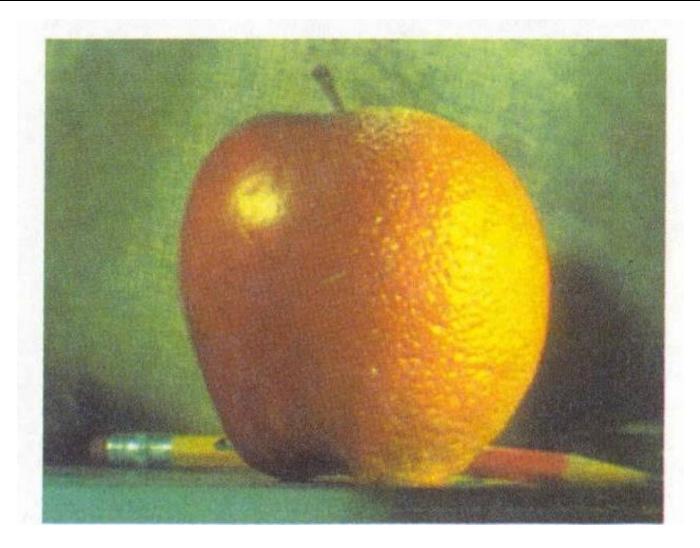
Pyramid Blending, Templates, NL Filters



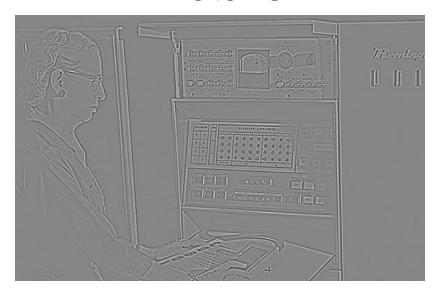
CS180: Intro to Comp. Vision and Comp. Photo Alexei Efros, UC Berkeley, Fall 2024

