The Camera

(c) Tomasz Pluciennik

CS180: Intro to Comp. Vision, and Comp. Photo Alexei Efros, UC Berkeley, Fall 2024

Image Formation

Digital Camera

The Eye

How do we see the world?

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Camera Obscura: the pre-camera

- First Idea: Mo-Ti, China (470-390 BC)
- First build: Al Hacen, Iraq/Egypt (965-1039 AD)

Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Camera Obscura near Cliff House

8-hour exposure (Abelardo Morell)

http://www.abelardomorell.net/books/books_m02.html

From *Grand Images Through a Tiny Opening*, **Photo District News**, February 2005

"Trashcam" Project

http://petapixel.com/2012/04/18/german-garbage-men-turndumpsters-into-giant-pinhole-cameras/

Pinhole cameras everywhere

Accidental pinhole cameras

My hotel room, contrast enhanced.

The view from my window

Accidental pinholes produce images that are unnoticed or misinterpreted as shadows

A. Torralba and W. Freeman, Accidental Pinhole and Pinspeck Cameras, CVPR 2012

Torralba and Freeman, CVPR'12

Accidental pinhole camera

Window turned into a pinhole

View outside

Pinhole camera model

Pinhole model:

- Captures pencil of rays all rays through a single point
- The point is called Center of Projection (COP)
- The image is formed on the **Image Plane**
- Effective focal length d is distance from COP to Image Plane

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
 = Why?
- The camera looks down the *negative* z axis
 - we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles (on board)

$$(x,y,z)
ightarrow (-drac{x}{z}, \ -drac{y}{z}, \ -d)$$

• We get the projection by throwing out the last coordinate:

$$(x, y, z)
ightarrow (-drac{x}{z}, -drac{y}{z})$$

Slide by Steve Seitz

Dimensionality Reduction Machine (3D to 2D)

3D world 2D image

Point of observation

But there is a problem...

Emission Theory of Vision

Eyes send out "feeling rays" into the world

"For every complex problem there is an answer that is clear, simple, and wrong."

-- H. L. Mencken

Supported by:

- Empedocles
- Plato
- Euclid (kinda)
- Ptolemy
 - ..
- 50% of US college students*

*http://www.ncbi.nlm.nih.gov/pubmed/12094435?dopt=Abstract

How we see the world

3D world

Point of observation

How we see the world

Fooling the eye

Fooling the eye

Making of 3D sidewalk art: <u>http://www.youtube.com/watch?v=3SNYtd0Ayt0</u>

Dimensionality Reduction Machine (3D to 2D)

Why did evolution opt for such strange solution?

- Nice to have a passive, long-range sensor
- Can get 3D with stereo or by moving around, plus experience

Dimensionality Reduction Machine (3D to 2D)

3D world

2D image

Point of observation

What have we lost?

- Angles
- Distances (lengths)

Funny things happen...

Parallel lines aren't...

Figure by David Forsyth

Exciting New Study!

Lengths can't be trusted...

...but humans adopt!

We don't make measurements in the image plane

http://www.michaelbach.de/ot/sze_muelue/index.html

Other projections: Orthographic

Special case of perspective projection

• Distance from the COP to the PP is infinite

- Also called "parallel projection"
- x' = x
- y' = y

Scaled Orthographic or "Weak Perspective"

If
$$\Delta z << -\overline{z}: \begin{array}{l} x' \approx -mx \\ y' \approx -my \end{array}$$
 $m = -\frac{f'}{\overline{z}}$

Justified if scene depth is small relative to average distance from camera

Scaled Orthographic or "Weak Perspective"

Spherical Projection

What if PP is spherical with center at COP? In spherical coordinates, projection is trivial:

$$(\theta,\phi) = (\theta,\phi,d)$$

Note: doesn't depend on focal length f!

Building a real camera

Another way to make pinhole camera

Why so blurry?

http://www.debevec.org/Pinhole/
Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

Shrinking the aperture

The reason for lenses

Replacing pinholes with lenses

Photography, London et al

Focus

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
 other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

Thin lenses

Thin lens equation: $\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$

- Any object point satisfying this equation is in focus
- What is the shape of the focus region?
- Thin lens applet: <u>http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html</u> (by Fu-Kwun Hwang)

Varying Focus

Varying Focus

Depth Of Field

Depth of Field

DEPTH OF FIELD DEPTH OF FIELD DEPTH OF FIELD DEPTH OF FIELD DEPTH OF FIELD

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Aperture controls Depth of Field

Changing the aperture size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus
- But small aperture reduces amount of light need to increase exposure

F-number: focal length / aperture diameter

Varying the aperture

Narrow apeture = large DOF

Wide apeture = small DOF

Nice Depth of Field effect

Field of View (Zoom)

Field of View (Zoom)

From London and Upton

Field of View (Zoom) = Cropping

From London and Upton

FOV depends of Focal Length

Size of field of view governed by size of the camera retina:

$$\varphi = \tan^{-1}(\frac{d}{2f})$$

Smaller FOV = larger Focal Length

Expensive toys...

Sigma 200-500mm F2.8 EX DG lens

What does 1600mm lens look like?

http://www.digitalpixels.net/varia/the-web/sigma-200-500mm-f28-ex-dg-lens-on-the-field/

http://dancarrphotography.com/blog/wp-content/uploads/2011/05/Canon_super_tele_comparison.jpg

Field of View / Focal Length

Large FOV / small f + Camera close to car

Small FOV / large f + Camera far from the car

From Zisserman & Hartley

Focal length / distance in portraiture

Dolly Zoom ("Vertigo Shot")

http://filmmakermagazine.com/83872-hitchcock-to-scorcese-47-years-of-the-dolly-zoom/#.VBNtn_ldVac

Exposure

Shutter Speed

http://en.wikipedia.org/wiki/Shutter_speed

Exposure: shutter speed vs. aperture

Fun with slow shutter speeds

Photos by Fredo Durand

More fun

http://vimeo.com/14958082

Lens Flaws

Lens Flaws: Chromatic Aberration

Dispersion: wavelength-dependent refractive index

(enables prism to spread white light beam into rainbow)

Modifies ray-bending and lens focal length: $f(\lambda)$

color fringes near edges of image

Corrections: add 'doublet' lens of flint glass, etc.

Chromatic Aberration

Slide by Carl Doersch

Near Lens Center

Near Lens Outer Edge

Radial Distortion (e.g. 'Barrel' and 'pin-cushion')

straight lines curve around the image center

Radial Distortion

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens
Radial Distortion

