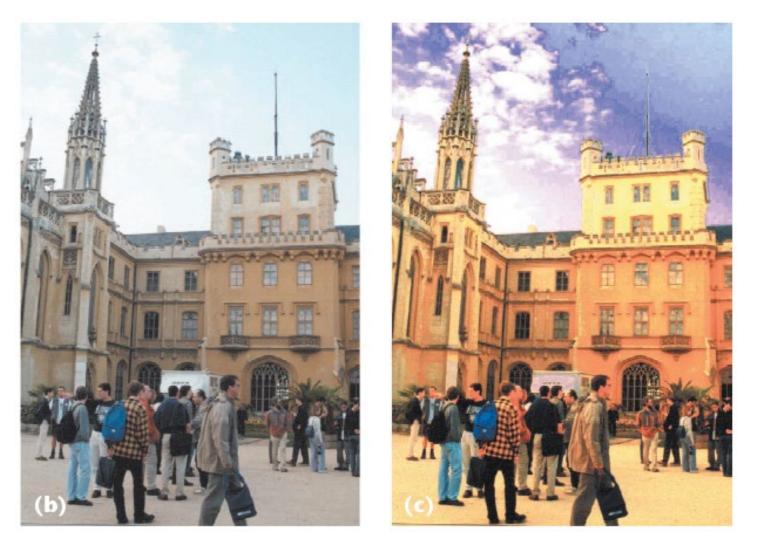
Pixels and Images



CS180: Intro to Comp. Vision, and Comp. Photo Alexei Efros, UC Berkeley, Fall 2024

What is an image?

We can think of an **image** as a function, *f*, from R² to R:

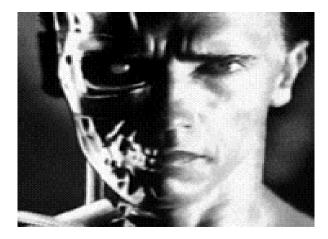
- f(x, y) gives the **intensity** at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:

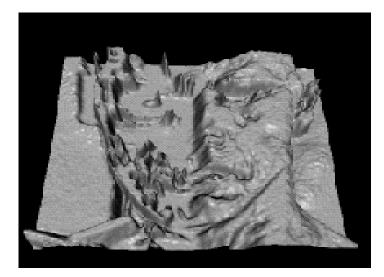
 $-f:[a,b]\mathbf{x}[c,d] \rightarrow [0,1]$

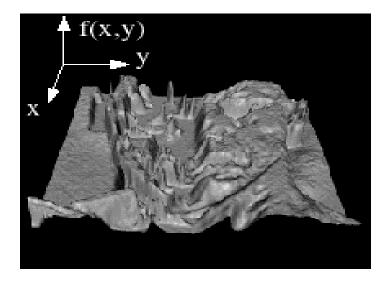
A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

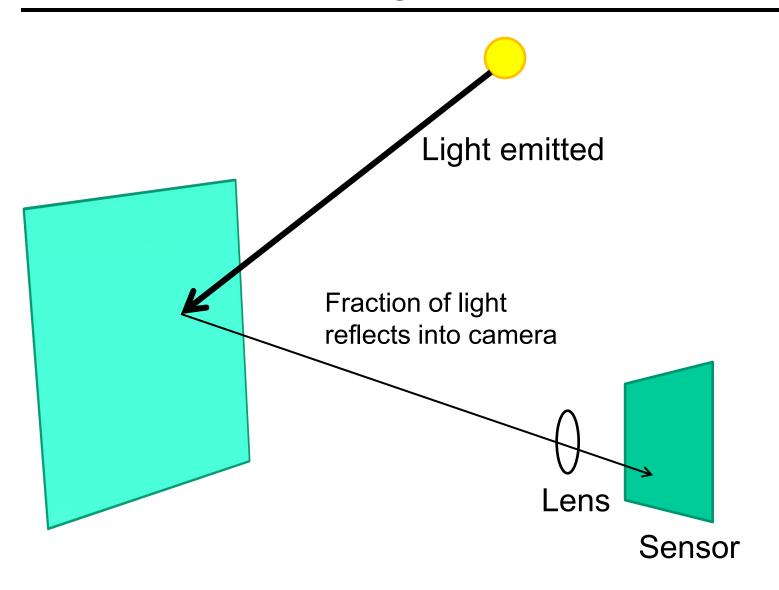
Images as functions







How does a pixel get its value?



How does a pixel get its value?

Major factors

- Illumination strength and direction
- Surface geometry
- Surface material
- Nearby surfaces
- Camera gain/exposure

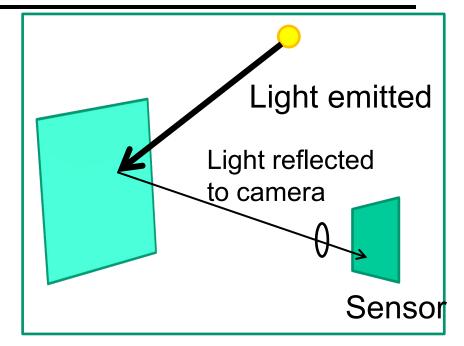
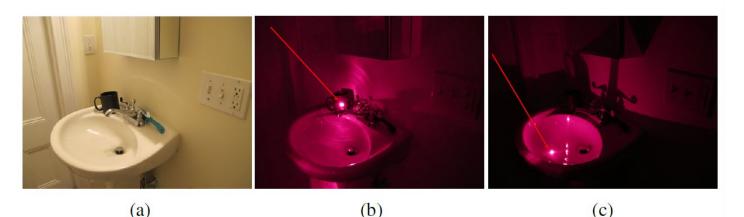
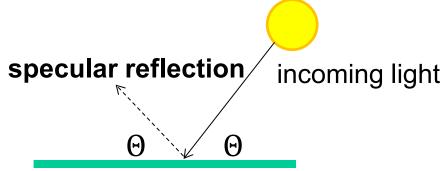


Figure 1.1: (a) Scene illuminated with a ceiling lamp. (b-c) Two images obtained by illuminating a scene with a laser pointer (the red line indicates the direction of the ray).