Low Pass vs. High Pass filtering

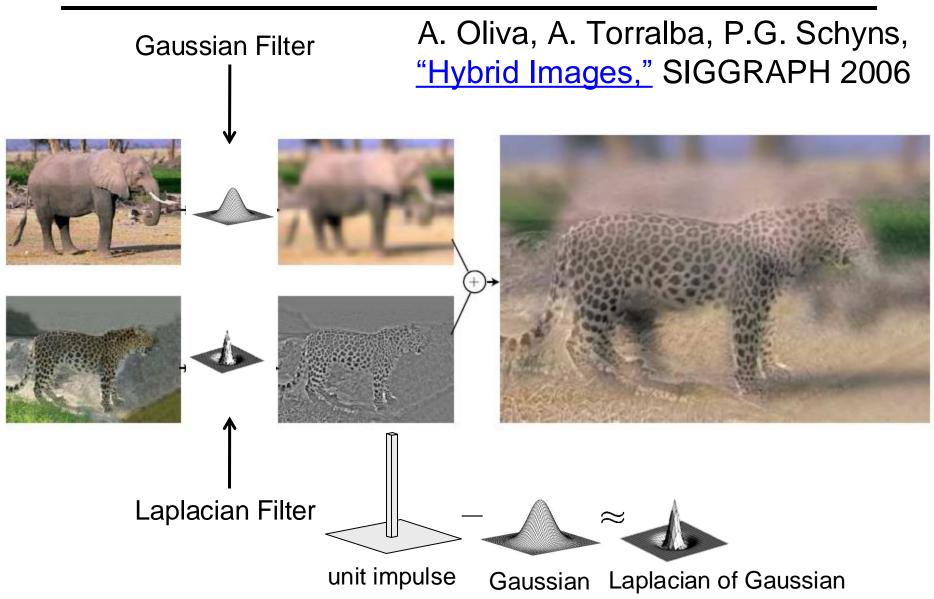
Image

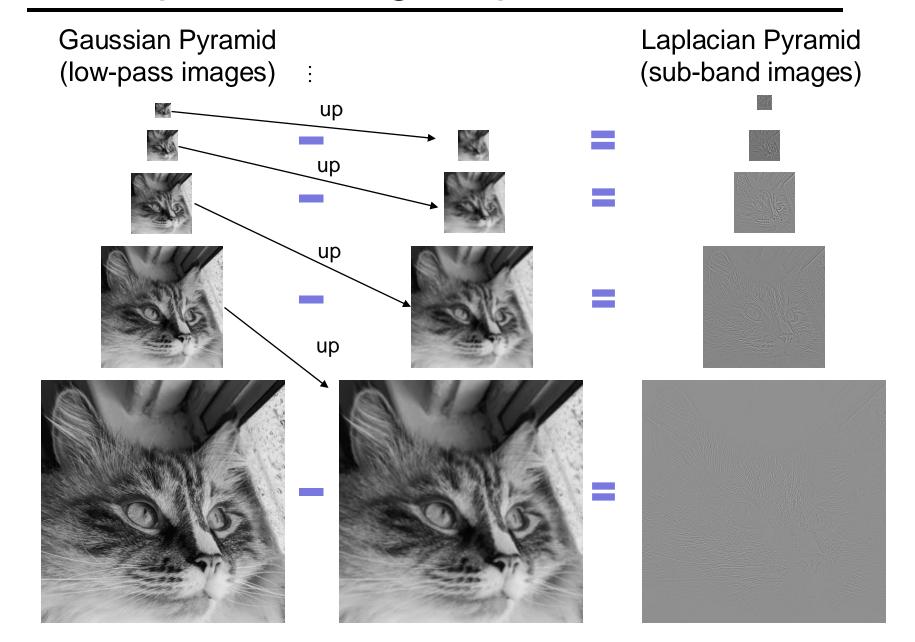
Smoothed

Details



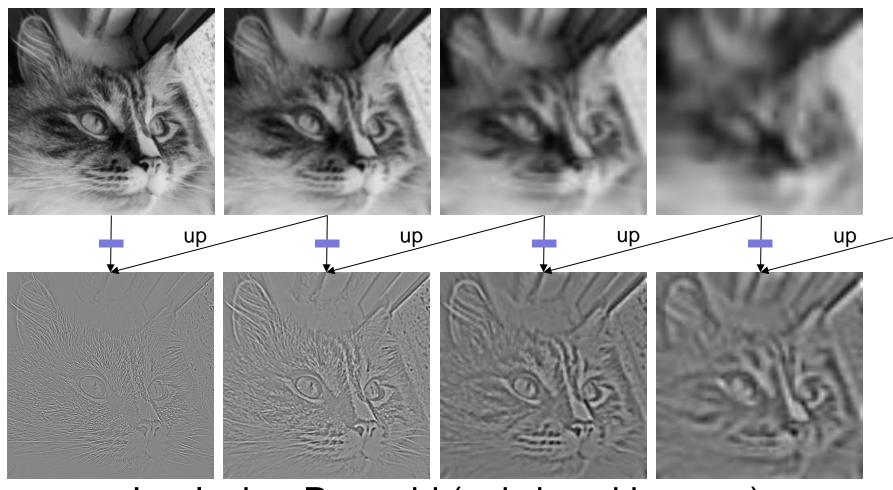
Application: Hybrid Images



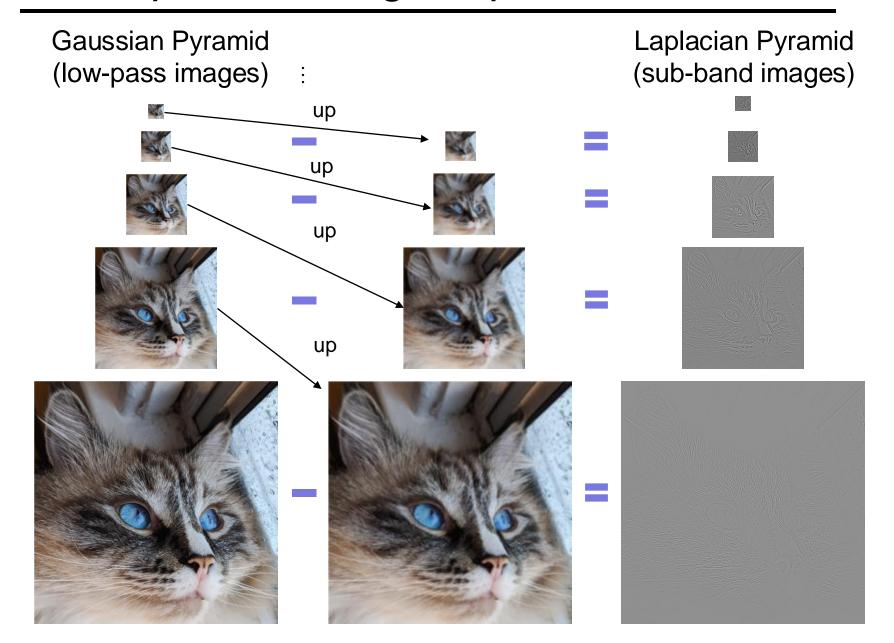


As a stack

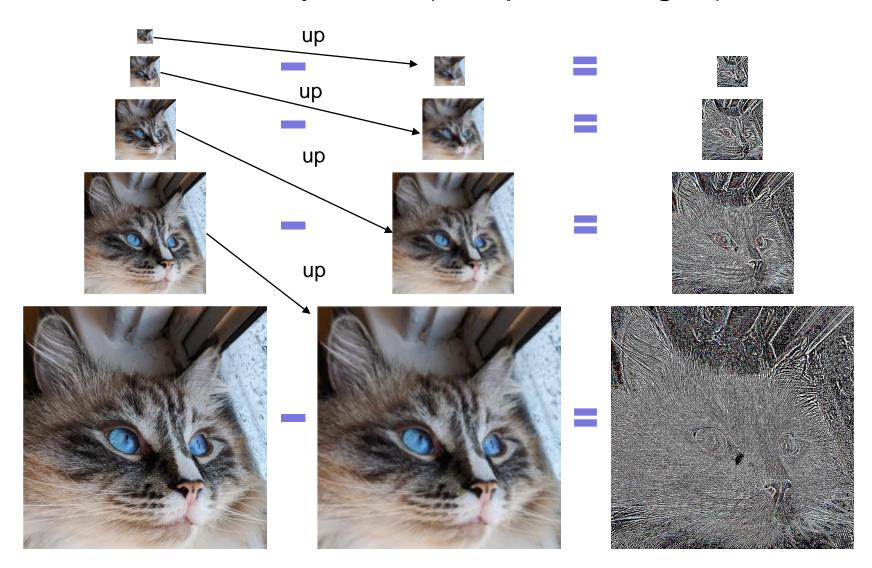
Gaussian Pyramid (low-pass images)



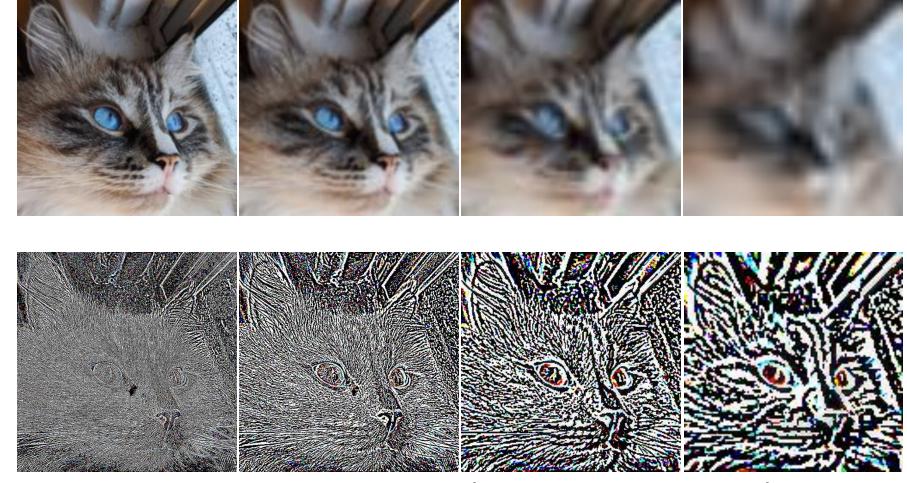
Laplacian Pyramid (sub-band images)
Created from Gaussian pyramid by subtraction



Gaussian Pyramid (low-pass images)

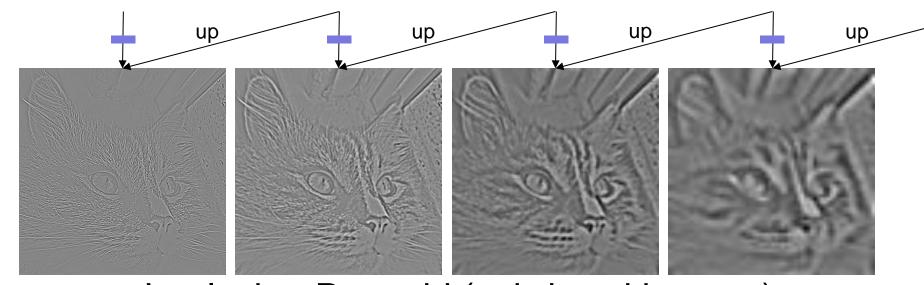


Gaussian Pyramid as a stack



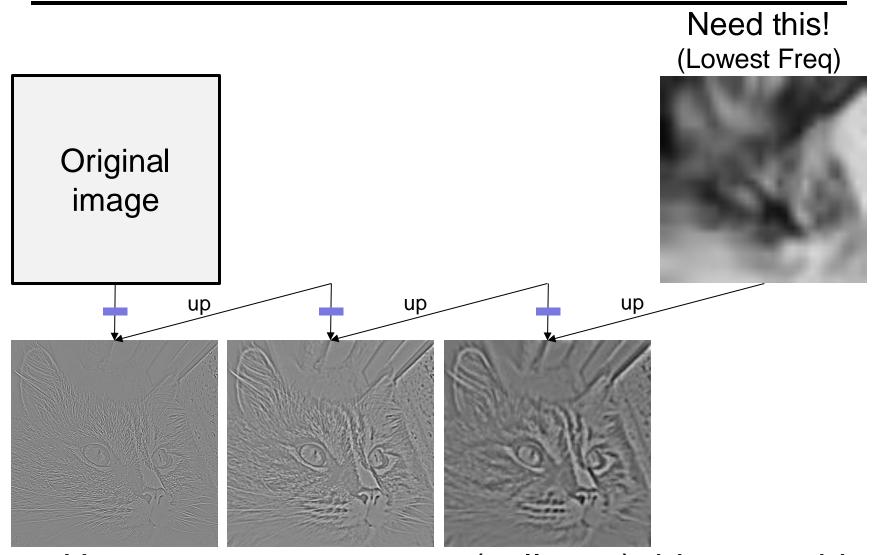
Laplacian Pyramid (sub-band images)
Created from Gaussian pyramid by subtraction

