Pyramid Blending, Templates, NL Filters

CS180: Intro to Comp. Vision and Comp. Photo
Alexel Efros, UC Berkeley, Fall 2024



Low Pass vs. High Pass filtering
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Application: Hybrid Images

A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006

Gaussian Filter

Laplacian Filter <>_

unitimpulse  Gaussian Laplacian of Gaussian



http://cvcl.mit.edu/hybridimage.htm

Band-pass filtering in spatial domain

Gaussian Pyramid Laplacian Pyramid
(low-pass images) (sub-band images)
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As a stack

Gaussian Pyramid (low-pass images)

Laplacian Pyramid (sub-band images)
Created from Gaussian pyramid by subtraction



Band-pass filtering in spatial domain

Gaussian Pyramid Laplacian Pyramid
(low-pass images) (sub-band images)
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Band-pass filtering in spatial domain

Gaussian Pyramid (low-pass images)




Band-pass filtering in spatial domain

Gaussian Pyramid as a stack
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Laplacian Pyramid (sub-band
Created from Gaussian pvramid bv subtraction
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Collapsing Laplacian Pyramid

Laplacian Pyramid (sub-band images)
Created from Gaussian pyramid by subtraction



Collapsing Laplacian Pyramid

Need this!
(Lowest Freq)

Original
Image

How can we reconstruct (collapse) this pyramid
Into the original image”?
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Da Vinci and The Laplacian Pyramid

coarse components medium components fine details
(peripheral vision) (near peripheral vision) (central vision)

Leonardo playing with peripheral vision

Livingstone, Vision and Art: The Biology of Seeing



https://www.amazon.com/Vision-Art-Biology-Margaret-Livingstone/dp/0810995549

Blending




Alpha Blending / Feathering
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Affect of Window Size




Affect of Window Size




Good Window Size

“Optimal” Window: smooth but not ghosted



What is the Optimal Window?

To avoid seams "N
« window = size of largest prominent feature
To avoid ghosting Q@@

» window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain

« largest frequency <= 2*size of smallest frequency
» image frequency content should occupy one “octave” (power of two)
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What if the Frequency Spread is Wide

Use a band-pass (Laplacian) Pyramid!

« Splitimage into set of band-pass images (one octave
of frequencies each)

« Blend each level of the pyramid separately
« Collapse the pyramid!

Burt and Adelson (1983), A Multiresolution Spline With Application to Image Mosaics



Band-pass Pyramid Blending
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Pyramid Blending (Burt and Adeison)

(d)

Burt and Adelson (1983), A Multiresolution Spline With Application to Image Mosaics
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Image Blending with mask
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Image Blending with mask




Result
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Blending Regions
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Image Blending with the Laplacian Pyramid

Build Laplacian pyramid for both images: LA, LB
Build Gaussian pyramid for mask: G

Build a combined Laplacian pyramid L
Collapse L to obtain the blended image

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31, NO. 4, APRIL 1983

The Laplacian Pyramid as a Compact Image Code

PETER J. BURT, memeer. 1EEE, AxD EDWARD H. ADELSON

http://persci.mit.edu/pub_pdfs/pyramid83.pdf



Horror Photo

© david dmartin (Boston College)



Results from this class (fall 2005)

© Chris Cameron



Simplification: Two-band Blending
Brown & Lowe, 2003

« Only use two bands -- high freq. and low freq. — without downsampling
« Blends low freq. smoothly
. Bled high freg. with no smoothing: use binary alpha
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2-band “Laplacian Stack” Blending
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2-band Blending

B2
1l "t!’"_'s‘. DL R

b— et T
— -—




Review: Smoothing vs. derivative filters

Smoothing filters
« Gaussian: remove “high-frequency” components;
“low-pass” filter
« Can the values of a smoothing filter be negative?

* What should the values sum to?
— One: constant regions are not affected by the filter

Derivative filters
» Derivatives of Gaussian
« Can the values of a derivative filter be negative?
* What should the values sum to?
— Zero: no response in constant regions
« High absolute value at points of high contrast




Template matching

Goal: find In Image

Main challenge: What s a
good similarity or
distance measure

between two patches?
« Correlation

e Zero-mean correlation

« Sum Square Difference
 Normalized Cross Correlation

Side by Derek Hoiem



Matching with filters

Goal: find In Image

Method O: filter the image with eye patch
h[m,n]=> g[k,1] f[m+k,n+1]
K

G i § ¥ f = image
=28 W g = filter

What went wrong?

