
Amuse-bouche

http://youtube.com/watch?v=nUDIoN-_Hxs

http://youtube.com/watch?v=nUDIoN-_Hxs

http://www.youtube.com/watch?v=L0GKp-uvjO0

http://www.youtube.com/watch?v=L0GKp-uvjO0

Image Warping and Morphing

© Alexey Tikhonov

CS180/280A: Intro to Computer Vision and Comp. Photo

Alexei Efros, UC Berkeley, Fall 2024

Project 3 out today!!

project 2 how did it go?

project 3 is harder!

2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member

Recovering Transformations

What if we know f and g and want to recover the

transform T?

• e.g. better align images from Project 1

• willing to let user provide correspondences

– How many do we need?

x x’

T(x,y)

y y’

f(x,y) g(x’,y’)

?

Translation: # correspondences?

How many correspondences needed for translation?

How many Degrees of Freedom?

What is the transformation matrix?

x x’

T(x,y)

y y’

?

−

−

=

100

'10

'01

yy

xx

pp

pp

M

Euclidian: # correspondences?

How many correspondences needed for translation+rotation?

How many DOF?

x x’

T(x,y)

y y’

?

Affine: # correspondences?

How many correspondences needed for affine?

How many DOF?

x x’

T(x,y)

y y’

?

Projective: # correspondences?

How many correspondences needed for projective?

How many DOF?

x x’

T(x,y)

y y’

?

Example: warping triangles

Given two triangles: ABC and A’B’C’ in 2D (12 numbers)

Need to find transform T to transfer all pixels from one to

the other.

What kind of transformation is T?

How can we compute the transformation matrix:

T(x,y)

?

A

B

C A’
C’

B’

Source Destination

=

11001

'

'

y

x

fed

cba

y

x
Two ways:

Algebraic and

geometric

warping triangles (Barycentric Coordinates)

Very useful for Project 3… (hint,hint,nudge,nudge)

A

B

C A’
C’

B’

Source Destination

(0,0) (1,0)

(0,1)

change

of basis
Inverse

change

of basis

Don’t forget to move the origin too!

2T1

1

−T

Morphing = Object Averaging

The aim is to find “an average” between two objects
• Not an average of two images of objects…

• …but an image of the average object!

• How can we make a smooth transition in time?

– Do a “weighted average” over time t

How do we know what the average object looks like?
• We haven’t a clue!

• But we can often fake something reasonable

– Usually required user/artist input

P

Q

v = Q - P

P + 0.5v

= P + 0.5(Q – P)

= 0.5P + 0.5 Q

P + 1.5v

= P + 1.5(Q – P)

= -0.5P + 1.5 Q

(extrapolation)Linear Interpolation

(Affine Combination):

New point aP + bQ,

defined only when a+b = 1

So aP+bQ = aP+(1-a)Q

Averaging Points

P and Q can be anything:

• points on a plane (2D) or in space (3D)

• Colors in RGB or HSV (3D)

• Whole images (m-by-n D)… etc.

What’s the average

of P and Q?

Idea #1: Cross-Dissolve

Interpolate whole images:

 Imagehalfway = (1-t)*Image1 + t*image2

This is called cross-dissolve in film industry

But what if the images are not aligned?

Idea #2: Align, then cross-disolve

Align first, then cross-dissolve

• Alignment using global warp – picture still valid

Image Morphing

Morphing = warping + cross-dissolving

shape

(geometric)

color

(photometric)

Two-stage Morphing Procedure

Morphing procedure:

 for every t,

1. Find the average shape (the “mean dog”☺)
• warping

2. Find the average color
• Cross-dissolve the warped images

BUT: global warp not always enough!

What to do?

• Cross-dissolve doesn’t work

• Global alignment doesn’t work

– Cannot be done with a global transformation (e.g. affine)

• Any ideas?

Feature matching!

• Nose to nose, tail to tail, etc.

• But what to do with all the intermediate pixels?

Triangular Mesh

1. Input correspondences at key feature points

2. Define a triangular mesh over the points

• Same mesh in both images!

• Now we have triangle-to-triangle correspondences

3. Warp each triangle separately from source to

destination

• How do we warp a triangle?

Full morphing result

(c) Ian Albuquerque Raymundo da Silva

Warping triangles

Given two triangles: ABC and A’B’C’ in 2D (12 numbers)

Need to find transform T to transfer all pixels from one to

the other.

What kind of transformation is T?

How can we compute the transformation matrix:

T(x,y)

?

A

B

C A’
C’

B’

Source Destination

=

11001

'

'

y

x

fed

cba

y

x

Warping Pixels

Given a coordinate transform (x’,y’) = T(x,y) and a

source image f(x,y), how do we compute a

transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

f(x,y) g(x’,y’)

Forward warping

Send each pixel f(x,y) to its corresponding location

 (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q: what if pixel lands “between” two pixels?

y y’

f(x,y) g(x’,y’)

Forward warping

Send each pixel f(x,y) to its corresponding location

 (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q: what if pixel lands “between” two pixels?

y y’

A: distribute color among neighboring pixels (x’,y’)

– Known as “splatting”

– Check out griddata in Matlab

f(x,y) g(x’,y’)
x

y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location

 (x,y) = T-1(x’,y’) in the first image

x x’

Q: what if pixel comes from “between” two pixels?

y’
T-1(x,y)

f(x,y) g(x’,y’)
x

y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location

 (x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q: what if pixel comes from “between” two pixels?

y’

A: Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic

– Check out interp2 in Matlab / Python

Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation
Help interp2

http://en.wikipedia.org/wiki/Bilinear_interpolation

Forward vs. inverse warping

Q: which is better?

