
Concat ¥ RelU (1D)
/J Linear
X (1)
(30) pg RelU [ RelU ReLU ReLU ReLU ReLU RelU [
Linear Linear Linear Linear Linear Linear Linear Linear : & ' = > rgh
(256) (256) (256) (256) (256) (256) (256) (256) ReLU Sigmoid (3D)
Linear| Linear Linear
(256) | (128) (3)

Concat
s @)

(D) pe




Let's go back to 3D

Now we need to render an image
from this 3D representation in a

differentiable manner

Volumetric 3D Differentiable Rendered Image:
Representation (4] Volumetric Rendering I’

“Training” Objective (aka Analysis-by-Synthesis):

|
m 1 n ‘ ‘ Rendered Image: | Observed Image: ‘ ‘ 2
|’ I




Differentiable Volumetric
Rendering



A Precursor: Multi-plane Images

\
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Reference viewpoint v Q Novel viewpoint

Zou et al. Stereo Magnification, SIGGRAPH 2018



Multi-
plane
Camera at
Disney

https://www.youtub

e.com/watch?v=Yd
HTIUGN1zw



https://www.youtube.com/watch?v=YdHTlUGN1zw

Generating an Image MP]

Layers at
" fixed depths,
each is an
RGBA image.

To render a novel view: [
1.Homography warp the image
from the new viewpoint M - = E |

2 . Al p h d B | en d ed Ch | d ye r Reference viewpoint"v}: Q Novel viewpoint

Zou et al. Stereo Magnification, SIGGRAPH 2018



Sample Novel View Synthesis with a MPI

Single-view view synthesis with multiplane images, Tucker and Snavely CVPR 2020



Also called front-to-back compositing or “over” operation

Alpha Blending
‘L /(Cb; ab)

for two image case, A and B, ! \_I /
both partially transparent:
partially P ): o
(Ca) ag)

I = Ca C(a+ Cb ab(l _aa)
v

How much light is the previous laver letting through?

— layer D
General D layer case: y

= ':"-,;Iayer 2

layer 1




What is missing in MPIs?

 Look at it from the side??
* You'll see all the edges!!

=>» Limited camera mobility

NeRF overcomes this problem, because it's defined everywhere
Volumetric Rendering behaves similarly to alpha compositing



Back to NeRFs



Volumetric Rendering

Through Volumetric ~ computing color along rays

Representation
(No surfaces)!

.

through 3D space

e—

What color is this pixel?

47



Surface vs. volume rendering

Camera Scene
representation

Want to know how ray interacts with scene

Ray

48



Surface vs. volume rendering

Ray

Camera Scene
representation

Surtace rendering — loop over geometry, check for ray hits

49



Surface vs. volume rendering

Ray

Camera Scene
representation

Volume rendering — loop over ray points, query geometry

50



Recap: Cameras and rays

* We need the mathematical mapping
from (camera, pixel) = ray

* Then can abstract underlying problem
as learning the function ray — color

Camera



Compute the Ray

Camera coord frame

o .
(uv) g’

Image Plane

4

Ye

Ray

3D to 2D:
(point)

2D to 3D:

(ray)
Back projection

Te
u=],— +
Ze
V= &—I—
Zc
:B:i(u—
2
y=—(v—
z >0

Slide credit: Shree Nayar



Details:
A half-pixel offset — add 0.5 to i and j so ray precisely hits pixel center

imz;ge[0,0]

(0.0.]0.0%
(0.5.0.5)

(4.0 3.0)



Want: Ray in the World

* What coordinate space is the current ray in?

 Convert it to World!

Rx+t




Calculating points along a ray

In the world coordinate frame:

(@)
O

o ©

o o+ td

Scalar t controls distance
along the ray




History ot volume rendering



In Early computer graphics

S.Chandrasekhar

RADIATIVE
TRANSFER

4

> Theory of volume rendering co-opted from physics in the
1980s: absorption, emission, out-scattering/in-scattering

> Adapted for visualising medical data and linked with
alpha compositing

> Modern path tracers use sophisticated Monte Carlo
methods to render volumetric effects

Ray tracing simulated cumulus cloud [Kajiya]

Chandrasekhar 1950, Radiative Transfer

57
Kajiya 1984, Ray Tracing Volume Densities



Alpha compositing

> Alpha rendering developed for digital compositing in
VFEX movie production

Pt.Reyes = Foreground over Hillside over Background.