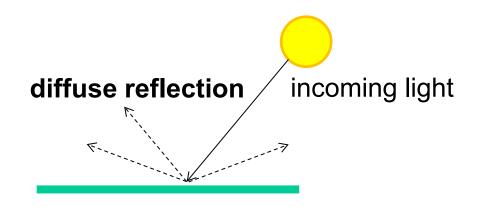
Basic models of reflection

- Specular: light bounces off at the incident angle
 - E.g., mirror

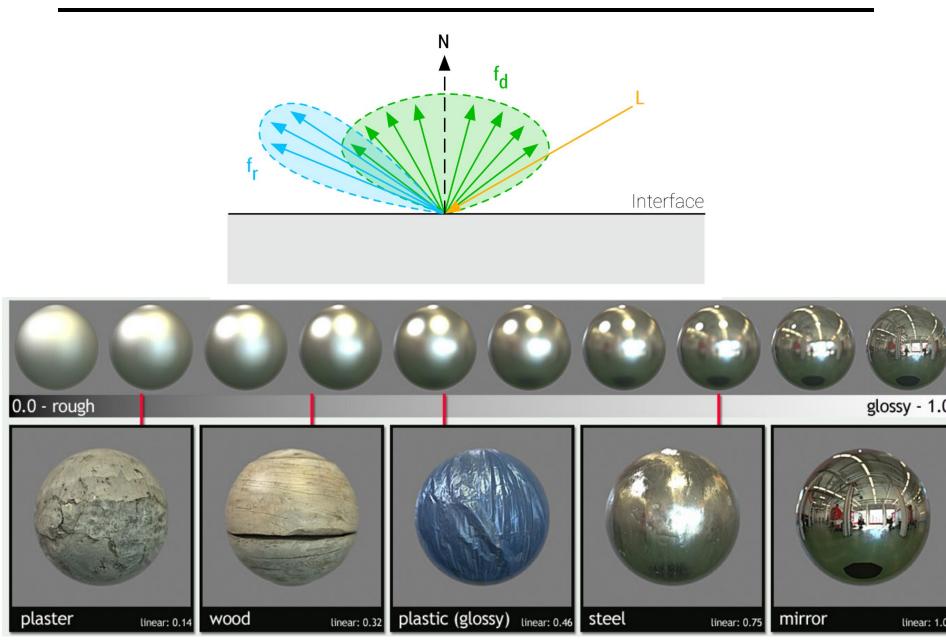


Diffuse: light scatters in all directions

• E.g., brick, cloth, rough wood

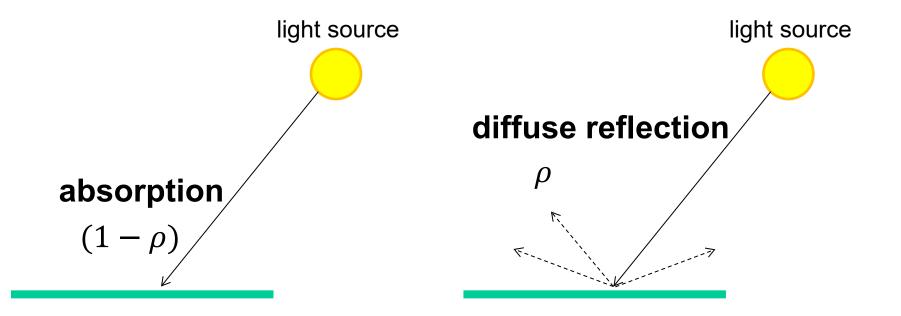


Diffuse vs. Specular



Lambertian reflectance model

Some light is absorbed (function of albedo ρ) Remaining light is scattered (diffuse reflection) Examples: soft cloth, concrete, matte paints

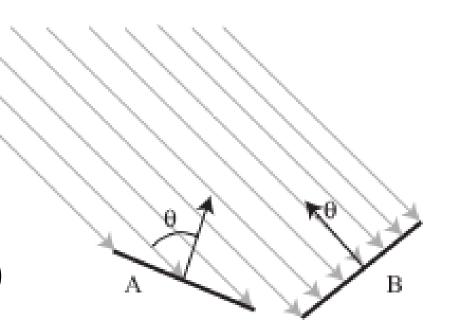


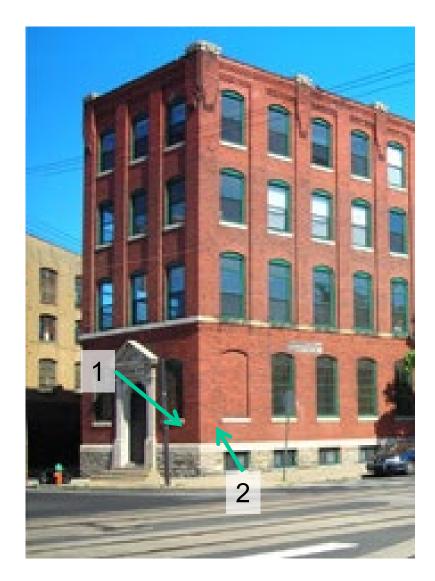
Intensity and Surface Orientation

Intensity depends on illumination angle because less light comes in at oblique angles.