Input Filtered Image Side by Derek Hoiem



Matching with filters

f = image

Goal: find ® In image g = filter

Method 1: filter the iImage with zero-mean eye
hlm,n] =3 _(glk. 1] = g)(f[m + k,n +1])

mean of g

Filtered Image (scaled) Thresholded Image



Matching with filters

Goal: find @ inimage
Method 2: SSD (L2)
h[m,n]=>"(glk,11- f[m+k,n+1])?
k.l

1- sqrt(SSD) Thresholded Image



Matching with filters

Can SSD be implemented with linear filters?
h[m,n]=Z(g[k,I]— f[m+k,n+1])?
kI

Side by Derek Hoiem



Matching with filters

. . . What’s th tential
Goal: find ® in image downside of SSD?

Method 2: SSD
h[m,n] = Z(g[k,l]— f[m+k,n+1])?

Input 1- sqr(SSD) Side by Derek Hoiem



Matching with filters

Goal: find @ inimage
Method 3: Normalized cross-correlation

mean template mean image patch

l |
> (gl 1= (Fm+k.n+11- 1)

h[m,n] = <

[Z(g[k,l]—g)zZ(f[m+k,n+|]— f_m,n)zj

Side by Derek Hoiem



Matching with filters

Goal: find @ inimage
Method 3: Normalized cross-correlation

Thresholded Image



Matching with filters

Goal: find @ inimage
Method 3: Normalized cross-correlation

Normalized X-Correlation Thresholded Image



Q: What is the best method to use?

A: Depends

Zero-mean filter: fastest but not a great
matcher

SSD: next fastest, sensitive to overall
Intensity

Normalized cross-correlation: slowest,

Invariant to local average intensity and
contrast

Side by Derek Hoiem
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Reducing Gaussian noise

o=0.05 a=0.1 ag=0.2

o=1 pixel

g=2 pixels

Smoothing with larger standard deviations suppresses noise,

but also blurs the image |
Source: S. Lazebnik



Reducing salt-and-pepper noise by Gaussian smoothing

X/

5x5

3x3




Alternative idea: Median filtering

A median filter operates over a window by
selecting the median intensity in the window
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* |s median filtering linear?

Source: K. Grauman



Median filter

What advantage does median filtering
have over Gaussian filtering?

 Robustness to outliers

filters have width 5 :

INPUT

lllllllll

MEDIAN

MEAN

Source: K. Grauman



Median filter

Saltandpepper noise Median filtered
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Source: M. Hebert



Median vs. Gaussian filtering

3x3 5x5

Gaussian 7




Side note: Image Compression
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Lossless Compression (e.g. Huffman coding)

Input image: Pixel code:
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https://www.print-driver.com/stories/huffman-coding-jpeqg
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https://www.print-driver.com/stories/huffman-coding-jpeg

Lossless Compression not enough
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Lossy Image Compression (JPEG)
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Block-based Discrete Cosine Transform (DCT)



Jsing DCT Iin JPEG

ne first coefficient B(0,0) is the DC component,
the average intensity

The top-left coeffs represent low frequencies,
the bottom right — high frequencies

0 1 2 3 4 5 & 7
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Image compression using DCT

Quantize
« More coarsely for high frequencies (tend to have smaller values anyway)
« Many quantized high frequency values will be zero

Encode
e« Can decode with inverse dct

Filter responses -
C 41538 —3019 —6120 2724 5613 —2010 —239 046
447 _2186 —60.76 1025 1315 -7.09 —854 488
4683 737 7713 —2456 —2891 993 542 _5.65 o
G= 1 _4853 1207 3410 —1476 —1024 630 183 1.95 l” Quantization table
1212 —655 —1320 -395 —188 175 —2.79 314 - -
773 9291 238 -594 238 094 430 185 16 11 10 16 24 40 51 61
103 018 042 -242 —088 —302 412 —066 12 12 14 19 26 58 60 55
017 014 -107 419 117 -010 050 1.68 | 14 13 16 24 40 57 69 56
B 14 17 22 29 H1 &7 RO 62
) Q= 18 22 37 A6 68 109 103 77
Quantized va_Iu;s L 24 35 55 64 81 104 113 92
0 9 4 1 1 000 49 64 T8 87 103 121 120 101
3 1 5 -1 -1 000 _72 92 95 98 112 100 103 99_
s | 3 1 2 0 000
=l 1 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 000




JPEG Compression Summary

Subsample color by factor of 2
* People have bad resolution for color

Split into blocks (8x8, typically), subtract 128

For each block

a. Compute DCT coefficients

b. Coarsely quantize
—  Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

Spatial dimension of color channels are reduced by 2
(lecture 2)!

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.orag/wiki/JPEG



http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

JPEG compression comparison
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