A: usually inverse—eliminates holes
• however, it requires an invertible warp function—not always possible...

Triangulations

A triangulation of set of points in the plane is a partition

of the convex hull to triangles whose vertices are the

points, and do not contain other points.

There are an exponential number of triangulations of a

point set.

An O(n3) Triangulation Algorithm

Repeat until impossible:

• Select two sites.

• If the edge connecting them does not intersect previous

edges, keep it.

“Quality” Triangulations

Let (T) = (1, 2 ,.., 3t) be the vector of angles in the
triangulation T in increasing order.

A triangulation T1 will be “better” than T2 if (T1) > (T2)
lexicographically.

The Delaunay triangulation is the “best”
• Maximizes smallest angles

good bad

Improving a Triangulation

In any convex quadrangle, an edge flip is possible. If

this flip improves the triangulation locally, it also

improves the global triangulation.

If an edge flip improves the triangulation, the first edge

is called illegal.

Naïve Delaunay Algorithm

Start with an arbitrary triangulation. Flip any illegal edge until no

more exist.

Could take a long time to terminate.

Delaunay Triangulation by Duality

General position assumption: There are
no four co-circular points.

Draw the dual to the Voronoi diagram
by connecting each two neighboring
sites in the Voronoi diagram.

Corollary: The DT may be constructed
in O(nlogn) time.

This is what Matlab’s delaunay
function uses.

1. Create Average Shape

How do we create an intermediate warp at time t?

• Assume t = [0,1]

• Simple linear interpolation of each feature pair

p=(x,y) -> p’(x,y)

• (1-t)*p+t*p’ for corresponding features p and p’

2. Create Average Color

Interpolate whole images:

 Imagehalfway = (1-t)*Image + t*image’

cross-dissolve!

Project #3: morphing

1. Define corresponding points

2. Define triangulation on points

• Use same triangulation for both images

3. For each t = 0:step:1

a. Compute the average shape at t (weighted average

of points)

b. For each triangle in the average shape

– Get the affine projection to the corresponding triangles in

each image

– For each pixel in the triangle, find the corresponding points

in each image and set value to weighted average (cross-

dissolve each triangle)

c. Save the image as the next frame of the sequence

Life-hack: can be done with just two nested loops (for t, and for each
triangle). Hint: compute warps for all pixels first, then use interp2

Examples

© Rachel Albert, CS194-26, Fall 2015

Examples from last year

@Varun Saran@Michael Jayasuriya

What’s the difference?

Morphing & matting

Extract foreground first to avoid artifacts in the

background

Slide by Durand and Freeman

Other Issues

Beware of folding

• You are probably trying to do something 3D-ish

Morphing can be generalized into 3D

• If you have 3D data, that is!

Extrapolation can sometimes produce interesting effects

• Caricatures

Dynamic Scene (“Black or White”, MJ)

http://www.youtube.com/watch?v=R4kLKv5gtxc

http://www.youtube.com/watch?v=R4kLKv5gtxc

	Default Section
	Slide 1: Amuse-bouche
	Slide 2
	Slide 3: Image Warping and Morphing
	Slide 4: Project 3 out today!!

	recap
	Slide 19: 2D image transformations

	from here
	Slide 21: Recovering Transformations
	Slide 22: Translation: # correspondences?
	Slide 23: Euclidian: # correspondences?
	Slide 24: Affine: # correspondences?
	Slide 25: Projective: # correspondences?

	new
	Slide 26: Example: warping triangles
	Slide 27: warping triangles (Barycentric Coordinates)
	Slide 28: Morphing = Object Averaging
	Slide 29: Averaging Points
	Slide 30: Idea #1: Cross-Dissolve
	Slide 31: Idea #2: Align, then cross-disolve
	Slide 32: Image Morphing
	Slide 33: Two-stage Morphing Procedure
	Slide 34: BUT: global warp not always enough!
	Slide 35: Triangular Mesh
	Slide 36: Full morphing result
	Slide 37: Warping triangles
	Slide 38: Warping Pixels
	Slide 39: Forward warping
	Slide 40: Forward warping
	Slide 41: Inverse warping
	Slide 42: Inverse warping
	Slide 43: Bilinear Interpolation
	Slide 44: Forward vs. inverse warping
	Slide 45: Triangulations
	Slide 46: An O(n3) Triangulation Algorithm
	Slide 47: “Quality” Triangulations
	Slide 48: Improving a Triangulation
	Slide 50: Naïve Delaunay Algorithm
	Slide 51: Delaunay Triangulation by Duality
	Slide 53: 1. Create Average Shape
	Slide 54: 2. Create Average Color
	Slide 55: Project #3: morphing
	Slide 56: Examples
	Slide 57: Examples from last year
	Slide 58: Morphing & matting
	Slide 59: Other Issues
	Slide 60: Dynamic Scene (“Black or White”, MJ)

