## **Convolution and Image Derivatives**



CS180: Intro to Comp. Vision and Comp. Photo Alexei Efros, UC Berkeley, Fall 2024

### **Preventing aliasing**

- Introduce lowpass filters:
  - remove high frequencies leaving only safe, low frequencies
  - choose lowest frequency in reconstruction (disambiguate)



### **Moving Average**

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing



#### **Moving Average**

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5



## In 2D: box filter



Slide credit: David Lowe (UBC)

*f*[.,.]

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |







 $g[m,n] = \sum h[k,l] f[m+k,n+l]$ k,l

Credit: S. Seitz

*f*[.,.]

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

$$h[\cdot,\cdot]^{\frac{1}{9}}$$

| 1           | 1 | 1 | 1 |
|-------------|---|---|---|
| -<br>-<br>- | 1 | 1 | 1 |
| 9           | 1 | 1 | 1 |

*g*[.,.]



$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

Credit: S. Seitz

*f*[.,.]

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



| 1        | 1 | 1 | 1 |
|----------|---|---|---|
| <u>-</u> | 1 | 1 | 1 |
| 9        | 1 | 1 | 1 |

| 0 | 10 | 20 |  |  |  |
|---|----|----|--|--|--|
|   |    |    |  |  |  |
|   |    |    |  |  |  |
|   |    |    |  |  |  |
|   |    |    |  |  |  |
|   |    |    |  |  |  |
|   |    |    |  |  |  |
|   |    |    |  |  |  |
|   |    |    |  |  |  |

*f*[.,.]

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

 $h[\cdot,\cdot]$ 

| 1        | 1 | 1 | 1 |
|----------|---|---|---|
| <u>-</u> | 1 | 1 | 1 |
| 9        | 1 | 1 | 1 |

| 0 | 10 | 20 | 30 |  |  |  |
|---|----|----|----|--|--|--|
|   |    |    |    |  |  |  |
|   |    |    |    |  |  |  |
|   |    |    |    |  |  |  |
|   |    |    |    |  |  |  |
|   |    |    |    |  |  |  |
|   |    |    |    |  |  |  |
|   |    |    |    |  |  |  |
|   |    |    |    |  |  |  |

*f*[.,.]

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

$$h[\cdot,\cdot]^{\frac{1}{9}}$$



| 0 | 10 | 20 | 30 | 30 |  |  |
|---|----|----|----|----|--|--|
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |

*f*[.,.]

| 0       | 0           | 0                 | 0             | 0            | 0             | 0                  | 0             | 0           | 0           |
|---------|-------------|-------------------|---------------|--------------|---------------|--------------------|---------------|-------------|-------------|
| 0       | 0           | 0                 | 0             | 0            | 0             | 0                  | 0             | 0           | 0           |
| 0       | 0           | 0                 | 90            | 90           | 90            | 90                 | 90            | 0           | 0           |
| 0       | 0           | 0                 | 90            | 90           | 90            | 90                 | 90            | 0           | 0           |
| 0       | 0           | 0                 | 90            | 90           | 90            | 90                 | 90            | 0           | 0           |
|         |             |                   |               |              |               |                    |               |             |             |
| 0       | 0           | 0                 | 90            | 0            | 90            | 90                 | 90            | 0           | 0           |
| 0       | 0           | 0                 | 90<br>90      | 0<br>90      | 90<br>90      | 90<br>90           | 90<br>90      | 0           | 0           |
| 0 0 0   | 0<br>0<br>0 | 0<br>0<br>0       | 90<br>90<br>0 | 0<br>90<br>0 | 90<br>90<br>0 | 90<br>90<br>0      | 90<br>90<br>0 | 0<br>0<br>0 | 0<br>0<br>0 |
| 0 0 0 0 | 0<br>0<br>0 | 0<br>0<br>0<br>90 | 90<br>90<br>0 | 0<br>90<br>0 | 90<br>90<br>0 | 90<br>90<br>0<br>0 | 90<br>90<br>0 | 0<br>0<br>0 | 0 0 0 0 0   |

$$h[\cdot,\cdot]^{\frac{1}{9}}$$

| 1     | 1 | 1 | 1 |
|-------|---|---|---|
| -<br> | 1 | 1 | 1 |
| 9     | 1 | 1 | 1 |

| 0 | 10 | 20 | 30 | 30 |  |  |
|---|----|----|----|----|--|--|
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    | ?  |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |

*f*[.,.]

