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Recall: Camera calibration & triangulation

e Suppose we know 3D points and their matches in
an image

— How can we compute the camera parameters?

e Suppose we know camera parameters for
multiple cameras, each observing a point

— How can we compute the 3D location of that point?



Recall this redundant structure, if you
know 2 you get the other:
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Camera Calibration; aka
Perspective-n-Point
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Stereo (w/2 cameras); aka
Triangulation
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Ultimate: Structure-from-Motion

D Points

(Structure)
O

[ C
@)

Camera
(Motion)

Correspondences

Start from nothing known (except maybe intrinsics), exploit the
relationship to slowly get the right answer



Photo Tourism

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring
photo collections in 3D," SIGGRAPH 2006

https://youtu.be/mTBPGuUPLI5Y



http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://phototour.cs.washington.edu/Photo_Tourism.pdf
https://youtu.be/mTBPGuPLI5Y




Structure from Motion (SfM)

* Given many images, how can we

a) figure out where they were all taken from?
b) build a 3D model of the scene?

This is (roughly) the structure from motion problem



Structure from motion
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* Input: images with points in correspondence
pi; = (UipVi

* Output

* structure: 3D location x; for each point p,
* motion: camera parameters R;, t; possibly K;

* Objective function: minimize reprojection error



Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).
Total reconstruction time: 23 hours

Number of cores: 352
Building Rome in a Day, Agarwal et al. ICCV 2009



Large-scale structure from motion
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Rome’s Colosseum
Building Rome in a Day, Agarwal et al. ICCV 2009



First step: Correspondence

* Feature detection and matching



Feature detection

Detect features using SIFT [Lowe, [JCV 2004]




Feature detection

Detect features using SIFT [Lowe, [JCV 2004]




Feature matching

Match features between each pair of images




Feature matching

Refine matching using RANSAC to estimate fundamental
matrix between each pair




Correspondence estimation

* Link up pairwise matches to form connected components of
matches across several images

Image 4



The story so far...
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Images with feature correspondence




The story so far...

Input images
V4 =T a9
Feature detection
Matching + track genera tion

Images with feature correspondence

* Next step:

— Use structure from motion
to solve for geometry
(cameras and points)

e First: what are cameras
and points?



Review: Points and cameras

* Point: 3D position in space (X ;)

\

* Camera (C};):

— A 3D position (C;) R fl A
— A 3D orientation (R,;) ¢
— Intrinsic parameters C;

(focal length, aspect ratio, ...)
— 7 parameters (3+3+1) in total



Structure from motion

X3 minimize

g(R, T, X)

non-linear least squares

Camera 2

RZ’tZ



Structure from motion

* Minimize sum of squared reprojection errors:

g(X,R,T) = ZZW” |Pcx. R, )—[”;,‘j]HZ

=1 j=1-—-

pred/cted observed
l image location image location
indicator variable:
is point j visible in image j ?

* Minimizing this function is called bundle
adjustment

— Optimized using non-linear least squares,
e.g. Levenberg-Marquardt



Solving structure from motion

Inputs: feature tracks Outputs: 3D cameras and points

* Challenges:

— Large number of parameters (1000’s of cameras,
millions of points)

— Very non-linear objective function



Solving structure from motion

Inputs: feature tracks

Camera
R.1,

Outputs: 3D cameras and points

cameraz .\ /7
Ryt

amera 3
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* Important tool: Bundle Adjustment [Triggs et al. "00]
— Joint non-linear optimization of both cameras and points

— Very powerful, elegant tool
The bad news:

— Starting from a random initialization is very likely to give the

Wwrong answer

— Difficult to initialize all the cameras at once



Solving structure from motion

amera 3
Ryt,

Inputs: feature tracks Outputs: 3D cameras and points

* The good news:
— Structure from motion with two cameras is (relatively) easy
— Once we have an initial model, it’s easy to add new cameras
* |dea:
— Start with a small seed reconstruction, and grow



