Stereopsis and Epipolar Geometry

"Just checking.”

CS180: : Intro to Comp. Vision and Comp. Photo
Alexel Efros, UC Berkeley, Fall 2024



Vision systems

Two cameras N cameras
One camera




L et's consider two eyes

Two cameras N cameras
One camera




Why multiple views?

» Structure and depth are inherently ambiguous from single
VIEWS.

Images from Lana Lazebnik



Why multiple views?

» Structure (geometry) and depth are inherently ambiguous
from single views.
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Stereo images

™

Figure 1.1: (a) Stereo anaglyph of the ocean liner, the Titanic [McManus2022|. The red
image shows the right eye’s view, and cyan the left eye’s view. When viewed through stereo
red/cyan stereo glasses, as in (b), the cyan contrast appears in the left eye image and the
red variations appear to the right eye, creating a the perception of 3d.



Stereoscope

g Y g

Brewster-type stereoscope, 1870 é} More details

B Alessandro Nassiri - Museo della Scienza e della Tecnologia "Leonardo da Vinci" (€ CCBY-SA 4.0

Visore stereoscopico portatile di tipo Brewster, J. Fleury - Hermagis, 1870, con messa a fuoco manuale. B File: IGB 006055 Visore stereoscopico portatile
Per la visione di lastre e stampe stereoscopiche 8,5x17cm. Museo nazionale della scienza e della Museo scienza e tecnologia Milano.jpg
tecnologia Leonardo da Vinci, Milano. © Created: 1 July 2014

View of Boston, c. 1860; an early stereoscopic card for viewing a scene from nature Q-} More details

Bl Soule, John P., 1827-1904 -- Photographer - This image is available from the New York Public Library's Digital ® Public Domain
. 21l : e : P& File: Charles Street Mall, Boston Common, by
Library under the digital ID G90F336_113F: digitalgallery.nypl.org — digitalcollections.nypl.org Soule, John P., 1827-1904 3 jpg

@© Created: Coverage: 1860?-1890?. Source
Imprint: 18607-18907. Digital item published
7-28-2005; updated 4-23-2009.




Depth without objects

Random dot stereograms (Bela Julesz) &
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disparity

Left image Right image

Antonio took one picture, then he moved ~1m to the right and took a second picture.



disparity

Left image Right image



disparity

Left image Right image



Disparity map

l(_x,y) l’x,y) I(x+D(x,y), ¥)




Rotation vs. Translation




Rotation vs. Translation




Parallax

<Q .

Q/ varallax!
«

Parallax = from ancient Greek parallaxis
= Para (side by side) + allasso, (to alter)
= Change In position from different view point

Two eyes give you parallax, you can also move to see more
parallax = "Motion Parallax”



Stereo vision
—

i
o

Two cameras, simultaneous Single moving camera and static
VIews scene



Geometry for a simple stereo system

* Assume parallel optical axes, known camera parameters (i.e.,
calibrated cameras).

Use similar triangles (p, P, p,) and
(O|I PI Or):

I'+x,—x. T

7-f Z
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Z=f
disparity




Non-parametric transformation!

1"(x",y")

image

Disparity map D(x,y)
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Triangulation for Ship Navigation

Figure 40.2: Two meth-
ods to estimate the
distance of a boat from
the coast. (left) The
first method uses a sin-
gle observation point,
with knowledge of the
observer’s height above
the water. (right) The
second method uses
two observation points.

 tan(«)
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Triangulation
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Geometry for a simple stereo system

* Assume parallel optical axes, known camera parameters (i.e.,
calibrated cameras).

Use similar triangles (p, P, p,) and
(O|I PI Or):

I'+x,—x. T

7-f Z

A

Z=f
disparity




Correspondence problem

9
e Hypothesis 1
o Hypothesis 2
e O Hypothesis 3
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Figure from Gee & Cipolla 1999
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Intensity profiles
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* Clear correspondence between intensities, but also noise and ambiguity

Source: Andrew Zisserman



Correspondence problem

epipolar
line

Neighborhood of corresponding points are similar
In Intensity patterns.