- $\rho = albedo$
- S = directional source
- N = surface normal
- I = reflected intensity

$$I(x) = \rho(x)(\boldsymbol{S} \cdot \boldsymbol{N}(x))$$

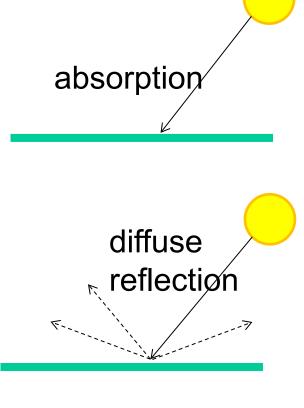


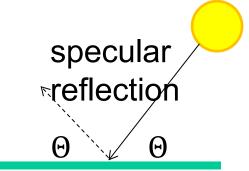


Recap

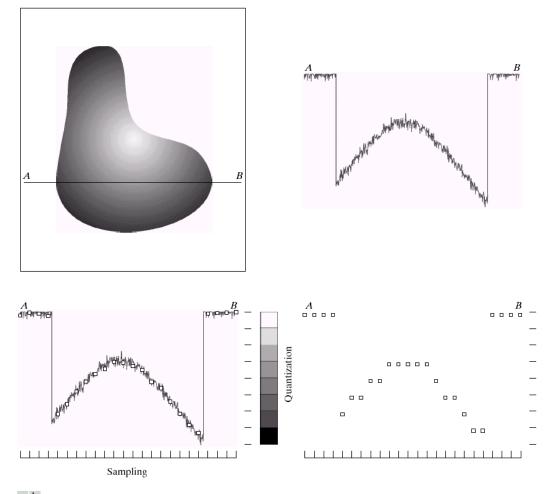
When light hits a typical surface

- Some light is absorbed $(1-\rho)$
 - More absorbed for low albedos
- Some light is reflected diffusely
 - Independent of viewing direction
- Some light is reflected specularly
 - Light bounces off (like a mirror), depends on viewing direction





Sampling and Quantization



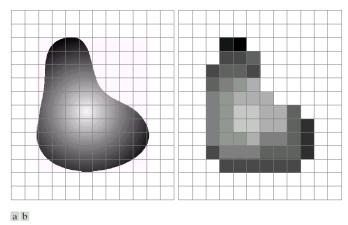


FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

a b c d

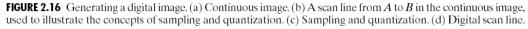


Image Formation

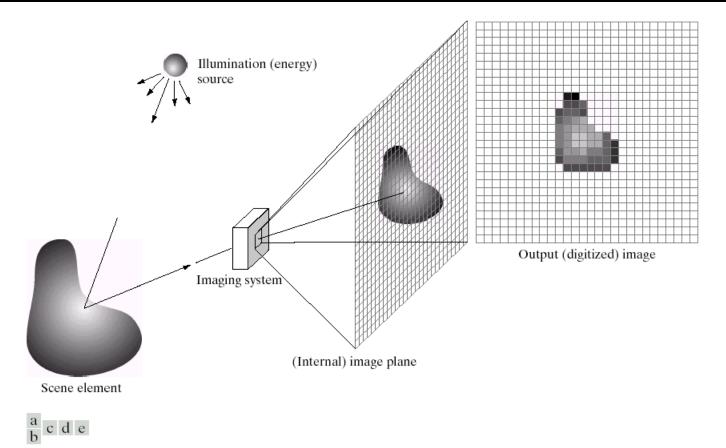
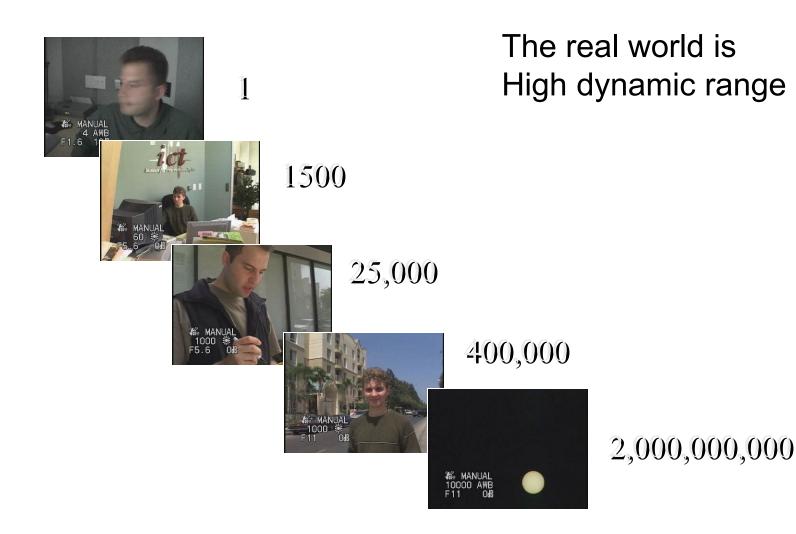


FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

f(x,y) = reflectance(x,y) * illumination(x,y) Reflectance in [0,1], illumination in [0,inf]