Collapsing Laplacian Pyramid



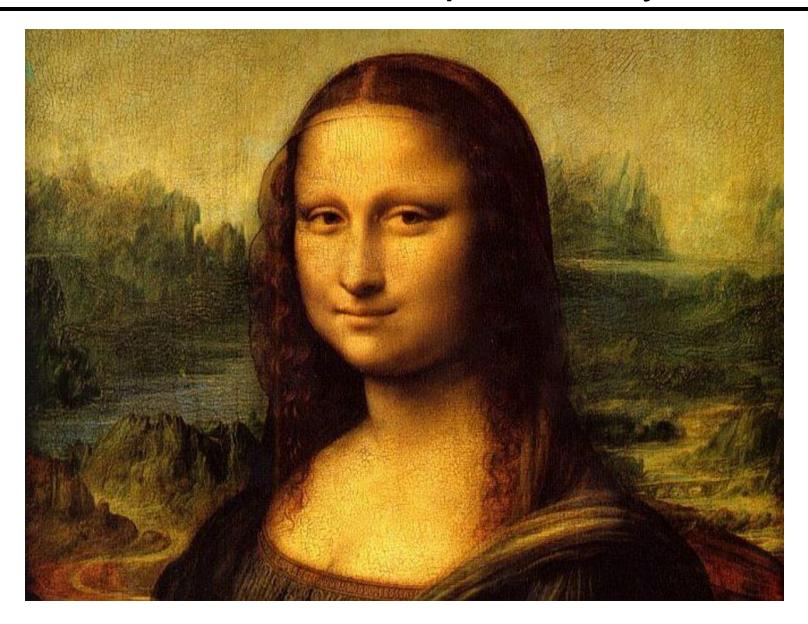
Laplacian Pyramid (sub-band images)
Created from Gaussian pyramid by subtraction

Collapsing Laplacian Pyramid

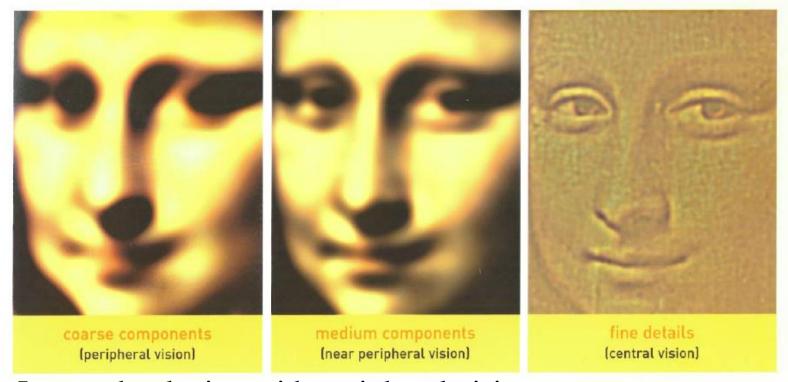


How can we reconstruct (collapse) this pyramid into the original image?

