Stereo (Binocular)

Shree Nayar's YT series: First principals of Computer Vision

CS180: Intro to Computer Vision and Comp. Photo Angjoo Kanazawa & Alexei Efros, UC Berkeley, Fall 2023

Last week: 3 key components in 3D

Coordinate frames + Transforms

Figure credit: Peter Hedman

Camera: Specifics

Image Coordinates

Camera Coordinates

$$\mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$

$$\mathbf{X}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

$$\mathbf{X}_w = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix}$$

Camera: Specifics

Image Coordinates

Camera Coordinates

$$\mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$

$$\mathbf{X}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

$$\mathbf{X}_w = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix}$$

Camera Transformation (3D-to-3D)

Camera Coordinates

$$\mathbf{X}_c = egin{bmatrix} x_c \ y_c \ z_c \end{bmatrix}$$
 \quad \text{Coordinate} \\ \text{Transformation} \\

$$\begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} R_{3\times3} & \mathbf{t} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$
Extrinsic
Matrix

Camera: Specifics

Image Coordinates

Camera Coordinates

$$\mathbf{x}_i = \begin{vmatrix} x_i \\ y_i \end{vmatrix}$$

Perspective Projection (3D to 2D) $\mathbf{X}_c = \begin{bmatrix} x_c \\ y_c \\ z_s \end{bmatrix}$

World Coordinates

Coordinate
Transformation
(3D to 3D)

$$\mathbf{X}_w = \begin{vmatrix} x_w \\ y_w \\ z_w \end{vmatrix}$$

Perspective Projection

 $x_i = f \frac{x_c}{z_c}$

Image Plane to Image Sensor Mapping

1. Scale: For pixel density (pixel/mm) & aspect ratio: $[m_x, m_y] \ m_x \hat{x}_i, m_y \hat{y}_i$

2. Shift: In an image, top left corner is the origin. But in the image plane, the origin is where the optical axis pierces the plane! Need to shift by: (o_x, o_y)

$$u_i = m_x \hat{x}_i + o_x = m_x f \frac{x_c}{z_c} + o_x$$

Putting it all together, pixel coordinates:

where $[f_x, f_y] = [m_x f, m_y f]$

$$u_i = f_x \frac{x_c}{z_c} + o_x$$
 $v_i = f_y \frac{y_c}{z_c} + o_y$

With homogeneous coordinates

Perspective projection + Transformation to Pixel Coordinates:

$$u_i = f_x \frac{x_c}{z_c} + o_x \quad v_i = f_y \frac{y_c}{z_c} + o_y$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

Intrinsic Matrix

Putting it all together

Image Coordinates

Camera Coordinates

World Coordinates

$$\mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \end{bmatrix} \qquad \qquad \mathbf{X}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

Intrinsics: Perspective Projection & pixel conversion

$$\begin{bmatrix}
f_x & 0 & o_x & 0 \\
0 & f_y & o_y & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

 $\mathbf{X}_w = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix}$

Extrinsics: Coordinate Transformation

$$\begin{bmatrix} R_{3\times3} & \mathbf{t} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix}$$

Projection Matrix

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R_{3 \times 3} & \mathbf{t} \\ \mathbf{0}_{1 \times 3} & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

For completeness, we need to add **skew** (this is 0 unless pixels are shaped like rhombi/parallelograms)

$$K = \begin{bmatrix} f_x & s & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

3 x 4 Projection matrix What's the Degrees of Freedom?

