Texture: statistical models of vision
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What is Texture?

* Texture depicts spatially repeating patterns
* Many natural phenomena are textures

radishes



Texture as “stuff”

Source: Forsyth



exture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture Analysis

“Same” or

. ANALYSIS mo) -

Compare textures and decide if they're made of the
same “stuff”.

True ﬁnit) texture



When are two textures similar?




Béla Julesz father of texture




Nature Vol 290 12 March 1981 91

REVIEW ARTICLES

Textons, the elements of texture perception,
and their interactions

Bela Julesz
Bell Laboratories, Murray Hill, New Jersey 07974, UUSA

Research with texture pairs having identical second-order statistics has revealed that the pre-attentive
texture discrimination system cannot globally process third- and higher-order statistics, and that
discrimination is the result of a few local conspicuous features, called textons. It seems that only the
first-order statistics of these textons have perceptual significance, and the relative phase between textons
cannot be perceived without detailed scrutiny by focal attention.

Bela Julesz, "Textons, the Elements of Texture Perception, and
their Interactions". Nature 290: 91-97. March, 1981.




Texton Discrimination (Julesz

i ! = b I ke A
S I R LN ¥ ool £ el ™5y 5 T, f 2 AN V. I
(R Sl T P, ! PN T ey ) ~ =
~ w s - L ik 1 | \,v ey T A T
T T - y . T T = PET g At
b £ ! AR LY I FAV. N 4 b _\_-'l I 1 ___I = T |I‘_ ~ .
e el O e ~ ~ ~ = -
W A ! paa ._II'-- \ _'_] -1 ! {‘ Fi N ;Hf =1 | = / " & i
- (i L I 7 oA ! S ! < = i
- \ i L. - R o e -
oL ! | ___/ Gl | g Ve TN h." | ,I'_H | ) [ | l;/\lr
[ \ I Ty | = F ! i A o i i iz
" BTN W e Vv Rl T Ny Vv A [ T i
W= = oy - & = = -
S U TR AT ., € 4% AN woolli Vel st e
£yl ‘: x F 4+ + x & ™ O X e -\' i \{ gl
e x it B I z},:‘,\—’\,f pe X Ten W g %W
O T S Y + [ & - e ™~ - ;
N S % o B oA el oy YRt L R R PN X d g Sy
S R AN S SHEE S R TR CRI S L (ERR B O T - oy s
“ ' -:". o R “ Iy A | (= N
i X & + x4 | bt B B O = R
: L ¥ s et gl ol S o s 0 o Rt 18 i f\
o - + - = e
= v Y ¥ x x X ® Frol ey PR AL T ! =
B LY 5 J . 5 N A ._'.\,, ! \; L -
- » - s -
L S A b AN s :: i T - s —pd =N £
L Y o= - e T S ™ - -
g TR S v ML SIS Sl el W W) P T i
\ 1 \f I‘ "l.\ 1. - ||.ﬂ’\ Y i L LW I T : ki
£ e A A R A b LT L e T e
spenls De S LE T LR R 4 o Ri5s: Bt £
| 2 - e M e [ =Tk = LR R f\ s r"‘ | R L ';-"\ I
= — Y - i - = b -
y \,J /\\f—" § |I,|_‘ \ \ e, P g i - \ = PN &
- ol ki | Lt YR g ¥ @
| I.-'\ - NN | - o = ; s 1 Y L
f =N L SR e W T
& " W W R T § e N
; ” I-II"' -, _,r’l"‘ --Ir J--.- LY \ - — % \ b ) ___III--" V- I ifh
5 - I #N s il B o B e 5 P
- NN o by ! N b e Y o

Human vision is sensitive to the difference of some types of elements and
appears to be “numb” on other types of differences.



Search Experiment |
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The subject is told to detect a target element in a number of background elements.
In this example, the detection time is independent of the number of background elements.



Search Experiment |l
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In this example, the detection time is proportional to the number of background elements,
And thus suggests that the subject is doing element-by-element scrutiny.



Preattentive vs Attentive Vision (Julesz)

Human vision operates in two distinct modes:

1. Preattentive vision

parallel, instantaneous (~100--200ms), without scrutiny,
independent of the number of patterns, covering a large
visual field.

2. Attentive vision

serial search by focal attention in 50ms steps limited to
small aperture.



Evidence for Pre-attentive Recognition (Thorpe)

On a task of judging animal
vsS ho animal, humans can
make mostly correct
saccades in 150 ms
(Kirchner & Thorpe, 2000)

« Comparable to synaptic delay in
the retina, LGN, V1, V2, V4, IT
pathway.