Da Vinci and The Laplacian Pyramid



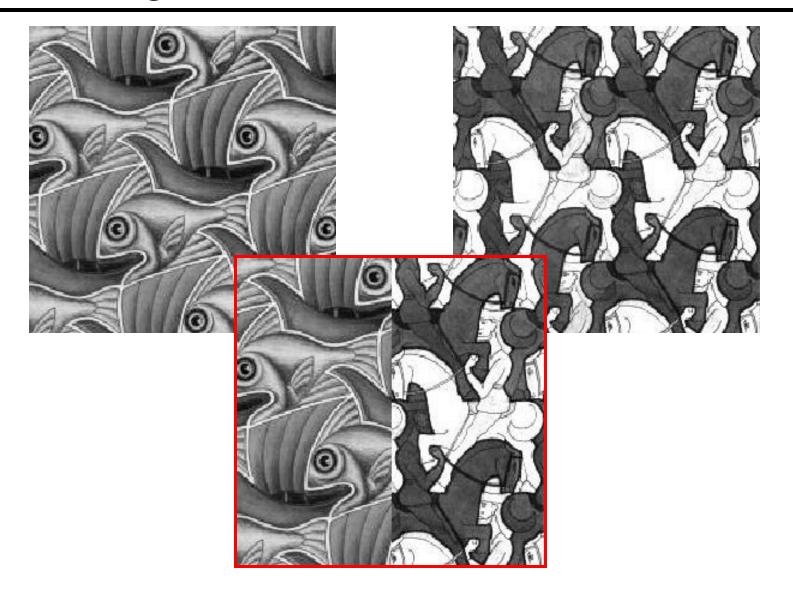
Da Vinci and The Laplacian Pyramid



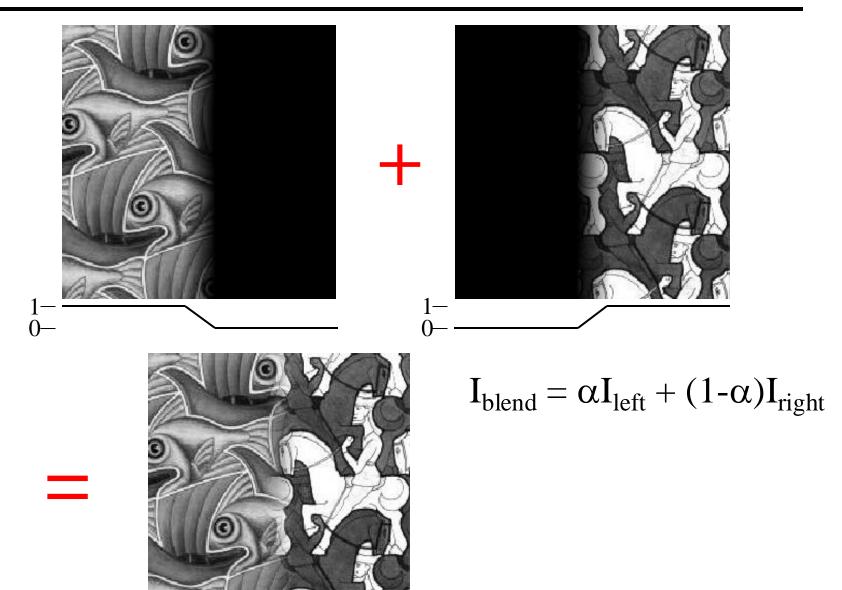
Leonardo playing with peripheral vision

Livingstone, Vision and Art: The Biology of Seeing

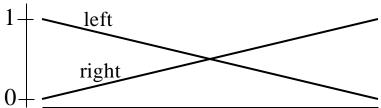
Blending

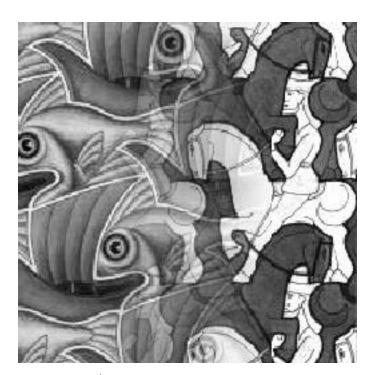


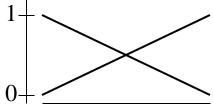
Alpha Blending / Feathering



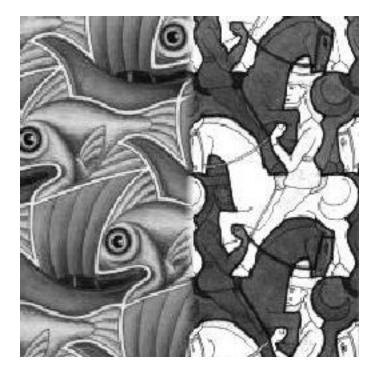
Affect of Window Size

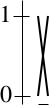


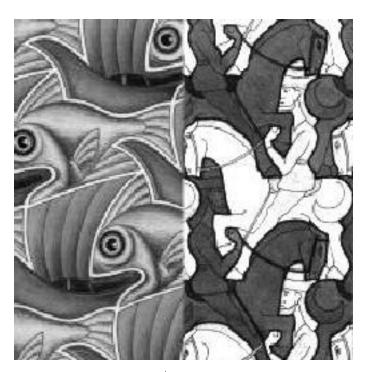


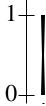


Affect of Window Size

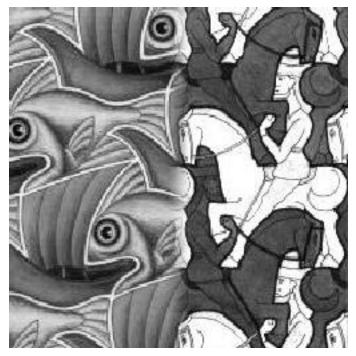








Good Window Size



"Optimal" Window: smooth but not ghosted

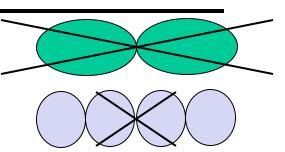
What is the Optimal Window?

To avoid seams

window = size of largest prominent feature

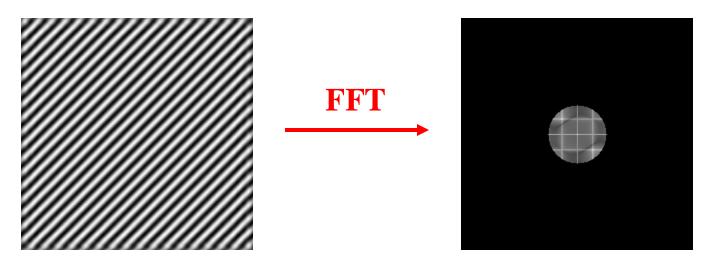
To avoid ghosting

window <= 2*size of smallest prominent feature

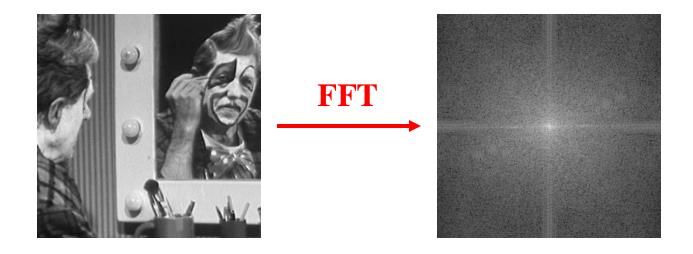


Natural to cast this in the Fourier domain

- largest frequency <= 2*size of smallest frequency
- image frequency content should occupy one "octave" (power of two)



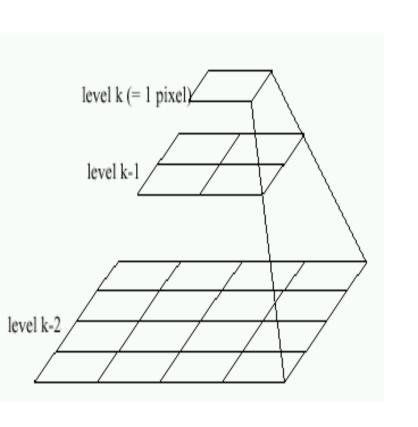
What if the Frequency Spread is Wide

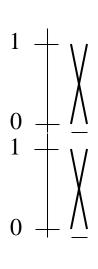


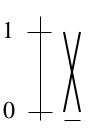
Use a band-pass (Laplacian) Pyramid!

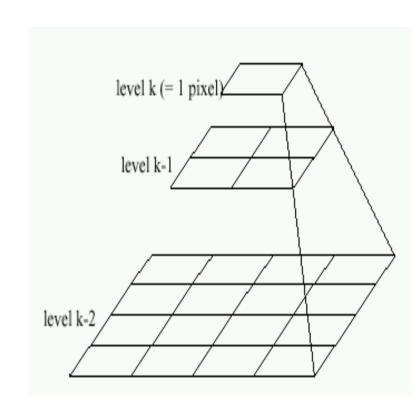
- Split image into set of band-pass images (one octave of frequencies each)
- Blend each level of the pyramid separately
- Collapse the pyramid!

Band-pass Pyramid Blending







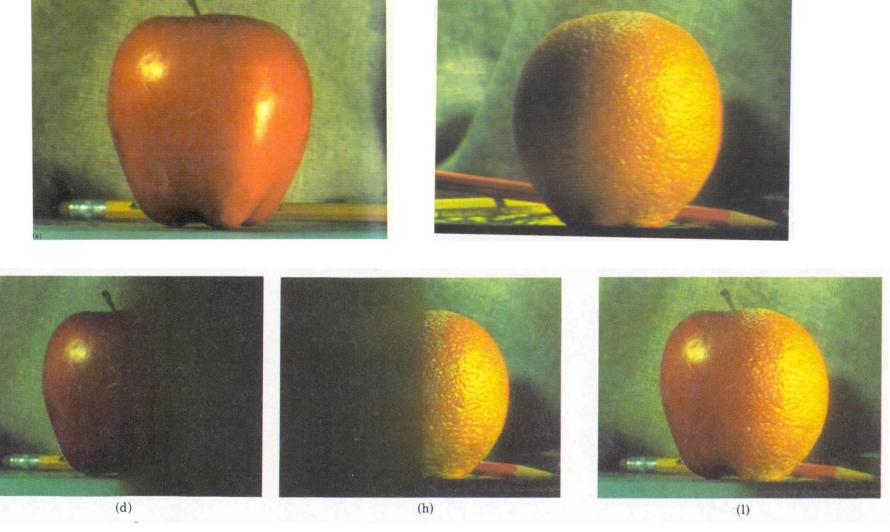


Left pyramid

blend

Right pyramid

Pyramid Blending (Burt and Adelson)



Burt and Adelson (1983), A Multiresolution Spline With Application to Image Mosaics

