Image Transformations The Ambassadors (Holbein), 1533 CS180: Intro to Computer Vision and Comp. Photo Alexei Efros & Anjoo Kanazawa, UC Berkeley, Fall 2023 # Image Transformations image filtering: change range of image $$g(x) = T(f(x))$$ image warping: change domain of image # **Image Transformations** image filtering: change range of image $$g(x) = T(f(x))$$ image warping: change domain of image $$g(x) = f(T(x))$$ # Parametric (global) warping ## Examples of parametric warps: translation rotation aspect affine perspective cylindrical # Parametric (global) warping Transformation T is a coordinate-changing machine: $$p' = T(p)$$ What does it mean that *T* is global? - Is the same for any point p - can be described by just a few numbers (parameters) Let's represent a <u>linear</u> *T* as a matrix: $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$ # Scaling Scaling a coordinate means multiplying each of its components by a scalar *Uniform scaling* means this scalar is the same for all components: # Scaling Non-uniform scaling: different scalars per component: # Scaling Scaling operation: $$x' = ax$$ $$y' = by$$ Or, in matrix form: $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ scaling matrix S What's inverse of S? $$x = r \cos (\phi)$$ $$y = r \sin (\phi)$$ $$x' = r \cos (\phi + \theta)$$ $$y' = r \sin (\phi + \theta)$$ $$x = r \cos (\phi)$$ $$y = r \sin (\phi)$$ $$x' = r \cos (\phi + \theta)$$ $$y' = r \sin (\phi + \theta)$$ $$Trig Identity...$$ $$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$ $$y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$$ $$x = r \cos(\phi)$$ $$y = r \sin(\phi)$$ $$x' = r \cos(\phi + \theta)$$ $$y' = r \sin(\phi + \theta)$$ $$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$ $$y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$$ #### Substitute... $$x' = x \cos(\theta) - y \sin(\theta)$$ $$y' = x \sin(\theta) + y \cos(\theta)$$ This is easy to capture in matrix form: $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ Is this a linear transformation? Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ , - x' is a linear combination of x and y - y' is a linear combination of x and y What is the inverse transformation? • Rotation by $$-\theta$$ $\mathbf{R}^{-1} = \mathbf{R}^T$ For rotation matrices What types of transformations can be represented with a 2x2 matrix? ## 2D Identity? $$x' = x$$ $$y' = y$$ $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ ## 2D Scale around (0,0)? $$x' = s_x * x$$ $y' = s_y * y$ $$y' = s_y * y$$ $$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & 0 \\ 0 & \mathbf{s}_y \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$ What types of transformations can be represented with a 2x2 matrix? ## 2D Rotate around (0,0)? $$x' = \cos \Theta * x - \sin \Theta * y$$ $$y' = \sin \Theta * x + \cos \Theta * y$$ $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ #### 2D Shear? $$x' = x + sh_x * y$$ $$y' = sh_y * x + y$$ $$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$ What types of transformations can be represented with a 2x2 matrix? #### 2D Mirror about Y axis? $$x' = -x$$ $$y' = y$$ $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ ## 2D Mirror over (0,0)? $$x' = -x$$ $$y' = -y$$ $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ What types of transformations can be represented with a 2x2 matrix? #### 2D Translation? $$x' = x + t_x$$ $y' = y + t_y$ NO! Only linear 2D transformations can be represented with a 2x2 matrix ## All 2D Linear Transformations #### Linear transformations are combinations of ... - Scale, - Rotation, - · Shear, and - Mirror # $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ #### Properties of linear transformations: - Origin maps to origin - Lines map to lines - Parallel lines remain parallel - · Ratios are preserved - Closed under composition $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ ## Consider a different Basis $$p=4u+3v$$ ## Linear Transformations as Change of Basis Any linear transformation is a