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What is an image?
We can think of an image as a function, f, from R2 to 

R:
• f( x, y ) gives the intensity at position ( x, y ) 
• Realistically, we expect the image only to be defined over a 

rectangle, with a finite range:
– f: [a,b]x[c,d]  [0,1]

A color image is just three functions pasted together.  
We can write this as a “vector-valued” function: 
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Images as functions



How does a pixel get its value?

Light emitted

Sensor
Lens

Fraction of light 
reflects into camera



How does a pixel get its value?
Major factors

• Illumination strength and 
direction

• Surface geometry
• Surface material 
• Nearby surfaces
• Camera gain/exposure

Light emitted

Sensor

Light reflected 
to camera



Basic models of reflection
Specular: light bounces off at the incident 

angle
• E.g., mirror

Diffuse: light scatters in all directions
• E.g., brick, cloth, rough wood

incoming lightspecular reflection

ΘΘ

incoming lightdiffuse reflection



Diffuse vs. Specular 



Lambertian reflectance model

Some light is absorbed (function of albedo 𝜌𝜌)
Remaining light is scattered (diffuse reflection)
Examples: soft cloth, concrete, matte paints

light sourcelight source

absorption

diffuse reflection

(1 − 𝜌𝜌)

𝜌𝜌



Intensity and Surface Orientation
Intensity depends on illumination angle because 
less light comes in at oblique angles.

𝜌𝜌 = albedo
𝑺𝑺 = directional source
𝑵𝑵 = surface normal
I = reflected intensity

𝐼𝐼 𝑥𝑥 = 𝜌𝜌 𝑥𝑥 𝑺𝑺 ⋅ 𝑵𝑵(𝑥𝑥)

Slide: Forsyth
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Recap
When light hits a typical surface

• Some light is absorbed (1-𝜌𝜌)
– More absorbed for low albedos

• Some light is reflected diffusely
– Independent of viewing direction

• Some light is reflected specularly
– Light bounces off (like a mirror), depends on 

viewing direction

specular 
reflection

ΘΘ

diffuse 
reflection

absorption



Sampling and Quantization



Image Formation

f(x,y) = reflectance(x,y) * illumination(x,y)
Reflectance in [0,1], illumination in [0,inf]



Problem: Dynamic Range
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Long Exposure

10-6 106

10-6 106

Real world

Picture

0 to 255

High dynamic range



Short Exposure
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High dynamic range
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Simple Point Processing: Enhancement



Power-law transformations



Basic Point Processing



Negative



Log



Contrast Stretching



Image Histograms

Cumulative Histograms

s = T(r)



Histogram Equalization



Color Transfer [Reinhard, et al, 2001]

Erik Reinhard, Michael Ashikhmin, Bruce Gooch, Peter Shirley, Color Transfer between 
Images. IEEE Computer Graphics and Applications, 21(5), pp. 34–41. September 2001. 

http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476
http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476


Limitations of Point Processing…

Slide by Erik Learned-Miller



Sampling and Reconstruction
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Sampled representations

• How to store and compute with continuous functions?

• Common scheme for representation: samples
– write down the function’s values at many points
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Reconstruction

• Making samples back into a continuous function
– for output (need realizable method)
– for analysis or processing (need mathematical method)
– amounts to “guessing” what the function did in between

[F
vD

FH
 fi

g.
14

.1
4b

 / 
W

ol
be

rg
]



1D Example: Audio

low high
frequencies
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Sampling in digital audio

• Recording: sound to analog to samples to disc

• Playback: disc to samples to analog to sound again
– how can we be sure we are filling in the gaps correctly?
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Sampling and Reconstruction

• Simple example: a sign wave
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Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave
– unsurprising result: information is lost
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Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave
– unsurprising result: information is lost
– surprising result: indistinguishable from lower frequency
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Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave
– unsurprising result: information is lost
– surprising result: indistinguishable from lower frequency
– also, was always indistinguishable from higher frequencies
– aliasing: signals “traveling in disguise” as other frequencies



Aliasing in video

Slide by Steve Seitz





Aliasing in images



Aliasing in real images



What’s happening?
Input signal:

x = 0:.05:5;  imagesc(sin((2.^x).*x))

Plot as image:

Alias!
Not enough samples



Antialiasing
What can we do about aliasing?

Sample more often
• Join the Mega-Pixel craze of the photo industry
• But this can’t go on forever

Make the signal less “wiggly” 
• Get rid of some high frequencies
• Will loose information
• But it’s better than aliasing
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Preventing aliasing

• Introduce lowpass filters:
– remove high frequencies leaving only safe, low frequencies
– choose lowest frequency in reconstruction (disambiguate)
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Linear filtering: a key idea

• Transformations on signals; e.g.:
– bass/treble controls on stereo
– blurring/sharpening operations in image editing
– smoothing/noise reduction in tracking

• Key properties
– linearity: filter(f + g) = filter(f) + filter(g)
– shift invariance: behavior invariant to shifting the input

• delaying an audio signal
• sliding an image around

• Can be modeled mathematically by convolution
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Moving Average

• basic idea: define a new function by averaging over a sliding 
window

• a simple example to start off: smoothing
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Moving Average

• Can add weights to our moving average

• Weights […, 0, 1, 1, 1, 1, 1, 0, …]  / 5 
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In 2D: box filter



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

],[],[],[
,

lnkmflkhnmg
lk

++=∑

[.,.]g[.,.]f

Image filtering
111

111

111

],[ ⋅⋅h



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]g[.,.]f

Image filtering
111

111

111

],[ ⋅⋅h

Credit: S. Seitz

],[],[],[
,

lnkmflkhnmg
lk

++=∑



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]g[.,.]f

Image filtering
111

111

111

],[ ⋅⋅h

Credit: S. Seitz



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]g[.,.]f

Image filtering
111

111

111

],[ ⋅⋅h

Credit: S. Seitz



0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]g[.,.]f

Image filtering
111

111

111

],[ ⋅⋅h

Credit: S. Seitz



0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]g[.,.]f

Image filtering
111

111

111

],[ ⋅⋅h

Credit: S. Seitz

?



0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]g[.,.]f

Image filtering
111

111

111

],[ ⋅⋅h

Credit: S. Seitz

?



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]g[.,.]f

Image filtering
111
111
111],[ ⋅⋅h

Credit: S. Seitz



Cross-correlation

This is called a cross-correlation operation:

Let      be the image,      be the kernel (of 
size 2k+1 x 2k+1), and      be the output 
image

• Can think of as a “dot product” between 
local neighborhood and kernel for each pixel



What does it do?
• Replaces each pixel with 

an average of its 
neighborhood

• Achieve smoothing effect 
(remove sharp features)
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Slide credit: David Lowe (UBC)
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Linear filters: examples

Original

111
111
111

Blur (with a mean 
filter)

Source: D. Lowe
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Practice with linear filters

000
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Original
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Source: D. Lowe



Practice with linear filters
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Original Filtered 
(no change)

Source: D. Lowe



Practice with linear filters
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Original
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Source: D. Lowe



Practice with linear filters

000
100
000

Original Shifted left
By 1 pixel

Source: D. Lowe



Back to the box filter
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