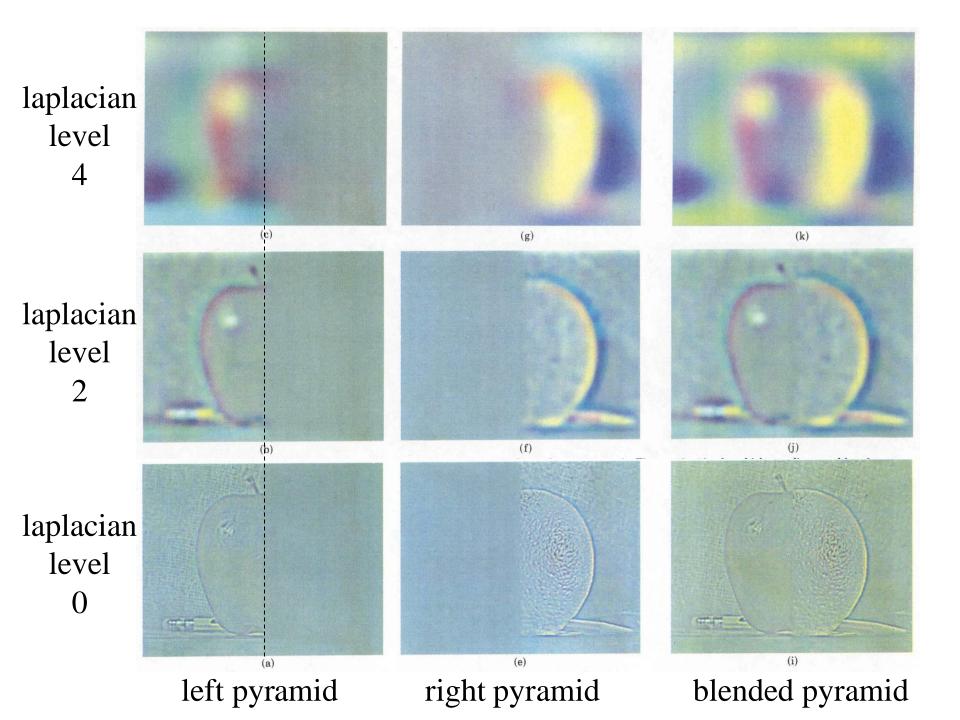


Image Blending with mask

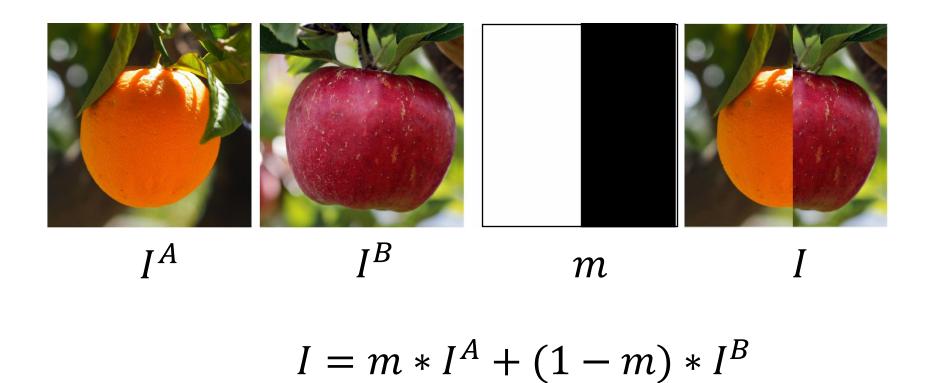
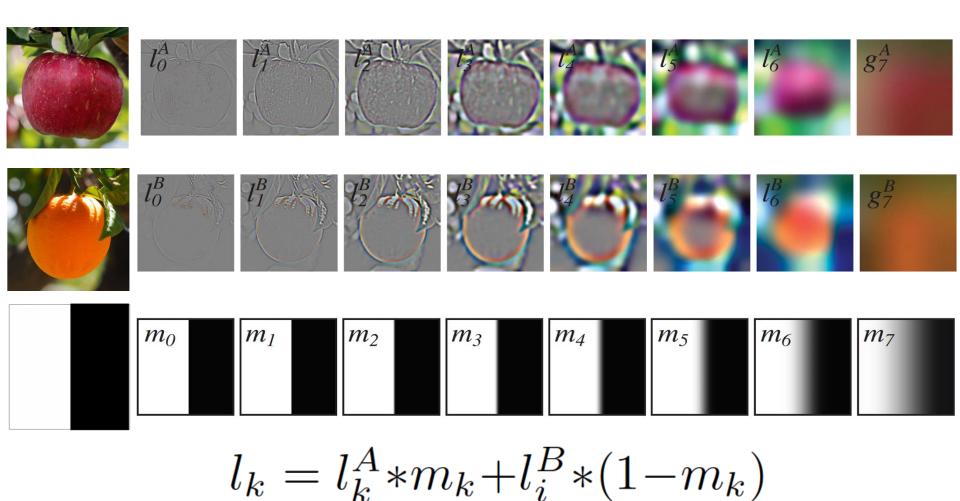


Image Blending with mask



Result

Blending Regions

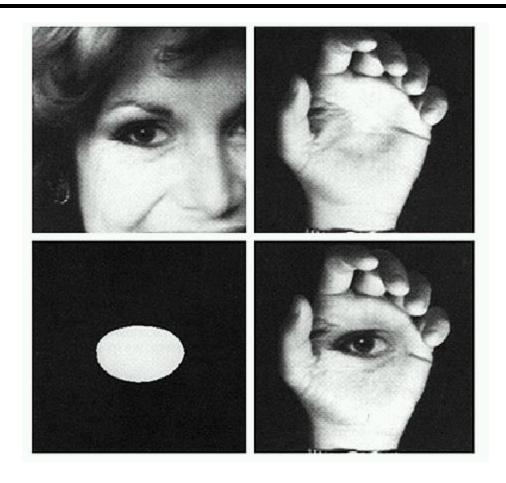


Image Blending with the Laplacian Pyramid

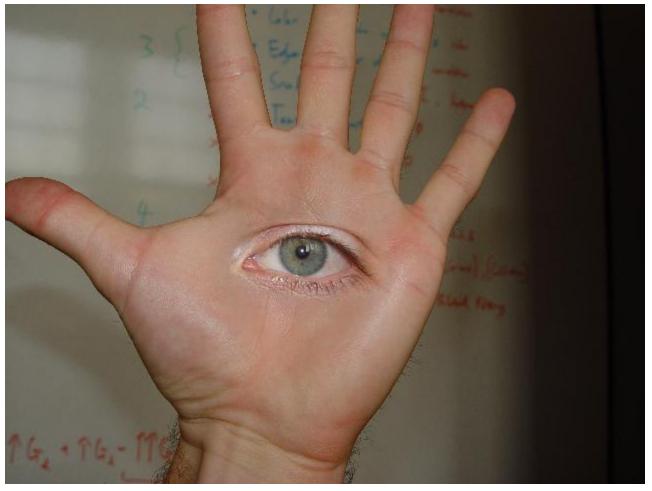
Build Laplacian pyramid for both images: LA, LB Build Gaussian pyramid for mask: G Build a combined Laplacian pyramid L Collapse L to obtain the blended image

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31, NO. 4, APRIL 19

The Laplacian Pyramid as a Compact Image Code

PETER J. BURT, MEMBER, IEEE, AND EDWARD H. ADELSON

Horror Photo



© david dmartin (Boston College)

Results from this class (fall 2005)

© Chris Cameron

Simplification: Two-band Blending

Brown & Lowe, 2003

- Only use two bands -- high freq. and low freq. without downsampling
- Blends low freq. smoothly
- Blend high freq. with no smoothing: use binary alpha

2-band "Laplacian Stack" Blending

Low frequency ($\lambda > 2$ pixels)

High frequency (λ < 2 pixels)