Problem: Dynamic Range

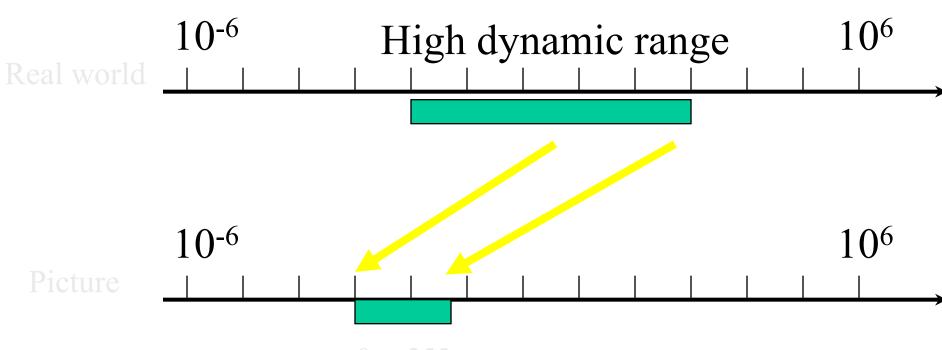


Long Exposure



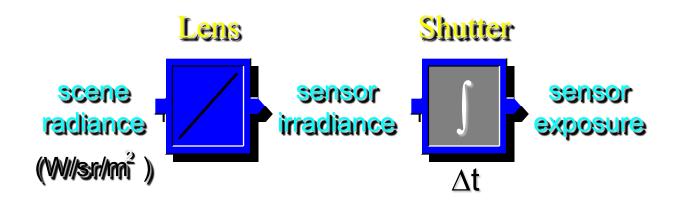
0 to 255

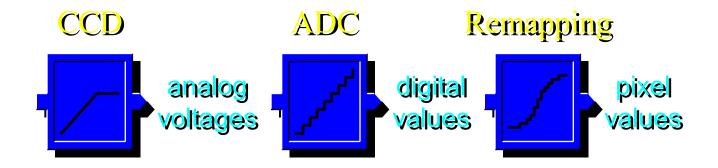
Short Exposure



0 to 255

Image Acquisition Pipeline





Simple Point Processing: Enhancement

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 3.0, 4.0$, and 5.0, respectively. (Original image for this example courtesy of NASA.)

Power-law transformations

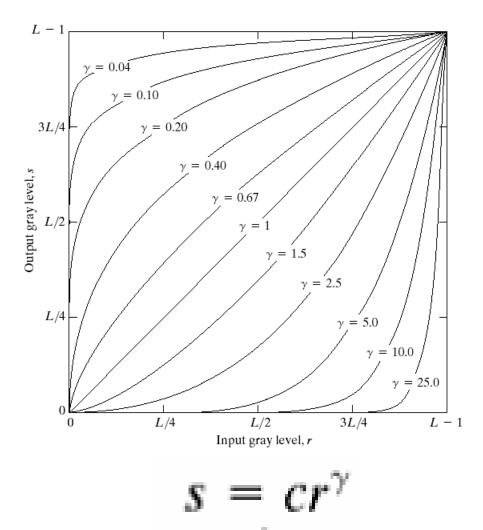
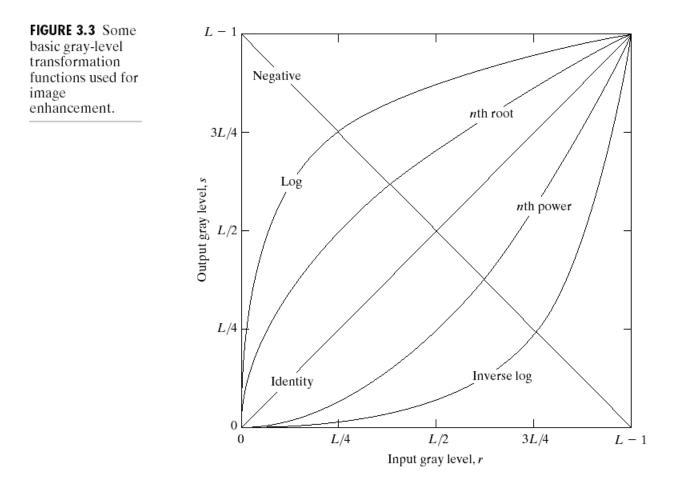
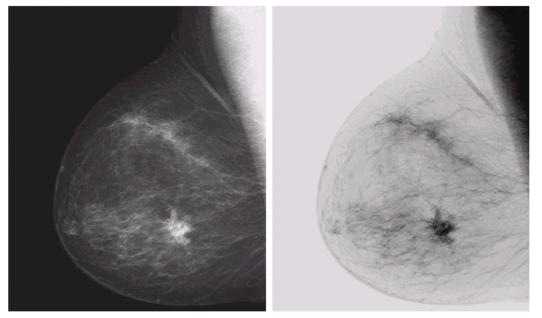


FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases).

Basic Point Processing



Negative

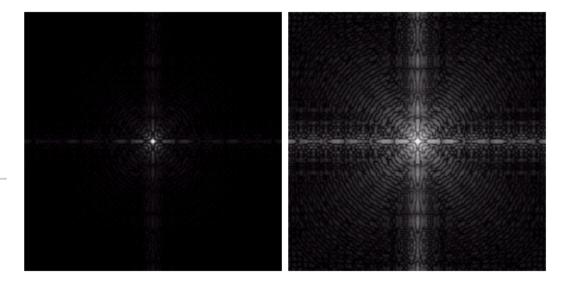


a b FIGURE 3.4 (a) Original digital mammogram. (b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E. Medical Systems.)

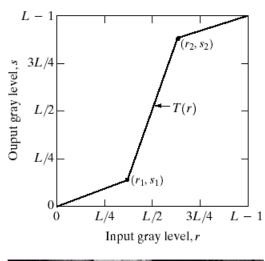
Log

a b

FIGURE 3.5 (a) Fourier spectrum. (b) Result of applying the log transformation given in Eq. (3.2-2) with c = 1.