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

$$h[\cdot,\cdot]^{\frac{1}{9}}$$

| 1           | 1 | 1 | 1 |
|-------------|---|---|---|
| -<br>-<br>T | 1 | 1 | 1 |
| 9           | 1 | 1 | 1 |

| 0 | 10 | 20 | 30 | 30 |   |  |  |
|---|----|----|----|----|---|--|--|
|   |    |    |    |    |   |  |  |
|   |    |    |    |    |   |  |  |
|   |    |    |    |    | ? |  |  |
|   |    |    |    |    |   |  |  |
|   |    |    | 50 |    |   |  |  |
|   |    |    |    |    |   |  |  |
|   |    |    |    |    |   |  |  |
|   |    |    |    |    |   |  |  |



*f*[.,.]



| 0  | 10 | 20 | 30 | 30 | 30 | 20 | 10 |  |
|----|----|----|----|----|----|----|----|--|
| 0  | 20 | 40 | 60 | 60 | 60 | 40 | 20 |  |
| 0  | 30 | 60 | 90 | 90 | 90 | 60 | 30 |  |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0  | 20 | 30 | 50 | 50 | 60 | 40 | 20 |  |
| 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 |  |
| 10 | 10 | 10 | 0  | 0  | 0  | 0  | 0  |  |
|    |    |    |    |    |    |    |    |  |

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

#### **Cross-correlation**

Let F be the image, H be the kernel (of size  $2k+1 \ge 2k+1$ ), and G be the output image  $G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i+u, j+v]$ 

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

## **Box Filter**

#### What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)





#### Linear filters: examples



Original





Blur (with a mean filter)

Source: D. Lowe



Original



?

Source: D. Lowe



Original





Filtered (no change)



Original



?

Source: D. Lowe



Original





Shifted left By 1 pixel

Source: D. Lowe

## Back to the box filter





#### **Moving Average**

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5



## Weighted Moving Average

• bell curve (gaussian-like) weights [..., 1, 4, 6, 4, 1, ...]



#### Moving Average In 2D

#### What are the weights H?

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



H[u, v]

F[x, y]

© 2006 Steve Marscł Slide by Steve Seitz

#### **Gaussian filtering**

A Gaussian kernel gives less weight to pixels further from the center of the window

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

| 1  | 1 | 2 | 1 |
|----|---|---|---|
| 16 | 2 | 4 | 2 |
| гU | 1 | 2 | 1 |

H[u, v]

F[x, y]





This kernel is an approximation of a Gaussian function:

#### Mean vs. Gaussian filtering



## Important filter: Gaussian

Weight contributions of neighboring pixels by nearness



5 x 5,  $\sigma = 1$ 

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

#### **Gaussian Kernel**



• Standard deviation  $\sigma$ : determines extent of smoothing

# **Gaussian filters**



#### **Choosing kernel width**

• The Gaussian function has infinite support, but discrete filters use finite kernels



## **Practical matters**

## How big should the filter be?

Values at edges should be near zero

Rule of thumb for Gaussian: set filter half-width to about 3  $\sigma$ 



Side by Derek Hoiem

## Cross-correlation vs. Convolution

cross-correlation:  $G = H \otimes F$ 

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written:

$$G = H \star F$$

#### Convolution





## Cross-correlation vs. Convolution

cross-correlation:  $G = H \otimes F$ 

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written:

$$G = H \star F$$

Convolution is **commutative** and **associative** 

### **Convolution is nice!**

- Notation:  $b = c \star a$
- Convolution is a multiplication-like operation
  - commutative  $a \star b = b \star a$
  - associative  $a \star (b \star c) = (a \star b) \star c$
  - distributes over addition  $a \star (b+c) = a \star b + a \star c$
  - scalars factor out  $\alpha a \star b = a \star \alpha b = \alpha (a \star b)$
  - identity: unit impulse *e* = [..., 0, 0, 1, 0, 0, ...]

 $a \star e = a$ 

- Conceptually no distinction between filter and signal
- Usefulness of associativity
  - often apply several filters one after another:  $(((a * b_1) * b_2) * b_3))$
  - this is equivalent to applying one filter:  $a * (b_1 * b_2 * b_3)$

# Gaussian and convolution

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian



– Convolving twice with Gaussian kernel of width  $\sigma$  = convolving once with kernel of width  $\sigma\sqrt{2}$
# Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?



