Structure-from-Motion (SfM)

A lot of slides borrowed from Noah Snavely + Shree Nayar's YT series: First principals of Computer Vision

CS194: Intro to Computer Vision and Comp. Photo Alexei Efros, UC Berkeley, Fall 2024

Recall: Camera calibration & triangulation

- Suppose we know 3D points and their matches in an image
 - How can we compute the **camera parameters**?
- Suppose we know camera parameters for multiple cameras, each observing a point

– How can we compute the **3D location** of that point?

if you know 2 you get the other:

Camera Calibration; aka Perspective-n-Point

Stereo (w/2 cameras); aka Triangulation

Ultimate: Structure-from-Motion

Start from nothing known (except maybe intrinsics), exploit the relationship to slowly get the right answer

Photo Tourism

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," SIGGRAPH 2006

https://youtu.be/mTBPGuPLI5Y

Structure from Motion (SfM)

- Given many images, how can we
 - a) figure out where they were all taken from?b) build a 3D model of the scene?

This is (roughly) the structure from motion problem

Structure from motion

Reconstruction (side)

- Input: images with points in correspondence $p_{i,j} = (u_{i,j}, v_{i,j})$
- Output
 - structure: 3D location \mathbf{x}_i for each point p_i
 - motion: camera parameters **R**_i, **t**_i possibly **K**_i
- Objective function: minimize *reprojection error*

Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845). Total reconstruction time: 23 hours Number of cores: 352

Building Rome in a Day, Agarwal et al. ICCV 2009

Large-scale structure from motion

Rome's Colosseum

First step: Correspondence

• Feature detection and matching

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC to estimate fundamental matrix between each pair

Correspondence estimation

• Link up pairwise matches to form connected components of matches across several images

Image 1

Image 2

Image 3

Image 4

The story so far...

Images with feature correspondence

The story so far...

- Next step:
 - Use structure from motion to solve for geometry (cameras and points)

• First: what are cameras and points?

Review: Points and cameras

• Point: 3D position in space (\mathbf{X}_{j})

- Camera (C_i):
 - A 3D position (\mathbf{c}_i)
 - A 3D orientation (\mathbf{R}_i)
 - Intrinsic parameters
 (focal length, aspect ratio, ...)
 - 7 parameters (3+3+1) in total

Structure from motion

Structure from motion

• Minimize sum of squared reprojection errors:

- Minimizing this function is called *bundle adjustment*
 - Optimized using non-linear least squares, e.g. Levenberg-Marquardt

Solving structure from motion

Inputs: feature tracks

Outputs: 3D cameras and points

- Challenges:
 - Large number of parameters (1000's of cameras, millions of points)
 - Very non-linear objective function

Solving structure from motion

Inputs: feature tracks

Outputs: 3D cameras and points

- Important tool: Bundle Adjustment [Triggs et al. '00]
 - Joint non-linear optimization of both cameras and points
 - Very powerful, elegant tool
- The bad news:
 - Starting from a random initialization is very likely to give the wrong answer
 - Difficult to initialize all the cameras at once

Solving structure from motion

Inputs: feature tracks

Outputs: 3D cameras and points

- The good news:
 - Structure from motion with two cameras is (relatively) easy
 - Once we have an initial model, it's easy to add new cameras
- Idea:
 - Start with a small seed reconstruction, and grow

Incremental SfM

• Automatically select an initial pair of images

1. Picking the initial pair

• We want a pair with many matches, but which has as large a baseline as possible

Iots of matches
 small baseline

Incremental SfM: Algorithm

- 1. Pick a strong initial pair of images
- 2. Initialize the model using two-frame SfM
- 3. While there are connected images remaining:
 - a. Pick the image which sees the most existing 3D points
 - b. Estimate the pose of that camera
 - c. Triangulate any new points
 - d. Run bundle adjustment

Visual Simultaneous Localization and Mapping (V-SLAM)

- Main differences with SfM:
 - Continuous visual input from sensor(s) over time
 - Gives rise to problems such as loop closure
 - Often the goal is to be online / real-time