Intrinsics: 4 + 1 (skew)

Extrinsic: 3 + 3 = 6

11 unknowns (up to scale)

Fundamental Scale Ambiguity

Exercises

Going from World to Camera

Camera Coordinates

$$\mathbf{X}_c = egin{bmatrix} x_c \ y_c \ z_c \ 1 \end{bmatrix}$$

Extrinsic Matrix:

$$T_{w2c} = \begin{bmatrix} R_{3\times3} & \mathbf{t} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix}$$

$$\mathbf{X}_w = egin{bmatrix} x_w \ y_w \ z_w \ 1 \end{bmatrix}$$

$$\mathbf{X}_c = T_{w2c}\mathbf{X}_w$$

Going from Camera to World

Camera Coordinates

$$\mathbf{X}_c = egin{bmatrix} x_c \ y_c \ z_c \ 1 \end{bmatrix}$$

World Coordinates

$$\mathbf{X}_w = egin{bmatrix} x_w \ y_w \ z_w \ 1 \end{bmatrix}$$

Extrinsic Matrix:

$$T_{w2c} = \begin{bmatrix} R_{3\times3} & \mathbf{t} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix}$$

$$T_{w2c}^{-1}\mathbf{X}_c = \mathbf{X}_w$$

Where is the camera center in the world?

$$\mathbf{X}_c = T_{w2c}\mathbf{X}_w \longrightarrow X_c = RX_w + T$$

$$T_{w2c}^{-1}\mathbf{X}_c = \mathbf{X}_w \longrightarrow R^T(X_c - T) = X_w$$

Set X_c to zero (origin in camera = camera center)

$$R^{T}(\vec{0} - T) = C_w$$
$$C_w = -R^{T}T$$

Now you can derive Camera to World transform as well

Camera to Image

Image Coordinates

$$\mathbf{x}_i = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix}$$

Camera Coordinates

$$\mathbf{X}_c = egin{bmatrix} x_c \ y_c \ z_c \ 1 \end{bmatrix}$$

Intrinsic Matrix:

$$K = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{x}_i = K\mathbf{X}_c$$

Image to Camera?

Image Coordinates

$$\mathbf{x}_i = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix}$$

Camera Coordinates

$$\mathbf{X}_c = egin{bmatrix} x_c \ y_c \ z_c \ 1 \end{bmatrix}$$

Intrinsic Matrix:

$$K = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$u = f_x \frac{x_c}{z_c} + o_x \longrightarrow x = \frac{z}{f_x} (u - o_x)$$

What's the problem?

We don't know the depth! but we know it will be: on the ray!

$$u = f_x \frac{x_c}{z_c} + o_x$$
$$v = f_y \frac{y_c}{z_c} + o_y$$

$$x = \frac{z}{f_x}(u - o_x)$$
 2D to 3D:
$$(ray)$$
 Back projection
$$y = \frac{z}{f_y}(v - o_y)$$

$$z > 0$$

What is your coordinate space?

- In Project 5 (and in life) always make sure you're in the right coordinate space.
- eg. Which space is the ray defined in?

Watch these 5 min videos

https://www.youtube.com/watch?v=F5WA26W4JaM https://www.youtube.com/watch?v=g7Pb8mrwcJ0

Calibration: What are my cameras?

Problem Setup

What are the Extrinsic and Intrinsic matrices for each camera?

How to calibrate the camera?

If we know the points in 3D we can estimate the camera!!

Problem setup: Camera Calibration

Step 1: With a known 3D object

1. Take a picture of an object with known 3D geometry

2. Identify correspondences

How do we calibrate a camera?

Method: Set up a linear system

$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Solve for m's entries using linear least squares

Can we factorize M back to K [R | T]?

- Yes.
- Why? because K and R have a very special form:

$$egin{bmatrix} f_x & s & o_x \ 0 & f_y & o_y \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

- QR decomposition
- Practically, use camera calibration packages (there is a good one in OpenCV)

Now that our cameras are calibrated, can we find the 3D scene point of a pixel?

Estimating depth with stereo

- Stereo: shape from "motion" between two views
- We'll need to consider:
 - 1. Camera pose ("calibration")
 - 2. Image point correspondences

Stereo vision

Two cameras, simultaneous views

Single moving camera and static scene

Simple Stereo Setup

- Assume parallel optical axes
- Two cameras are calibrated
- Find relative depth

Key Idea: difference in corresponding points to understand shape

Slide credit: Noah Snavely

We are equipped with binocular vision. Let's try!