Incremental STM

e Automatically select an initial pair of images



1. Picking the initial pair

 We want a pair with many matches, but which
has as large a baseline as possible

¥’ large baseline
2 very few matches

¥ lots of matches
25 small baseline

¥ large baseline
¥~ lots of matches



Incremental SfM: Algorithm

1. Pick a strong initial pair of images
2. Initialize the model using two-frame SfM

3. While there are connected images remaining:

Pick the image which sees the most existing 3D points

a
b. Estimate the pose of that camera
c. Triangulate any new points

d

Run bundle adjustment



Visual Simultaneous Localization and
Mapping (V-SLAM)
e Main differences with SfM:

— Continuous visual input from sensor(s) over time
— Gives rise to problems such as loop closure
— Often the goal is to be online / real-time

Video from Daniel Cremer’s Lab



Applications: Match Moving

Or Motion tracking, solving for camera trajectory

Integral for visual effects (VFX)
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What If we want solid models?

Slide credit: Noah Snavely



Multi-view Stereo (Lots of calibrated images)

Input: calibrated images from several
viewpoints (known camera: intrinsics and
extrinsics)

Output: 3D Model

)

W
vi’/r.

Figures by Carlos Hernandez

Slide credit: Noah Snavely

In general, conducted in a controlled environment with multi-camera
setup that are all calibrated




Whistle in the Form of Female Figure 600 AD -

Details  Los Angeles County Museum of Art

|
Los Angeles County Museum of Art @ Sculpture H Mexico
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Slide credit: Noah Snavely
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Multi-view Stereo

Problem formulation: given several images of the
same object or scene, compute a representation of its
3D shape
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Binocular Stereo Multi-view stereo

Slide credit: Noah Snavely



Examples: Panoptlc studlo
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http://domedb.perception.cs.cmu.edu/



Multi-view stereo: Basic idea

Is this a
surface

point? \

reference view neighbor views

Source: Y.
Furukawa



Multi-view stereo: Basic idea

Evaluate the likelihood of geometry at a particular
depth for a particular reference patch:

Corresponding
patches at depth ( B
guess in other m
views
1 .

Patch from

, : : reference View "
reference view neighbor views Uo—

i

Source: Y.
Furukawa



Multi-view stereo: Basic idea

Photometric
error across error ’\/\/_\/—\
different

depths

depth

reference view neighbor views

Source: Y.
Furukawa



Multi-view stereo: Basic idea

Photometric
error across error ’\/\/_\/—\
different

depths

depth

reference view neighbor views

Source: Y.
Furukawa



Multi-view stereo: Basic idea

Photometric
error across
different
depths




Multi-view stereo: advantages

Can match windows using more than 1 other
Image, giving a stronger match signal

If you have lots of potential images, can
choose the best subset of images to match
per reference image

Can reconstruct a depth map for each reference
frame, and the merge into a complete 3D
model

Source: Y. Furukawa



Choosing the baseline

all of these
points project
to the same
pair of pixels
width of
a pixel
Large Baseline Small Baseline

What's the optimal baseline?

 Too small: large depth error
« Too large: difficult search problem

Slide credit: Noah Snavely



Single depth map often isn't
enough

Source: N. Snavely



Really want full coverage

Source: N. Snavely



ldea: Combine many depth maps

Source: N. Snavely



Volumetric stereo

—

Discretized
Scene Volume

Input Images

(Calibrated)

Assign RGB values to voxels in V

Goal:

photo-consistent with images



Space Carving

Image 1

IS
N

/ Image N

Space Carving Algorithm

* Initialize to a volume V containing the true scene
Choose a voxel on the outside of the volume
Project to visible input images
Carve if not photo-consistent
Repeat until convergence

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999



http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf

Space Carving Results

Input Image (1 of 45) Reconstruction

TN 3&
Reconstruction Reconstruction

Source: S. Seitz



Space Carving Results

Input Image
(1 of 100)

Reconstrction

Source: S. Seitz



Tool for you: COLMAP

https://github.com/colmap/colmap

A general SfM + MVS pipeline


https://github.com/colmap/colmap
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