Source: Andrew Zisserman



Correlation-based window matching

* left image band (x)

Source: Andrew Zisserman



Dense correspondence search

‘=-"-'“"' HON. mumxmu LINCOL n ]"rlr:ahlr:ut of Lnltul states, o —-r.,l—

= J—.-—-I—Il.

For each epipolar line

For each pixel / window in the left image

e compare with every pixel / window on same epipolar line in right image

e pick position with minimum match cost (e.g., SSD, correlation)

Adapted from Li Zhang



Textureless regions

P /target region
| g r. K 5 I||.|I'_

left Image band (x)

Source: Andrew Zisserman Grauman



Failures of Correspondence Search

Repeated Patterns. Why?




Effect of window size

line

I’Jr'.
5 -
| epipolar

Source: Andrew Zisserman Grauman



Effect of window size

W =20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with about
the same disparity.

Figures from Li Zhang



Feature correspondences

1) detect keypoints 2) extract SIFT
at each keypoint
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Image gradients Keypoint descriptor

points = detectHarrisFeatures(img);




Finding correspondences (SIFT)




Active stereo with structured light

camera 1 camera 1

1 1

projector projector

1

camera 2

* Project “structured” light patterns onto the object
— simplifies the correspondence problem



CNN-based Stereo Matching

neight

width
Feature Extraction Cost Cost Aggregation Disparity Estimate
Volume

Rectified Stereo Pair



Can also learn depth from a single image

MegaDepth: Learning Single-View Depth Prediction from Internet Photos

Zhengqi Li Noah Snavely 35
Department of Computer Science & Cornell Tech, Cornell University Source: Torralba. Isola. Ereeman




Geometry for a simple stereo system

 Assume parallel optical axes, known camera parameters (i.e.,
calibrated cameras).

Use similar triangles (p, P, p,) and
(O|I PI Or):

I'+x,—x. T

7-f Z

A

Z=f
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General case

* The two cameras need not have parallel optical axes.

37
Source: Torralba, Isola, Freeman



Situating Camera in the world

There is a world coordinate frame and camera looking at the world

How can we model the geometry of a camera?

vV

Three im PO rtant coordinate S O S o TS e
systems: < TheWord

1. World coordinates

2. Camera coordinates

3. Image coordinates

Slide credit: Noah Snavely



Coordinate frames + Transforms

Orientation + Location of How the camera maps a
the camera in the World point in 3D to image
Extrinsics (R, T) Intrinsics (K)
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I ]
o e -

World coordinates Camera coordinates Image coordinates

X
__*

Figure credit: Peter Hedman



Review: Camera parameters

(X, y) 2D image
’
3D world

(X, Y, Z)




Camera parameters

Sensor /

If pixels are rectangular

X X
y = 0 b 0 0.Y = py — (aX/Z,bY/Z)
W /
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Camera parameters

World coordinates

In heterogeneous coordinates:

Pc=Py -T

Camera coordinates



Camera parameters

World coordinates

Camera coordinates

In heterogeneous coordinates:

Pc=R(Pw - T)



Camera parameters

World coordinates

—

In homogeneous coordinates: Camera coordinates
[3x3] [3x1]
Xe Xw
Y. R -RT Y.
Z. - Zy
1 0 1 1

[1x3]  [1x1]



Camera parameters
Y

World coordinates Yc
LZW

1. World coordinates to camera coordinates

Xe Xw

Y, R -RT vy, 2. Camera coordinates to image coordinates (square pixels)
Z. ) | Ly a 0 0 0 X,

1 0 1 1

s < X
I
o
Q
-
o
O_<



Camera parameters



Camera parameters

Yw
Xw
/ )
[3x4] [4x4]
X a O 0 \O X
R -RT
y = 0 a 0 Y,
W 0 O 1 0



Camera parameters

Yw
Xw
/ ZW
3x3] [3x4]
X a 0 0 X
y = 0 a o0 R -RT | v,
W



Camera parameters

[3x3] [3x3] [3x4]
X d 0 0 XW
y = 0 a 0 R | -T . v,
W 0 0 1 Zy
\ ) 1

.. IR
Intrinsic parameters Extrinsic parameters



Camera Projection Model

— N e =



How to calibrate the camera?