 Doesn’t rule out feed back but
shows feed forward only is very
powerful

Detection and categorization
are practically
simultaneous (Grill-Spector
& Kanwisher, 2005)




Julesz Conjecture

Textures cannot be
spontaneously discriminated if
they have the same first-order
and second-order statistics of
texture features (textons) and
differ only in their third-order or
higher-order statistics.



1st Order Statistics

% white 20% white



2nd Order Statistics

10% white




Big Question

What is the statistical unit (texton)
of texture in real images?
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Single Cell Recording

© Stephen E. Palmer, 2002



Single Cell Recording

Microelectrode
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© Stephen E. Palmer, 2002



Retinal Receptive Fields

Receptive field structure In
On-center Off-surround

Response

Time

Stimulus condition Electrical response

© Stephen E. Palmer, 2002



Retinal Receptive Fields
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Retinal Receptive Fields
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Retinal Receptive Fields
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Retinal Receptive Fields
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Retinal Receptive Fields
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Retinal Receptive Fields

RF of On-center Off-surround cells
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© Stephen E. Palmer, 2002



Retinal Receptive Fields
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Retinal Receptive Fields
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Retinal Receptive Fields

Receptive field structure in bipolar cells

YV V VY yuor

Horizontal
Cells
Direct Path
_—
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A. WIRING DIAGRAM

Direct excitatory

component (D) Indirect

inhibitory
component (1)

B. RECEPTIVE FIELD PROFILES

© Stephen E. Palmer, 2002




The receptive field of a retinal ganglion cell can be
modeled as a “Difference of Gaussians”
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Receptor

Receptive
Fields

\ Receptive field of this receptor
(point in visual field that can affect it)

Three receptors
that connect
through bipolar
cells to a given
“&#= ganglion cell

Combined receptive field
of the ganglion cell

Figure 6.16 Receptive fields

The receptive field of a receptor is simply the area of the visual field from which
light strikes that receptor. For any other cell in the visual system, the receptive
field is determined by which receptors connect to the cell in question.



Anatomy of Pathway to Visual Cortex

© Stephen E. Palmer, 2002



Visual Cortex
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© Stephen E. Palmer, 2002



Cortical Receptive Fields

Single-cell recording from visual cortex

David Hubel & Thorston Wiesel

© Stephen E. Palmer, 2002



Cortical Receptive Fields

Single-cell recording from visual cortex
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https://www.youtube.com/watch?v=I0Hayh061.J4



https://www.youtube.com/watch?v=IOHayh06LJ4

Stimulus:




Cortical Receptive Fields

Simple Cells: “Line Detectors”

A. Light Line Detector B. Dark Line Detector
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© Stephen E. Palmer, 2002



Cortical Receptive Fields

Simple Cells: “Edge Detectors”

C. Dark-to-light Edge Detector D. Light-to-dark Edge Detector
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© Stephen E. Palmer, 2002



Cortical Receptive Fields

Constructing a line detector
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© Stephen E. Palmer, 2002



The 1D Gaussian and its derivatives

1 z2
e 202
Qmo
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G' (z)’s maxima/minima occur at G (z)’s zeros. And, we can see that
G (z) is an odd symmetric function and G, (z) is an even symmetric function.



Oriented Gaussian Derivatives in 2D

filz,y) = G, (2)Goy(y) (10.4)
fa(z,y) = G7 (2)Goy (y) (10.5)

We also consider rotated versions of these Gaussian derivative functions.

Rotyfy = G, (u)G oy (V) (10.6)
Rotgfy = G (u)G,, (V) (10.7)

u '\ [ cosf) —sind T
v / \ sinf cos# Y

These are useful when we convolve with 2D images, e.g. to detect edges at
different orientations.

where we set



Oriented Gaussian First and Second Derivatives
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Hypercolumns in visual cortex

Oblique
Horizontal

Vertical

Left Eye Right Eye

Model of Striote Module in Monkeys




Modeling hypercolumns

* Elongated directional
Gaussian derivatives

e Gabor filters could be
used instead

* Multiple orientations,
scales




Overcomplete representation: filter banks

LM Filter Bank
HII—\ \ |
HIIIII ==

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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Two questions of texture modeling

* What are the texture features (textons)?

* Pixels
» Pixel patches
« Outputs of V1-like filters
» Clusters of patches / filter outputs
 CNN features
Etc.