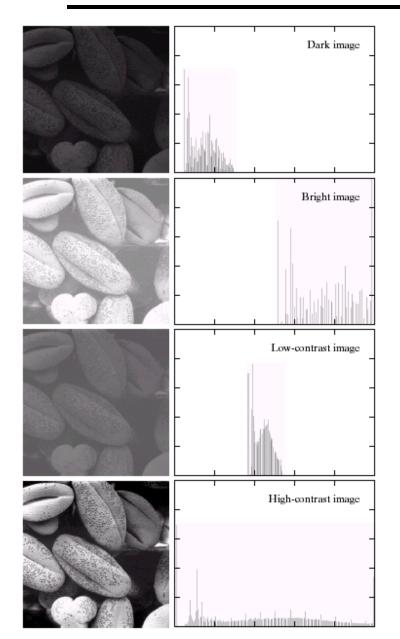


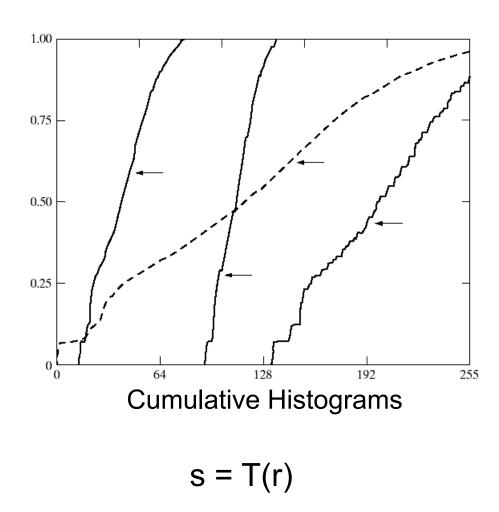
Contrast Stretching



a b c d FIGURE 3.10 Contrast stretching. (a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

Image Histograms





a b

FIGURE 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

Histogram Equalization

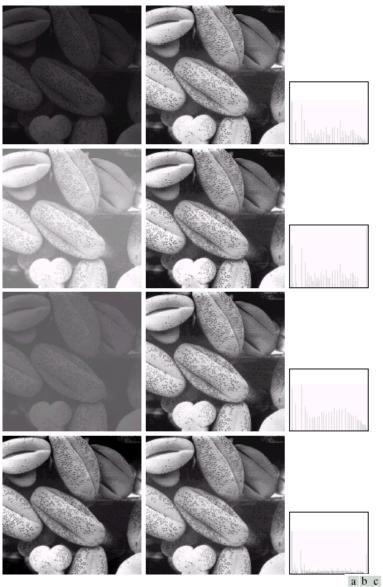
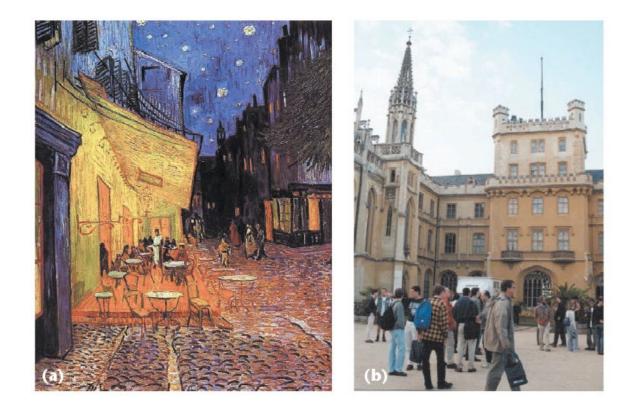


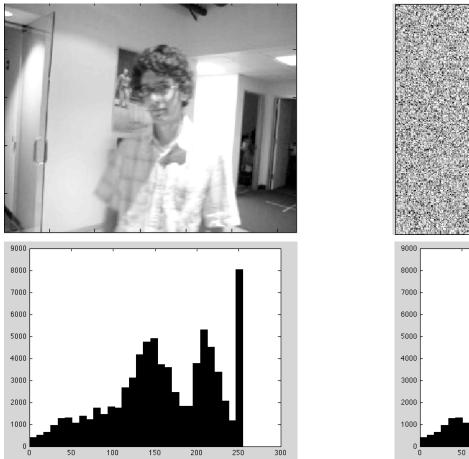
FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equalization. (c) Corresponding histograms.

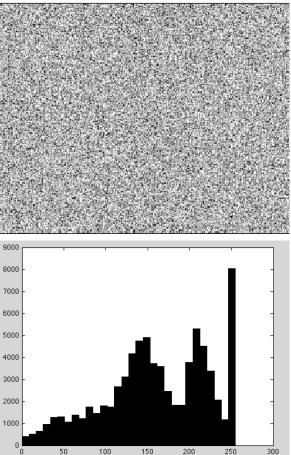
Color Transfer [Reinhard, et al, 2001]



Erik Reinhard, Michael Ashikhmin, Bruce Gooch, Peter Shirley, <u>Color Transfer between</u> <u>Images</u>. *IEEE Computer Graphics and Applications*, 21(5), pp. 34–41. September 2001.

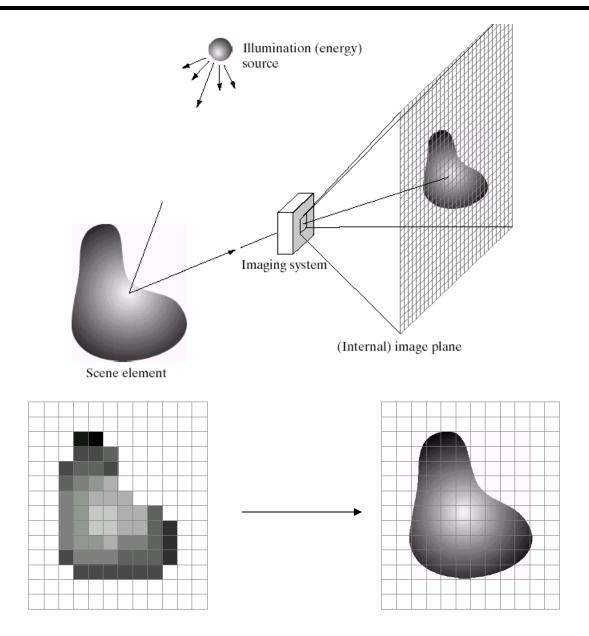
Limitations of Point Processing...