How do we calibrate a camera? Learning problem!

——— i . - p—
i e - -—--h_._ = . il }
= o — - 4 < il

| = 312.747 309.140 30.086

43 203 305.796 311.649 30.356

270 197 307.694 312.358 30.418

3886 347 310.149 307.186 29.298

745 302 311.937 310.105 29.216

943 128 311.202 307.572 30.682

476 590 307.106 306.876 28.660

419 214 309.317 312.490 30.230

317 335 307.435 310.151 29.318

/83 521 308.253 306.300 28.881

235 427 306.650 309.301 28.905

665 429 308.069 306.831 29.189
655 362 309.671 308.834 29.029 !

427 333 308.255 309.955 29.267

412 415 307.546 308.613 28.963

B /746 351 311.036 309.206 28.913

BN 434 415 307.518 308.175 29.069

-~ 525 234 309.950 311.262 29.990
| 716 308 312.160 310.772 29.080 /

311.988 312.709 30.514
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Calibration using a reference object

* Place a known object in the scene

— identify correspondence between image and scene
— compute mapping from scene to image

Issues

e must know geometry very accurately
e must know 3D -> 2D correspondence




Method: Setup a linear system

o | X
SU my, m, m5 my, %
SV | =My Ny, My, My, 7

S | [ My My My My, I

* Solve for m’s entries using linear least squares

Ax=0 form

< M4 - -

X, Y Z 1 0 0 0 0 -—-uX -uY -uZ -u, 0
0 0 0 0 X, Y Z 1 —vX, —-vY —-vZ —v 0 Just like how
' =] : vou solved for

X, Y £ 1 0 0 0 0 -uX -u¥ -uZ -u, 0 homography!

o 0 o o0 Xx Y Z 1 -vX —-—vY —-vZ —v 0
) | My,




Can we factorize M backto K [R | T]?

* Yes.

* Why? because K and R have a very special
form:

fm S Og||T11 T12 T13
0 fy o0y|T21 T22 723
0 0 L |71 7T32 733

* RQ decomposition

* Practically, use camera calibration packages
(there is a good one in OpenCV)



(General case

- The two cameras need not have parallel optical axes.

57
Source: Torralba, Isola, Freeman
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58
Source: Torralba, Isola, Freeman



Can we search for matches only along horizontal lines?

59
Source: Torralba, Isola, Freeman



Can we search for matches only along horizontal lines?

=N TITEAR I B

¥

WY = .

™

60
Source: Torralba, Isola, Freeman



Can we | for matehes onty along-horizontal lines?

It looks like we might need to search everywhere... are there any constraints
that can guide the search? 61

Source: Torralba, Isola, Freeman



Stereo correspondence constraints

Camera 1 Camera 2

If we see a point in camera 1, are there any constraints on where we
will find it on camera 27

62

Source: Torralba, Isola, Freeman



Stereo correspondence constraints

63

Source: Torralba, Isola, Freeman



Some terminology

N

06
Source: Torralba, Isola, Freeman



Some terminology

O O

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

Y4
Source: Torralba, Isola, Freeman



Some terminology

epipole

A epipole Baseline

O

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

68
Source: Torralba, Isola, Freeman



Some terminology

epipolar plane

0 | o)
Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

Epipolar plane: the plane that contains the two camera centers and a 3D point in the world