basis!!! ## What's the inverse transform? $$\mathbf{p}^{\mathbf{i}\mathbf{j}} = (0,1)$$ $$\mathbf{p}^{\mathbf{i}\mathbf{j}}$$ $$\mathbf{p}^{\mathbf{i}\mathbf{j}} = (5,4) = p_{x}\mathbf{u} + p_{y}\mathbf{v}$$ $$\mathbf{p}^{\mathbf{u}\mathbf{v}} = \begin{bmatrix} u_{x} & v_{x} \\ u_{y} & v_{y} \end{bmatrix}^{-1} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} u_{x} & v_{x} \\ u_{y} & v_{y} \end{bmatrix}^{-1} \mathbf{p}^{\mathbf{i}\mathbf{j}}$$ - How can we change from any basis to any basis? - What if the basis are orthogonal? # Projection onto orthogonal basis $$\mathbf{p^{uv}} = \begin{bmatrix} u_x & u_x \\ v_y & v_y \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} \mathbf{p^{ij}}$$ # Homogeneous Coordinates # Q: How can we represent translation as a 3x3 matrix? $$x' = x + t_x$$ $$y' = y + t_y$$ A: Using the rightmost column: $$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$ # Homogeneous Coordinates #### Homogeneous coordinates represent coordinates in 2 dimensions with a 3-vector ## **Translation** #### Example of translation #### Homogeneous Coordinates # Homogeneous Coordinates ## Add a 3rd coordinate to every 2D point - (x, y, w) represents a point at location (x/w, y/w) - (x, y, 0) represents a point at infinity - (0, 0, 0) is not allowed Convenient coordinate system to represent many useful transformations ## **Basic 2D Transformations** #### Basic 2D transformations as 3x3 matrices $$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ **Translate** $$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ Rotate $$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ Scale $$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$ Shear # Matrix Composition Transformations can be combined by matrix multiplication $$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$ $$\mathbf{p}' = \mathsf{T}(\mathsf{t}_{\mathsf{x}},\mathsf{t}_{\mathsf{y}}) \qquad \mathsf{R}(\Theta) \qquad \mathsf{S}(\mathsf{s}_{\mathsf{x}},\mathsf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$ Does the order of multiplication matter? ## Affine Transformations Affine transformations are combinations of ... $\begin{vmatrix} x' \\ y' \\ w \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \\ w \end{vmatrix}$ $$\begin{bmatrix} b & c \\ e & f \end{bmatrix}$$ **Translations** Properties of affine transformations: - Origin does not necessarily map to origin - Lines map to lines - Parallel lines remain parallel - Ratios are preserved - Closed under composition - Models change of basis Will the last coordinate w always be 1? # **Projective Transformations** #### Projective transformations ... - Affine transformations, and - Projective warps $$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$ #### Properties of projective transformations: - Origin does not necessarily map to origin - Lines map to lines - Parallel lines do not necessarily remain parallel - Ratios are not preserved - Closed under composition - Models change of basis # 2D image transformations | Name | Matrix | # D.O.F. | Preserves: | Icon | |-------------------|--|----------|------------|------------| | translation | $egin{bmatrix} egin{bmatrix} oldsymbol{I} oldsymbol{t} oldsymbol{t} oldsymbol{t} oldsymbol{1} oldsymbol{1$ | | | | | rigid (Euclidean) | $egin{bmatrix} R & t \end{bmatrix}_{2 imes 3}$ | | | | | similarity | $igg \left[\left. s oldsymbol{R} \middle oldsymbol{t} \right]_{2 imes 3} ight]$ | | | \Diamond | | affine | $\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$ | | | | | projective | $\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$ | | | | Closed under composition and inverse is a member # Image Transforms in Biology #### D'Arcy Thompson http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html http://en.wikipedia.org/wiki/D'Arcy_Thompson #### Importance of shape and structure in evolution Fig. 517. Argyropelecus Olfersi. Fig. 518. Sternoptyx diaphana. AND FORM Skulls of a human, a chimpanzee and a baboon and transformations between them. # Pop-up Quiz time!