Right retinal image

Left retinal image

Solving for Depth in Simple Stereo

Do we have enough to know what is Z?

Yes, similar triangles!

$$z = \frac{fB}{u_l - u_r}$$

disparity (how much corrsp. pixels move)

Base of : $B - (d1 + d_2)$ in image coordinates: $B - (u_l - u_r)$

Try with your hands!

(b)

Right retinal image

Left retinal image

Depth is **inversely** proportional to disparity

what is the disparity of the closer point? what is the disparity of the far away point? Disparity gives you the depth information!

Try again

- 1. Setup so your fingers are on the same line of sight from one eye
- 2. Now look in the other eye They move!

Relative displacement is higher as the relative distance grows

== Parallax

Parallax

Parallax = from ancient Greek parállaxis

= Para (side by side) + allássō, (to alter)

= Change in position from different view point

Two eyes give you parallax, you can also move to see more parallax = "Motion Parallax"

So how do we get depth?

- Find the disparity! of corresponding points!
- Called: Stereo Matching

Left/Right Camera Images

Disparity Map (Ground Truth)

Where is the corresponding point going to be?

Hint

Epipolar Line

HON. ABRAHAM LINCOLN, President of United States.

epipolar lines

Two images captured by a purely horizontal translating camera (rectified stereo pair)

 x_1-x_2 = the *disparity* of pixel (x_1, y_1)

Your basic stereo algorithm

For every epipolar line:

For each pixel in the left image

- · compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match *windows*, + clearly lots of matching strategies

Your basic stereo algorithm

Determine Disparity using Template Matching

Template Window T

Left Camera Image E_l

Search Scan Line L

Right Camera Image E_r

Correspondence problem

Parallel camera example - epipolar lines are corresponding rasters

Intensity profiles

Clear correspondence between intensities, but also noise and ambiguity

Correspondence problem

Neighborhood of corresponding points are similar in intensity patterns.

Normalized cross correlation

subtract mean: $A \leftarrow A - < A >, B \leftarrow B - < B >$

$$NCC = \frac{\sum_{i} \sum_{j} A(i,j) B(i,j)}{\sqrt{\sum_{i} \sum_{j} A(i,j)^{2}} \sqrt{\sum_{i} \sum_{j} B(i,j)^{2}}}$$

Write regions as vectors

$$\mathtt{A} \to \mathtt{a}, \ \mathtt{B} \to \mathtt{b}$$

$$NCC = \frac{a.b}{|a||b|}$$
 $-1 \le NCC \le 1$

Similar to MOPS descriptor computation

Correlation-based window matching

Dense correspondence search

For each epipolar line

For each pixel / window in the left image

- compare with every pixel / window on same epipolar line in right image
- pick position with minimum match cost (e.g., SSD, correlation)

Adapted from Li Zhang Grauman

Textureless regions

Effect of window size

Source: Andrew Zisserman Grauman

Effect of window size

W = 3

W = 20

Want window large enough to have sufficient intensity variation, yet small enough to contain only pixels with about the same disparity.

Issues with Stereo

Surface must have non-repetitive texture

Foreshortening effect makes matching a challenge

Stereo Results

Data from University of Tsukuba

Scene Ground truth

Results with Window Search

Ground truth

Better methods exist...

Energy Minimization

Boykov et al., <u>Fast Approximate Energy Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999.

Ground truth

Summary

- With a simple stereo system, how much pixels move, or "disparity" give information about the depth
- Correspondences to measure the pixel disparity

Many problems in 3D

Camera Calibration

Stereo (w/2 cameras); Multi-view Stereo

Camera helps Correspondence: **Epipolar Geometry**

Correspondence gives camera: **Epipolar Geometry**

(Next lecture) Ultimate: Structure-from-Motion/SLAM

The starting point for all problems where you can't calibrate actively

New: Neural Rendering

A form of multi-view stereo, more on this in the NeRF lecture.

Next: Uncalibrated Stereo

From two arbitrary views

Assume intrinsics are known (fx, fy, ox, oy)