Alpha compositing [Porter and Duff]

Porter and Duff 1984, Compositing Digital Images
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Volume rendering for visualization

Medical data visualisation [Levoy] > Volume rendering applied to visualise 3D medical scan
data in 1990s

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering
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~ O
o Walel

A-bsor ption’
\o', "0 © A0/

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

Dut-scattering

Absorption

http://commons.wikimedia. org

Scattering

http://wikipedia.org

61



Simplity

Absorption Scattering Emission

http://wikipedia.org

62

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering



Volume rendering derivations



Volumetric formulation for NeRF

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral

64



Volumetric formulation for NeRF

c(t), a(t) Rayr(t) = o+ td

t

Camera

at a point on the ray r(t) , we can query color ¢(t) and density a(t)

How to integrate all the info along the ray to get a color per ray?



|[dea: Expected Color

* Pose probabilistically.
» Each point on the ray has a probability to be the first “hit"” : P[first hit at t]
* Color per ray = Expected value of color with this probability of first “hit”

= . f
foraray r(t) = o + td: c(r) = f P[first hit at t]c(t)dt
to

T
~ z P[first hit at t]c(t)




Differentiable Volumetric Rendering Formula

for a ray r(t) = 0 + td:
memmmmmmery differentiable wert. ¢, o Ray

s’ colors

weights
How much light is blocked earlier along ray: ' 3D volume
1—1 '
T = [1(1—a)
J=1

J.

How much light is contributed by ray segment i:

=1 —exp(—0;9;)

68



| et's derive this:

Camera

Ray r(t) = o+ td

c(t)

If a ray traveling through the scene hits
a particle at distance t along the ray,
we return its color €(t)

69



What does it mean for a ray to “hit” the volume?

P\Plhit at t] = o(t)dt

This notion is probabilistic: chance that ray hits

a particle in a small interval around t is o(t)dLt.
o is called the "volume density”

70



Probabilistic interpretation

P[no hits before t] = T(t)

To determine if t is the first hit along the ray,

need to know T (t): the probability that the ray
makes it through the volume up to t.

T(t) is called “transmittance”

71



Probabilistic interpretation

P[no hits before t] = T(t)
Plhitatt] = o(t)dt

The product of these probabilities tells us how much you see

the particles at t:
P[first hit at t] = P[no hit before t|XP[hit at t] = T(t)o(t)dt

Let's write T as a function of o ! How?

72



Calculating T given o

P[no hits before t] = T(t)
Plhitatt] = o(t)dt

o and T are related by the probabilistic fact that
P[no hit before t + dt] = P[no hit before t]XP[no hit at ¢]

—— Y

T(t + dt) T(¢t) (1 —o(t)dt)



Calculating transmittance T

T(t + dt) = T(t)(1 — a(t)dt)

T(t+ dt) = T(t) (1 —a(t)dt)

Now we can solve for T



Solve for T

T(t + dt) = T(t)(1 — o(t)dt)

E ded Righthand sid
Taylor expansion for T= 7/"65) + T'(t)dt = 7%) — T(t)O'(t)dtJ xpanded Fighthand sice

78



Solve for T
T(t +dt) = T(t)(1 — o(t)dt)

Taylor expansion for T= TAt) + T'(t)dt = T¢) — T(t)o(t)dt

T'(t) ;. _
Rearrange= s dt = —o(t)dt

79



Solve for T

T(t + dt) = T(t)(1 — o(t)dt)

Derivative of :
Taylor expansion for T= T(t) + T'(t)dt = T(t) — T(t)o(t)dt

l0g /(1) = -
Rearrange= 7;(;) dt = —o(t)dt
) , Integral of:
Integrate= logT(t) = —[ Oa(s)ds f'(x) B
‘ 5 dx = log f (x)

- j o(s)ds



Solve for T
T(t +dt) = T(t)(1 — o(t)dt)

Taylor expansion for T= T(t) + T'(t)dt = T(t) — T(t)o(t)dt

T'®) . _
Rearrange= s dt = —o(t)dt

Integrate= logT'(t) = —[, o(s)ds

Exponentiate= T(t) = exp (—fti)a(s)ds)

81



PDF tor ray termination

P[no hits before t] = T(t)
P[hit at t] = o(t)dt

Finally, we can write the probability that a ray terminates at t as a function of only sigma
P([first hit at t] = P[no hit before t]|XP/hit at t]

= T(t)o(t)dt

= exp (—f o(s)ds) o(t)dt

90



-xpected value of color along ray

This means the expected color returned by the ray will be

expected color of this ray = fti)lT(t)a(t)c(t)dt

~—

P[first hit at t]

= [ lexp(—f, o(s)ds) o(t)e(t)dt

Note the nested integral!



Approximating the nested integral

4

We use quadrature to approximate the nested integral,

93



Approximating the nested integral

tht1

4

We use quadrature to approximate the nested integral,

splitting the ray up into n segments with endpoints
{t11 t21 e tn+1}
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Approximating the nested integral

We use quadrature to approximate the nested integral,

splitting the ray up into n segments with endpoints
{tlJ t21 " tn+1}
with lengths 6; = t;41 — ¢;

95



Approximating the nested integral

4

We assume volume density and

color are roughly constant within
each interval

96



Deriving quadrature estimate

[ T®o®)c(t)dt =~

This allows us to break the outer intearal



Deriving quadrature estimate

J Toe®dt ~ 3 [ T (0o de
i=1 !

This allows us to break the outer integral
into a sum of analytically tractable integrals



Deriving quadrature estimate

[ T()o(t)c(t)dt ~ él [ tii@)aicidt

Caveat: piecewise constant density and color
do not imply constant transmittance!



Deriving quadrature estimate

[ T()o(t)c(t)dt ~ él [ tii@)aicidt

Caveat: piecewise constant density and color
do not imply constant transmittance!