 How do we aggregate statistics

« Various types of histograms
Implicit or explicit



Pixel Histograms

Slide by Erik Learned-Miller



Pixel Histograms

9000

9000

Slide by Erik Learned-Miller



Gray value histogram comparisons

They're equal

Slide by Erik Learned-Miller



LM Filter Bank

ESNIAE=S

ESNNAE - -
ENNOEAR - -
. * . . -

Going up from pixels: V1 filter-banks



Can you match the texture to its histogram?

Filters

Mean abs
responses



Slightly fancier: histogram for each filter

Filter bank




Filter response histograms
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Adding spatial structure

T T
T .

A separate histogram for each region.

Slide by Erik Learned-Miller



Image Representations: Histograms

Images from Dave

feature 2
feature 2

feature 1

feature 1

feature 2
feature 2

feature 1 feature 1
Joint histogram Marginal histogram
- Requires lots of data - Requires independent features

« Loss of resolution to . Mqre data/bin than
avoid empty bins joint histogram



Ex: SIFT descriptor [Lowe'99]

distribution of the gradient over an image patch

image gradient 3D histogram

> X
2n ¢

* ¥
* 2% K
* ¥
K%

4x4 location grid and 8 orientations (128 dimensions)

very good performance in image matching [Mikolaczyk and Schmid’03]



Gradient Histograms pop-up everywhere
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Gist Descriptor Freeman and Roth IAFGR 1995
Lowe ICCV1999
Oliva & Torralba, 2001
Belongie et al, 2001

Binning achieves invariance to small patch offsets ~ Dalal &Triggs CVPRO5

Generalized Shape Context



Adaptive Representations

Images from Dave
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Adaptive binning
+ Better data/bin distribution, fewer empty bins
« Can adapt available resolution to relative feature importance



Clustering: very adaptive representations

Images from Dave
Kauchak

feature 2

feature 1

feature 2

feature 1

Clusters / Signatures
+ “super-adaptive” binning
+ Does not require discretization along any fixed axis



Patch Features




dictionary formation
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Clustering (usually k-means)
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Vector quantization

Slide credit; Josef Sivic



Clustered Image Patches (“Bag of Visual Words”)
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Analogy to documents

Of all the sensory impressions proceeding to
the brain, the visual experiences are the
dominant ones. Our perception of the world
around us is based essentially on the
messages that rz = OUr eyes.

image
discove eye, cell, optical
nerve, image
. Hubel, Wiesel .

following theA _
to the various

demonstrate that the message abo?
image falling on the retina undergoe
wise analysis in a system of nerve cel
stored in columns. In this system each C
has its specific function and is responsible
a specific detail in the pattern of the retinal
image.

China is forecasting a trade surplus of $90bn
(£51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce
Ministry said the surplus would be created by
a predicted 30°/ :

China's ]
delierlflexports, imports, US,
agreesfyuan, bank, domestic,

4, foreign, increase,
L, trade, value

freely. However, Beijing has made it ci
it will take its time and tread carefully b
allowing the yuan to rise further in value.




» Bag of ‘words’







Image representation

frequency
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codewords



Scene Classification (Renninger & Malik)

beach mountain

University of California Vision Science &
Berkeley Computer Vision Groups



Image classification can be pre-attentive!

On a task of judging animal vs no
animal, humans can make mostly

correct saccades in 150 ms (Kirchner
& Thorpe, 2006)

— Comparable to
synaptic delay in the
retina, LGN, V1, V2,
V4, IT pathway.

— Doesn’t rule out feed
back but shows feed

forward only 1s very
powerful
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Detection and categorization are
practically simultaneous (Grill-Spector

sy FRMR anwisher, 2005)

Berkeley

—— detection
»--. categorization
identification

50 100 150 200
Exposure Duration (ms)

Vision Science &
Computer Vision Groups



Texton Histogram Matching

# occurences
in image

universal textons

best match

# occurences
in image

universal textons

*e = 417 x 107
# occurences
in image

Vision Science &

University of California
Computer Vision Groups

Berkeley label = beach universal textons




Discrimination of Basic Categories
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%0 *¥ texture model
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Discrimination of Basic Categories
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Discrimination of Basic Categories
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%0 *¥ texture model 37 ms
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Discrimination of Basic Categories
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Discrimination of Basic Categories
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Discrimination of Basic Categories
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Scene Recognition using Texture

building

building
car

null







Convolutional Neural Networks

Mid-Level| |[High-Leve
Feature Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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