Review: Smoothing vs. derivative filters

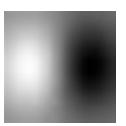
Smoothing filters

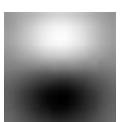
Gaussian: remove "high-frequency" components;
 "low-pass" filter

- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - **Zero:** no response in constant regions
- High absolute value at points of high contrast



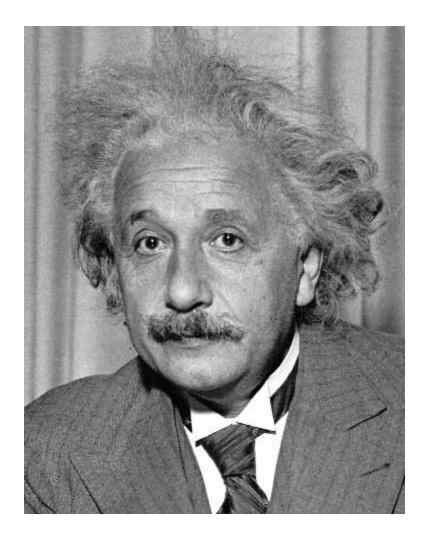


Template matching

Goal: find **m** in image

Main challenge: What is a good similarity or distance measure between two patches?

- Correlation
- Zero-mean correlation
- Sum Square Difference
- Normalized Cross Correlation

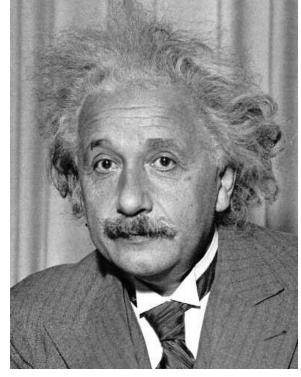


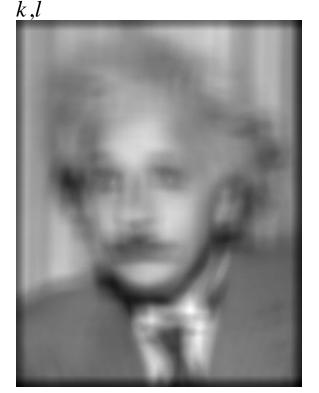
Matching with filters

Goal: find in image

Method 0: filter the image with eye patch

$$h[m,n] = \sum g[k,l] f[m+k,n+l]$$





Filtered Image

What went wrong?

f = image

g = filter

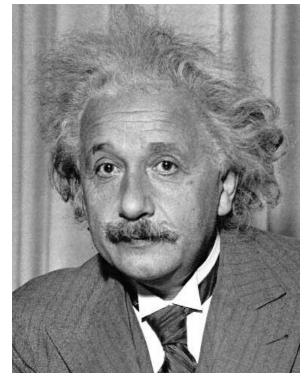
Input

Goal: find in image

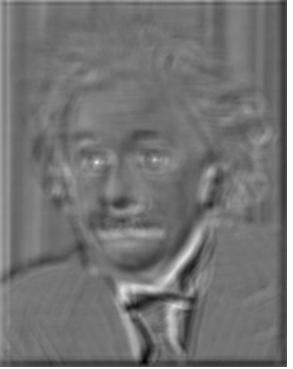
f = image g = filter

Method 1: filter the image with zero-mean eye

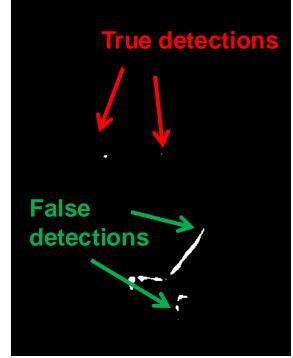
$$h[m,n] = \sum_{k,l} (g[k,l] - \bar{g}) \underbrace{(f[m+k,n+l])}_{\text{mean of g}}$$



Input



Filtered Image (scaled)

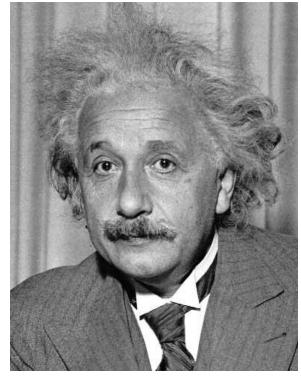


Thresholded Image

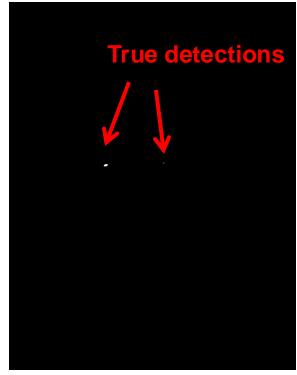
Goal: find image

Method 2: SSD (L2)

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^{2}$$



1- sqrt(SSD)



Thresholded Image

Can SSD be implemented with linear filters?

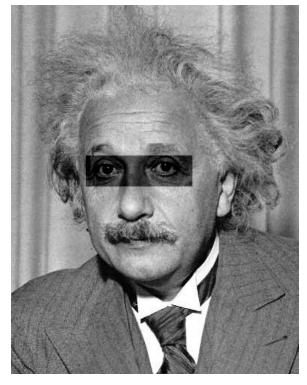
$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^{2}$$

Goal: find Image

What's the potential downside of SSD?

Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^{2}$$



Input

1- sqrt(SSD)

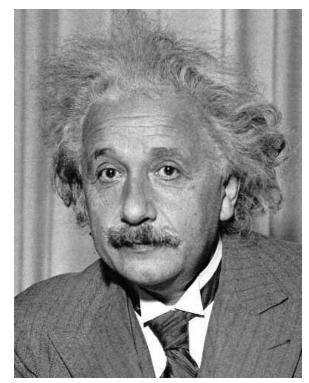
Goal: find in image

Method 3: Normalized cross-correlation

$$h[m,n] = \frac{\displaystyle\sum_{k,l} (g[k,l] - \overline{g})(f[m+k,n+l] - \overline{f}_{m,n})}{\displaystyle\left(\displaystyle\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m+k,n+l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