# Image sub-sampling







1/8

1/4

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling* 

## Image sub-sampling



 1/2
 1/4 (2x zoom)
 1/8 (4x zoom)

 Aliasing! What do we do?
 1/8 (4x zoom)

# Sampling an image



Examples of GOOD sampling

# Undersampling



Examples of BAD sampling -> Aliasing

# Gaussian (lowpass) pre-filtering







G 1/8

G 1/4

#### Gaussian 1/2

Solution: filter the image, then subsample

• Filter size should double for each ½ size reduction. Why?

# Subsampling with Gaussian pre-filtering



#### Gaussian 1/2

G 1/4

G 1/8

Slide by Steve Seitz

# Compare with...



1/2

1/4 (2x zoom)

1/8 (4x zoom)

Slide by Steve Seitz

# More Gaussian pre-filtering





# A real problem!



default, bicubic, Lanczos4

bilinear, bicubic

**PIL: Lanczos** 

Credit: @jaakkolehtinen

## problems in ConvNets too



#### pip install antialiased-cnns

Making Convolutional Networks Shift-Invariant Again, Richard Zhang ICML 2019

# Iterative Gaussian (lowpass) pre-filtering







G 1/8

G 1/4

#### Gaussian 1/2

#### filter the image, then subsample

- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?

Slide by Steve Seitz

# Image Pyramids



Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to *wavelet transform*



512 256 128 64 32 16 8



A bar in the big images is a hair on the zebra's nose; in smaller images, a stripe; in the smallest, the animal's nose

The whole pyramid is only 4/3 the size of the original image!

Figure from David Forsyth

# Gaussian pyramid construction



#### Repeat

- Filter
- Subsample

#### Until minimum resolution reached

• can specify desired number of levels (e.g., 3-level pyramid)

# What are they good for?

## **Improve Search**

- Search over translations
  - Classic coarse-to-fine strategy
  - Project 1!
- Search over scale
  - Template matching
  - E.g. find a face at different scales

## What else are convolutions good for?

# Taking derivative by convolution (on board)

# Partial derivatives with convolution



# Partial derivatives of an image

 $\frac{\partial f(x,y)}{\partial x}$  $\frac{\partial f(x,y)}{\partial y}$ 1 -1 1 -1 or 1 -1

Which shows changes with respect to x?

# Image gradient

The gradient of an image:  $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ 



The gradient points in the direction of most rapid increase in intensity

• How does this direction relate to the direction of the edge?

The *edge strength* is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by  $\theta = \tan^{-1} \left( \frac{\partial f}{\partial u} / \frac{\partial f}{\partial x} \right)$ 

Source: Steve Seitz

# Image Gradient







 $\partial f(x,y)$  $\partial x$ 

 $\frac{\partial f(x,y)}{\partial y}$ 



 $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$ 

## **Partial Derivatives**





 $\frac{\partial f(x,y)}{\partial x}$ 



 $\frac{\partial f(x,y)}{\partial y}$ 

# Gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$



## **Gradient Orientation**

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$
 atan2(dy,dx)



#### lightness is equal to gradient magnitude



 $\theta = \tan^{-1} \left( \frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$ 



all the gradients

#### Why is there structure at 1 and not at 2?





# Effects of noise

## Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal



#### Where is the edge?

## Solution: smooth first



• To find edges, look for peaks in  $\frac{d}{dx}(f*g)$ 

Source: S. Seitz

# Noise in 2D

### Noisy Input

## dx via [-1,01]

Zoom



Source: D. Fouhey

# Noise + Smoothing



## How many convolutions here?



## Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

This saves us one operation:



## Derivative of Gaussian filter



# Derivative of Gaussian filter



Which one finds horizontal/vertical edges?

## Compare to classic derivative filters



# Low Pass vs. High Pass filtering

#### Image



#### Smoothed



#### Details


### Image



+α

Details

## "Sharpened" α=1



### Image



+α

# "Sharpened" α=0

Details



### Image



+α

# Details



### "Sharpened" $\alpha$ =2



### Image



+α

# "Sharpened" α=0

Details



## Filtering – Extreme Sharpening



### "Sharpened" $\alpha$ =10



## Unsharp mask filter (= sharpening filter)



## Filtering: practical matters

#### What is the size of the output?

### (MATLAB) filter2(g, f, shape) or conv2(g,f,shape)

- shape = 'full': output size is sum of sizes of f and g
- shape = 'same': output size is same as f
- shape = 'valid': output size is difference of sizes of f and g

#### Pytorch conv2d 'valid' or 'same'



## **Practical matters**

## What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
  - clip filter (black)
  - wrap around (circular)
  - copy edge
  - reflect across edge