Important to account for how early part of a
segment blocks later part when o; is high



valuating T for piecewise constant
density

t

i t
Fort € [t;, t;11], T(t) = exp (—ft O'idS) exp (—ftiaids)

1

We need to evaluate at continuous t values
that can lie partway through an interval




valuating T for piecewise constant
density

exp (— ] ttlicfi ds)

exp <_l§:10]5j> T, “How much light is blocked by
all previous segments?”

102



valuating T for piecewise constant
density

exp (—ftiaids)

"How much light is blocked partway
through the current segment?” exp(—o;(t —t;))

—_

t




Deriving quadrature estimate

J Tt ~ 3 [ T (0o dt
i=1 !



Deriving quadrature estimate

n

[TM®o®)e®)dt = ¥ [ T(1)o;c;dt
i=1 !

n .
Substitute= Z T,;al-cl-f;lﬂexp(—ai (t — ti))dt
.:1 l

l
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Deriving quadrature estimate

n

[TM®o®)e®)dt = ¥ [ T(1)o;c;dt
i=1 !
& Li+1
= _ZlTiUiCifti exp(—o;(t — t;))dt
1=
Integral of Exponential: Integrate = % T,0;c; eXp(_Ji(ti+1 — ti)) —1
=1 —0j

f exp(—ax) dx = —%exp(—ax)

Lit1 1 ot

| T ewotc — ) de =~ ~exp(-at - ) I

ti

exp(=0i(tit1—ti))—exp(=oi(ti=t))) _ exp(=0i(tir1—ti))-1
—0j —0j

106



Deriving quadrature estimate

n

[ T(®)o()c(t)dt =~ | f;”lT(t)aicidt
i=1 !
= Li+1
— .ZlTiUiCifti exp(—al-(t — ti))dt
L=
n exp(—o;(ti+1 — t;)) — 1
— TO-C
igl A AT o,

n
Cancel g; = } Tic;(1 — exp(—0;6;))
i=1

n
Expected Color = ), T;c;(1 — exp(—0;0;))
-

l

107



Putting it all together

n
Expected Color = ), T;c;(1 — exp(—0;0;))
-

l

i—1
where T; = exp <— D aj5j>
j=1



Connection to alpha compositing

n
Expected Color = ), T;c;(1 — exp(—0;0;))
-

H exp(x;) = eXP(Z X;)

l l
a; =1 —exp(0;6;)
1 —a; = —exp(0;0;)

L \VJ
segment
opacity a;

n
Expected Color = ) T;c;a;
i=1

i—1
where T; = exp (— y aj5j)
=1

i—1
=1 (1 —«qj)
j=1



Summary
for a ray r(t) = 0 + td:

e ifferentiable w.r.t. ¢, o Ray

colors

weights

How much light is blocked earlier along ray: 3D volume

1—1
= [1 (1 —aj)
j=1 ‘
Camera

How much light is contributed by ray segment i:

a; =1 —exp(—0;0;)

112



Visual intuition: rendering weights is
specitic to a ray

Ray

3D volume

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

119
119



Visual intuition: rendering weights is
specitic to a ray

Camera

3D volume

Ray

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

120
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Rendering weight PDF is important

Remember, expected color is equal to

[T(Ho®c()dt ~ z T.asc; = z s

l l

T(t)o(t) and T;a; are “rendering weights” — probability distribution along the ray
(continuous and discrete, respectively)

You can also render entities other than color in 3D, for example it's
depth, or any other N-D vector v;

Volume rendered "feature” = ) w;v;
i



Rendering weight PDF is important —
depth

We can use this distribution to compute expectations for other quantities,
e.g. "expected depth”:

t = YT;a;t;
i

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.



Rendering weight PDF is important — depth

Mean depth Median depth
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Rendering weight PDF is important —
dept

(-
.
( ,
_/ ! .
:

Mean depth Median depth
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Volume rendering other quantities

This idea can be used for any quantity we want to “volume render” into a 2D image.
If v lives in 3D space (semantic features, normal vectors, etc.)

2Tia;v;
l

can be taken per-ray to produce 2D output images.



Volume Rendering CLIP features

LERF: Language Embedded Radiance Fields, Kerr* and Kim* et al. ICCV 2023



Density as geometr

Normal vectors (from analytic gradient of density)
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Previous Papers

Differentiable ray consistency work used a
forward model with “probabilistic occupancy’

I

p(zr =1) = 4

to supervise 3D-from-single-image prediction.
Same rendering model as alpha compositing!

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction
via Differentiable Ray Consistency

ifi1 < N,

ifi=N,+1
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Similar |deas before NeRF

Multiplane image methods Neural Volumes

Stereo Magpnification (Zhou et al. 2018) (Lombardi et al. 2019)

Pushing the Boundaries... (Srinivasan et al. 2019) Direct gradient descent to optimize an RGBA
Local Light Field Fusion (Mildenhall et al. 2019) volume, regularized by 3 3D CNN

DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a
3D CNN, big RGBA 3D volume comes out

" ‘s I
Input Sampled View
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