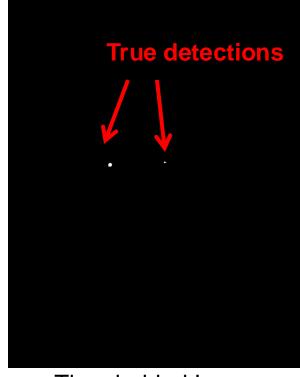
Goal: find image

Method 3: Normalized cross-correlation



Input

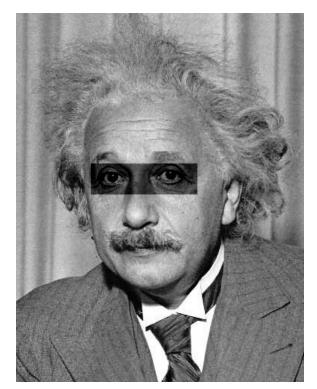
Normalized X-Correlation



Thresholded Image

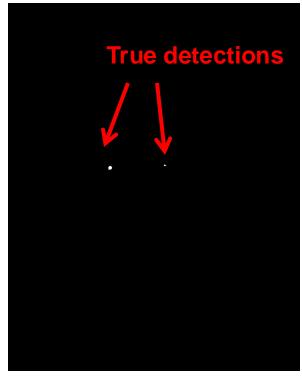
Goal: find image

Method 3: Normalized cross-correlation



Input

Normalized X-Correlation

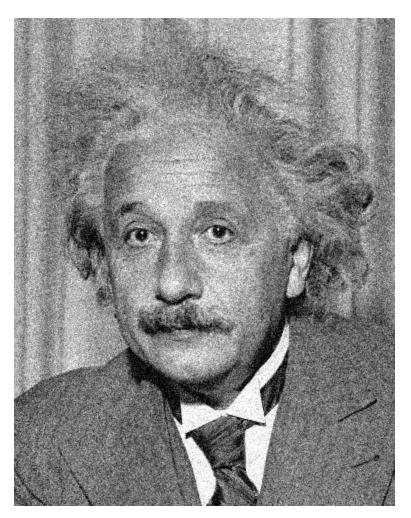


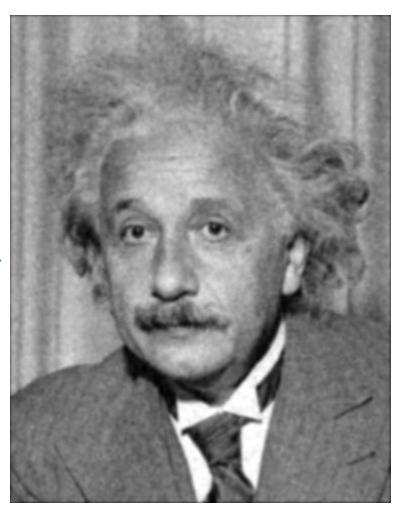
Thresholded Image

Q: What is the best method to use?

- A: Depends
- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, invariant to local average intensity and contrast

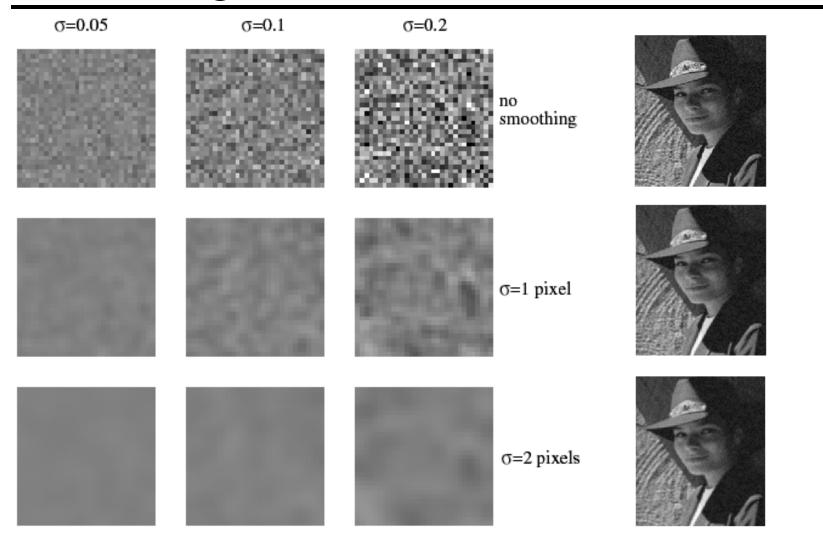
Denoising





Additive Gaussian Noise

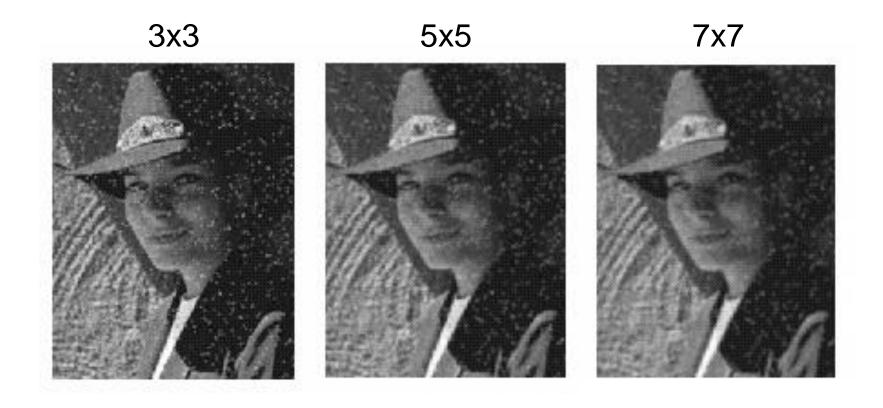
Reducing Gaussian noise



Smoothing with larger standard deviations suppresses noise, but also blurs the image

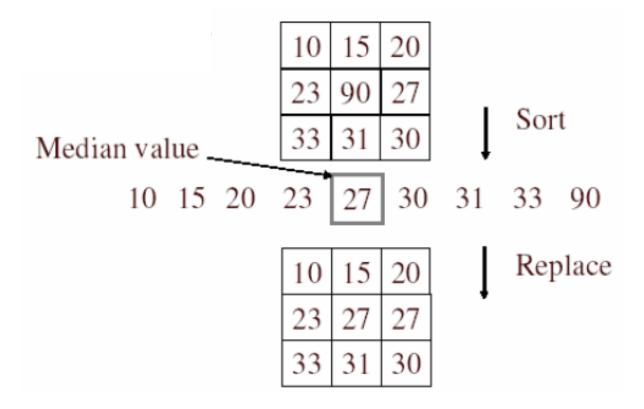
Source: S. Lazebnik

Reducing salt-and-pepper noise by Gaussian smoothing



Alternative idea: Median filtering

A median filter operates over a window by selecting the median intensity in the window

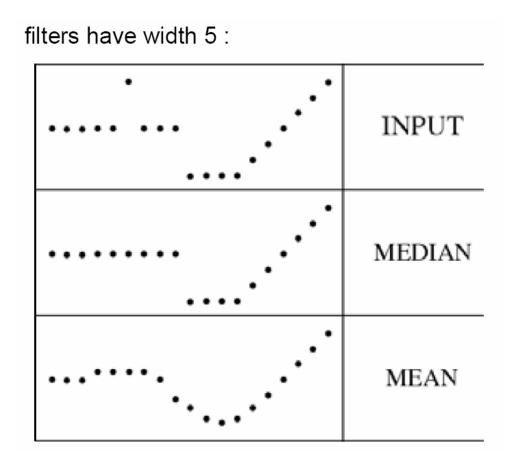


Is median filtering linear?

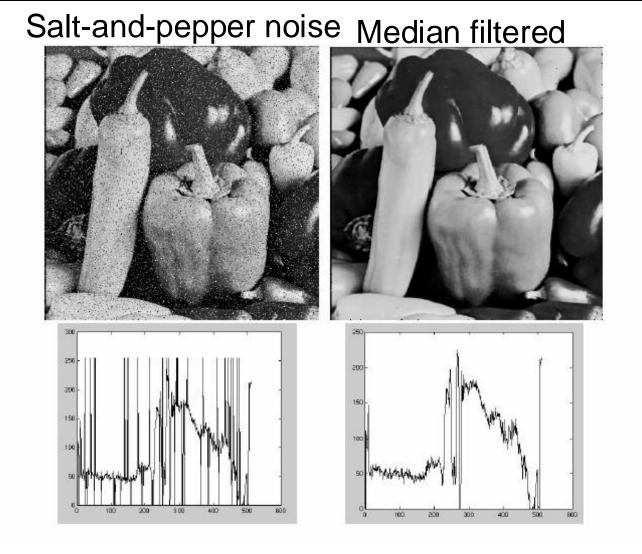
Median filter

What advantage does median filtering have over Gaussian filtering?