Slide by Erik Learned-Miller

Sampling and Reconstruction



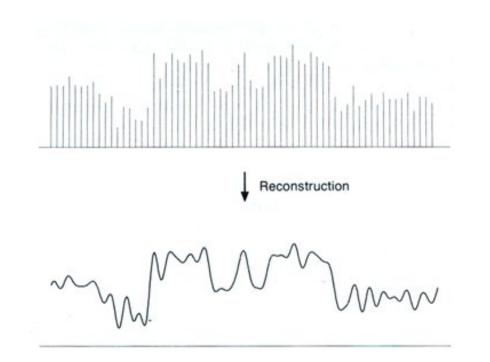
Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples
 - write down the function's values at many points

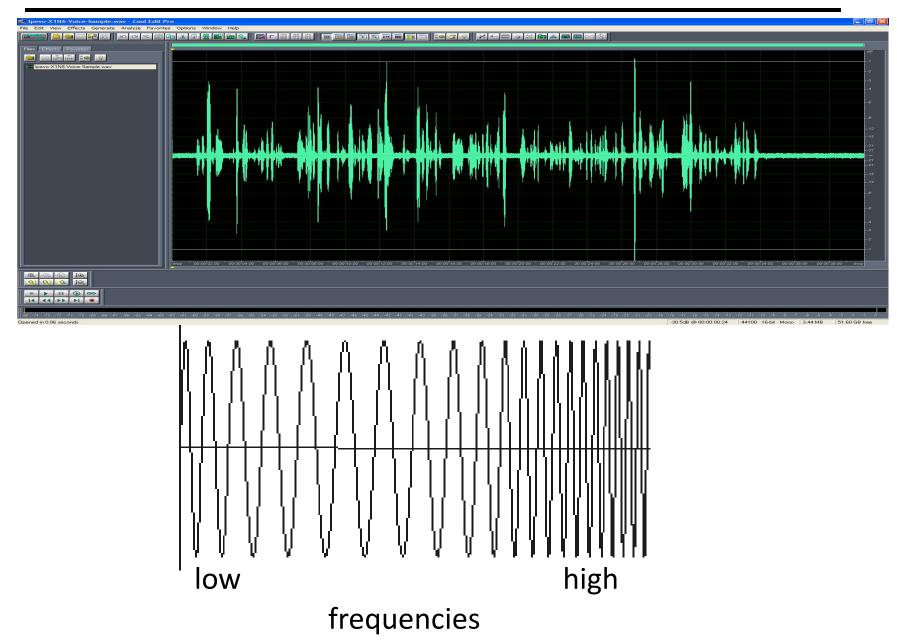
Sampling

Reconstruction

- Making samples back into a continuous function
 - for output (need realizable method)
 - for analysis or processing (need mathematical method)
 - amounts to "guessing" what the function did in between

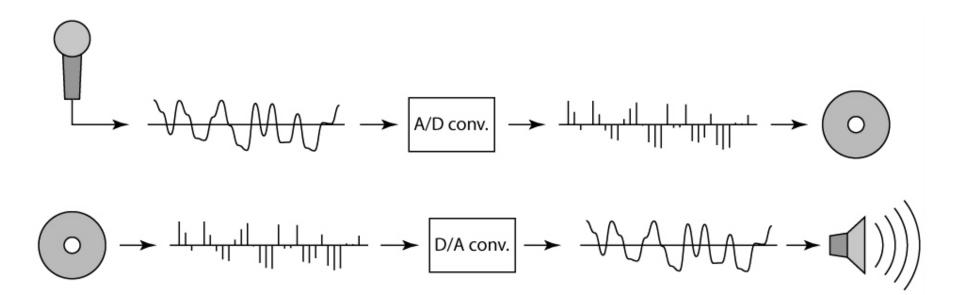


1D Example: Audio



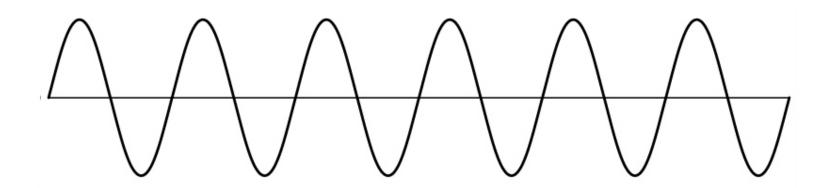
Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
 - how can we be sure we are filling in the gaps correctly?



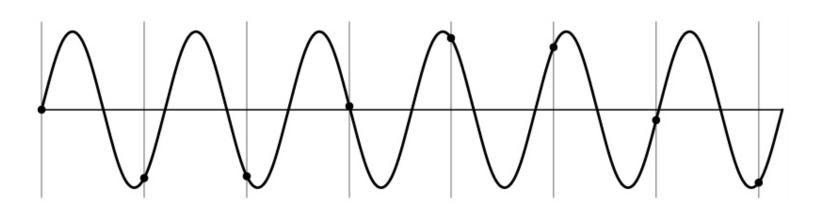
Sampling and Reconstruction

• Simple example: a sign wave



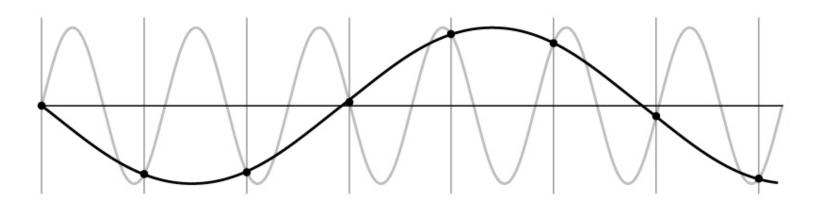
Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost



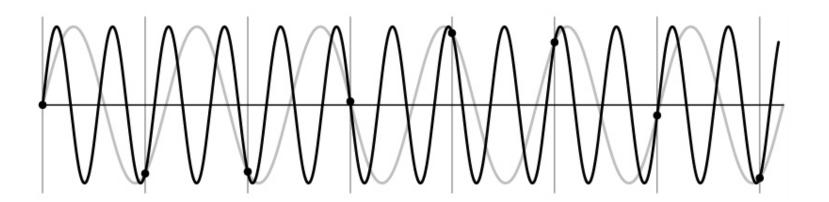
Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency



Undersampling

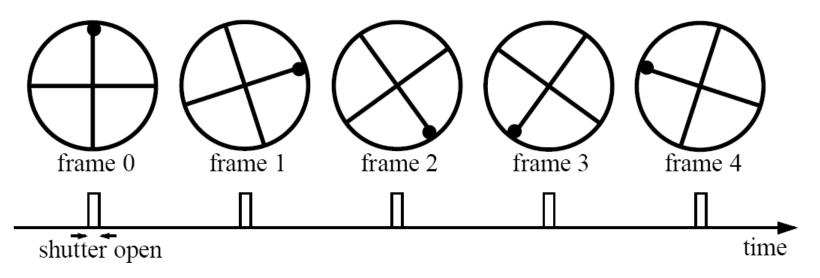
- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also, was always indistinguishable from higher frequencies
 - <u>aliasing</u>: signals "traveling in disguise" as other frequencies



Aliasing in video

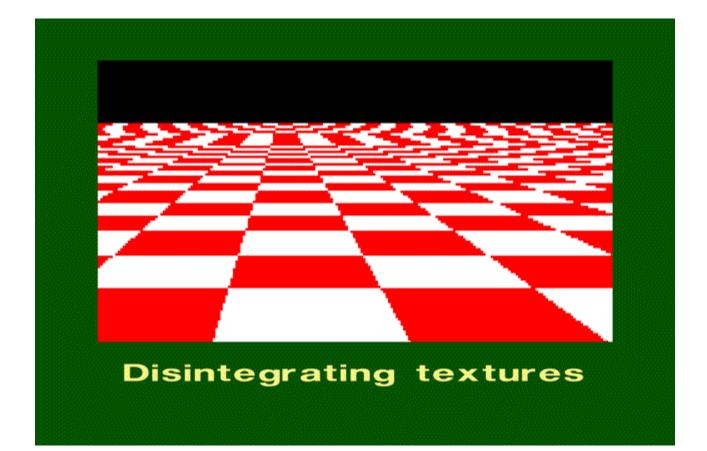
Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):



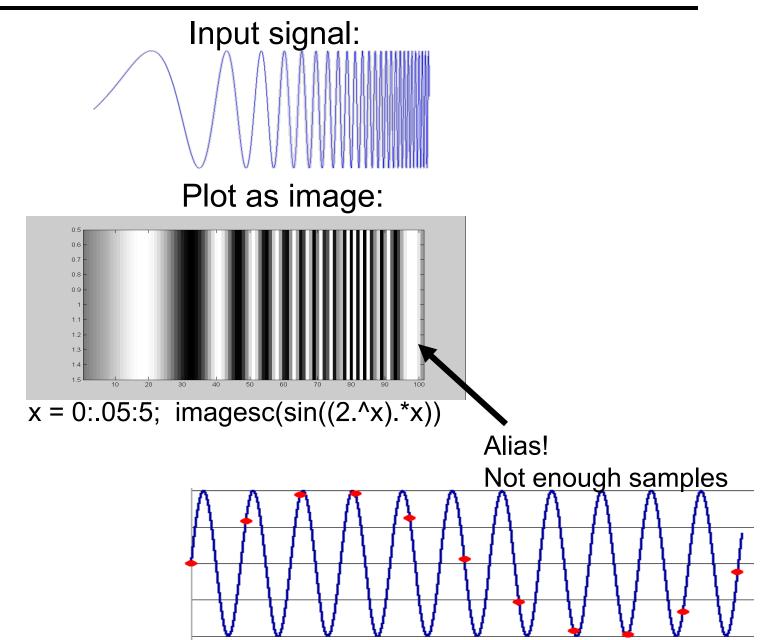
Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Aliasing in images



Aliasing in real images

What's happening?



Antialiasing

What can we do about aliasing?

Sample more often

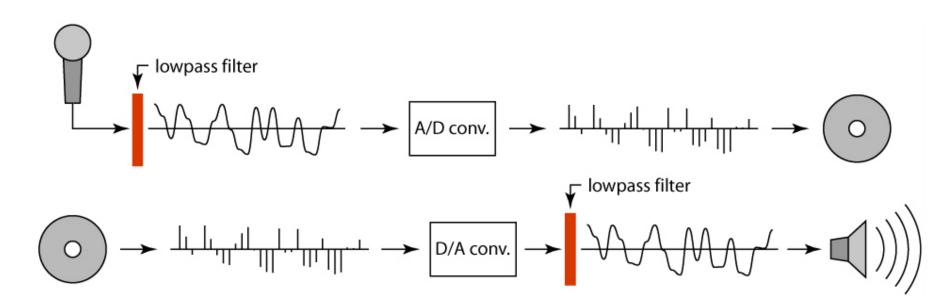
- Join the Mega-Pixel craze of the photo industry
- But this can't go on forever

Make the signal less "wiggly"

- Get rid of some high frequencies
- Will loose information
- But it's better than aliasing