Robustness to outliers



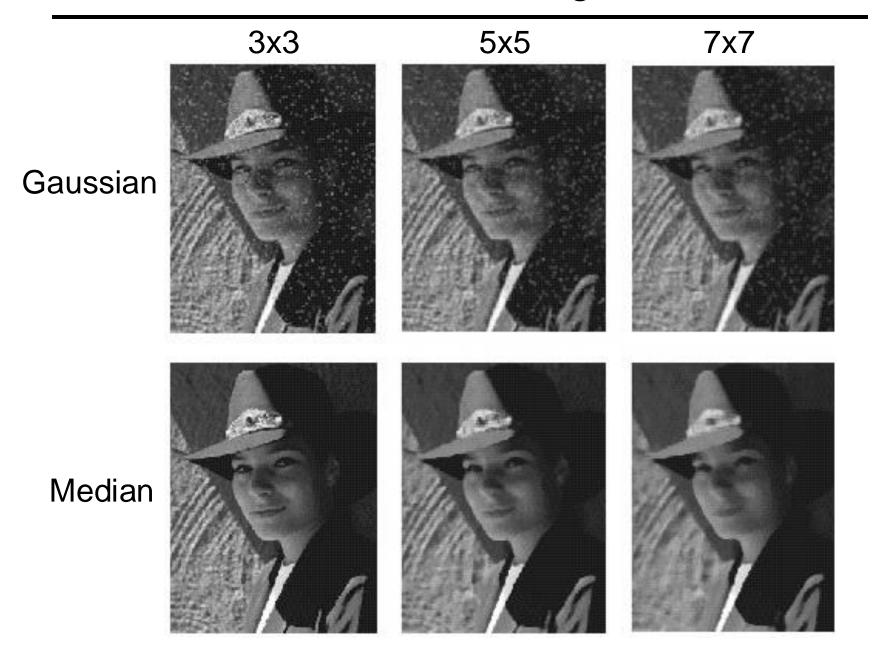
Median filter



medfilt2(image, [h w])

Source: M. Hebert

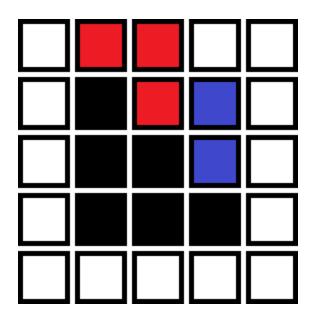
Median vs. Gaussian filtering



Side note: Image Compression

Lossless Compression (e.g. Huffman coding)

Input image:



Pixel code:

color	freq.	bit code
	14	0
	6	10
	3	110
	2	111

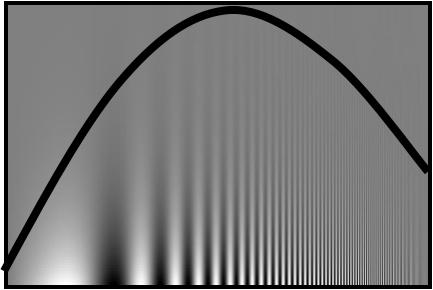
Pixel histogram:

Compressed image:

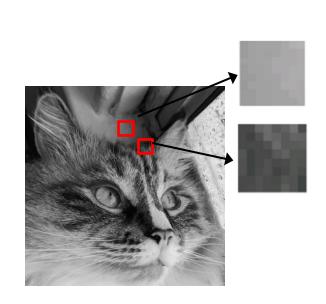
0 110 110 0 0 0 10 110 111 0

. . .

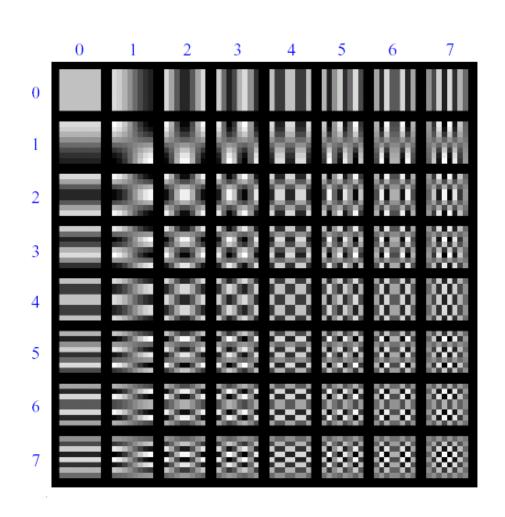
Lossless Compression not enough



Lossy Image Compression (JPEG)



cut up into 8x8 blocks

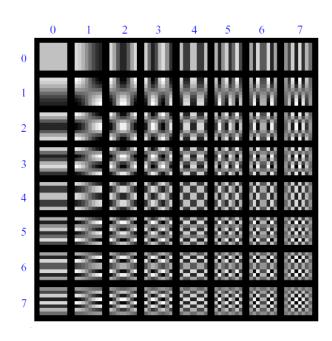


Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG

The first coefficient B(0,0) is the DC component, the average intensity

The top-left coeffs represent low frequencies, the bottom right – high frequencies



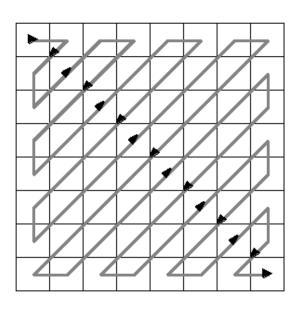


Image compression using DCT

Quantize

- More coarsely for high frequencies (tend to have smaller values anyway)
- Many quantized high frequency values will be zero

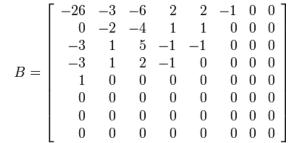
Encode

Can decode with inverse dct

Filter responses

$$G = \begin{bmatrix} -415.38 & -30.19 & -61.20 & 27.24 & 56.13 & -20.10 & -2.39 & 0.46 \\ 4.47 & -21.86 & -60.76 & 10.25 & 13.15 & -7.09 & -8.54 & 4.88 \\ -46.83 & 7.37 & 77.13 & -24.56 & -28.91 & 9.93 & 5.42 & -5.65 \\ -48.53 & 12.07 & 34.10 & -14.76 & -10.24 & 6.30 & 1.83 & 1.95 \\ 12.12 & -6.55 & -13.20 & -3.95 & -1.88 & 1.75 & -2.79 & 3.14 \\ -7.73 & 2.91 & 2.38 & -5.94 & -2.38 & 0.94 & 4.30 & 1.85 \\ -1.03 & 0.18 & 0.42 & -2.42 & -0.88 & -3.02 & 4.12 & -0.66 \\ -0.17 & 0.14 & -1.07 & -4.19 & -1.17 & -0.10 & 0.50 & 1.68 \end{bmatrix}$$

Quantized values



Quantization table

$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

JPEG Compression Summary

Subsample color by factor of 2

People have bad resolution for color

Split into blocks (8x8, typically), subtract 128

For each block

- a. Compute DCT coefficients
- b. Coarsely quantize
 - Many high frequency components will become zero
- c. Encode (e.g., with Huffman coding)

Spatial dimension of color channels are reduced by 2 (lecture 2)!

JPEG compression comparison

89k 12k