Preventing aliasing

- Introduce lowpass filters:
 - remove high frequencies leaving only safe, low frequencies
 - choose lowest frequency in reconstruction (disambiguate)

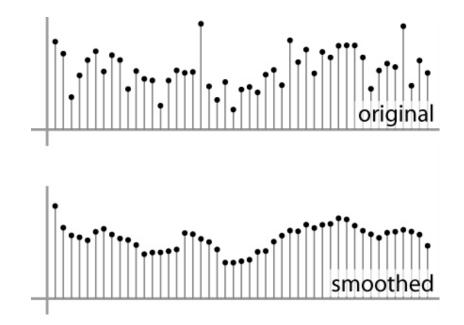


Linear filtering: a key idea

- Transformations on signals; e.g.:
 - bass/treble controls on stereo
 - blurring/sharpening operations in image editing
 - smoothing/noise reduction in tracking
- Key properties
 - linearity: filter(f + g) = filter(f) + filter(g)
 - shift invariance: behavior invariant to shifting the input
 - delaying an audio signal
 - sliding an image around
- Can be modeled mathematically by *convolution*

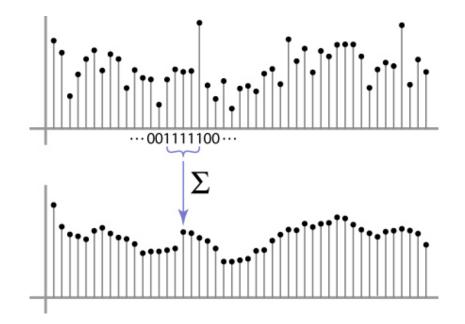
Moving Average

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing

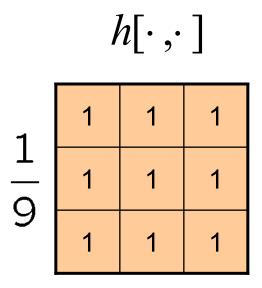


Moving Average

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5



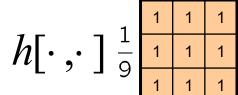
In 2D: box filter



Slide credit: David Lowe (UBC)

f[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0





 $g[m,n] = \sum h[k,l] f[m+k,n+l]$ k,l

Credit: S. Seitz

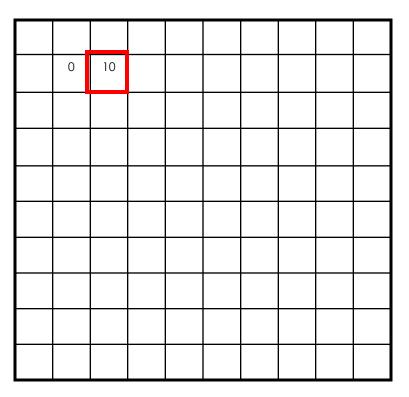
f[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[\cdot,\cdot]^{\frac{1}{9}}$$

1	1	1	1
	1	1	1
9	1	1	1

g[.,.]

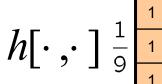


$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

Credit: S. Seitz

f[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



1	1	1	1
	1	1	1
9	1	1	1

0	10	20			

f[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

 $h[\cdot,\cdot]$

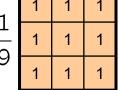
1	1	1	1
	1	1	1
9	1	1	1

0	10	20	30			

f[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[\cdot,\cdot]^{\frac{1}{9}}$$



0	10	20	30	30		

f[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90 90	0 90	90 90	90 90	90 90	0	0
0	0	0	90	90	90	90	90	0	0

$$h[\cdot,\cdot]^{\frac{1}{9}}$$

1	1	1	1
	1	1	1
9	1	1	1

0	10	20	30	30		
			?			

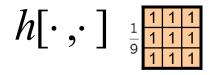
f[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[\cdot,\cdot]^{\frac{1}{9}}$$

1	1	1	1
<u>т</u>	1	1	1
9	1	1	1

0	10	20	30	30			
					?		
			50				



f[.,.]



0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \ge 2k+1$), and G be the output image $G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i+u, j+v]$

This is called a **cross-correlation** operation:

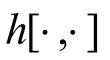
$$G = H \otimes F$$

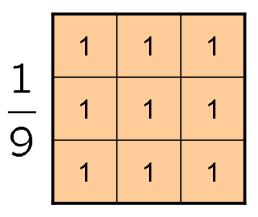
 Can think of as a "dot product" between local neighborhood and kernel for each pixel

Box Filter

What does it do?

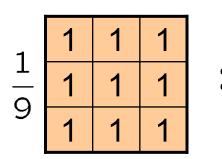
- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

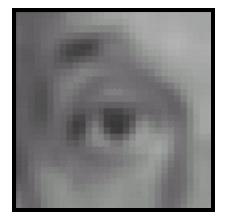




Linear filters: examples

Original

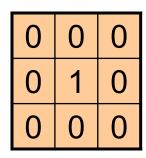




Blur (with a mean filter)

Source: D. Lowe

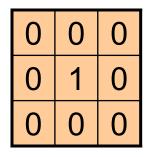
Original



?

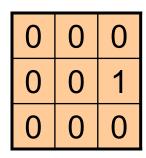
Source: D. Lowe

Original



Filtered (no change)

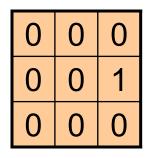
Original

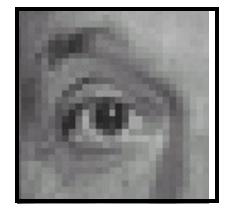


?

Source: D. Lowe

Original





Shifted left By 1 pixel

Source: D. Lowe

Back to the box filter