69
Source: Torralba, Isola, Freeman



Some terminology

. . epipolar line
epipolar line PIP

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

Epipolar plane: the plane that contains the two camera centers and a 3D point in the world

Epipolar line: intersection of the epipolar plane with each image plane
70

Source: Torralba, Isola, Freeman



Example: converging cameras

/ As position of 3d point
/ varies, epipolar lines

“rotate” about the
baseline

Figure from Hartley & Zisserman



Example: motion parallel with image plane

e at

infinity

Figure from Hartley & Zisserman

e’ at

infinity






Example: forward motion

Epipole has same coordinates in both images.
Points move along lines radiating from e: “Focus of expansion”

Figure from Hartley & Zisserman



The Epipole
. 0

Photo by Frank Dellaert



Stereo image rectification

In practice, it is convenient
if image scanlines are the
epipolar lines.

reproject image planes onto a common
plane parallel to the line between optical centers
pixel motion is horizontal after this transformation

two homographies (3x3 transforms), one for each input
Image reprojection

Adapted from Li Zhang C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. CVPR 1999.



http://research.microsoft.com/%7Ezhang/Papers/TR99-21.pdf

Stereo image rectification: example




* For a given stereo rig, how do we express the epipolar constraints algebraically?

 For calibrated cameras, with Essential Matrix
 For uncalibrated cameras, with Fundamental Matrix



Deriving the Essential Matrix:
Stereo geometry, with calibrated cameras

X world point

If the rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to get to

camera reference frame 2.
Rotation: 3 x 3 matrix; translation: 3 vector.



Deriving the Essential Matrix:

3d rigid transformation

s T =T

&2




Deriving the Essential Matrix:
Stereo geometry, with calibrated cameras

X world point

Camera-centered coordinate systems are related by known rotation R

and translation T:
X'=RX+T



Deriving the Essential Matrix:

Review: Cross product

II
-

GXD=¢C —
b-C

II
-

Vector cross product takes two vectors and
returns a third vector that’s perpendicular to
both inputs.

So here, c is perpendicular to both a and b,
which means the dot product = 0.



Deriving the Essential Matrix:
From geometry to algebra

X world point

0 X x; > o
A Z, X/
o} ‘ 10/
T
y e B v/
Ye
X'= RX4T X' (TxX')= X'-(TxRX)
\TXX’/: —

Normal to the plane

= TxRX



Deriving the Essential Matrix:
From geometry to algebra

X world point

0 X x; > N
A Z, * X/
o} ‘ 10/
T
Xe - /
Y Y.
Ye
X'= RX4T X'-(Tx X')= X'-(Tx RX)

TxX' =TxRX+TxT -

Normal to the plane

= TxRX



Deriving the Essential Matrix:

Matrix form of cross product




Essential matrix

X world point

: /\ :
f - ~ ~
P “
# b

This holds for the rays p and p’ that are
parallel to the camera-centered position p'T Ep — ()
vectors X and X', so we have:

E is called the essential matrix, which relates corresponding
image points [Longuet-Higgins 1981]



Essential matrix and epipolar lines

T Epipolar constraint: if we observe point p in one
p' Ep — () image, then its position p’ in second image must
satisfy this equation.

Ep is the coordinate vector representing the
epipolar line associated with point p

'

ET ¢ is the coordinate vector representing the
p epipolar line associated with point p’




Essential matrix: properties

* Relates image of corresponding points in both cameras, given rotation and
translation

* Assuming intrinsic parameters are known

E=T:R

E x” is the epipolar line associated with x” (/ = E x”)
E'x is the epipolar line associated with x (I’ = E'x)
Ee’=0 and E'e=0

E is singular (rank two)

E has five degrees of freedom
— (3 forR, 2 for t because it’s up to a scale)



Essential matrix example: parallel cameras

For the parallel cameras, image
of any point must lie on same
horizontal line in each image
plane.



Weak calibration

e So far, we have assumed calibrated cameras and were able to
perform dense stereo estimation

* What if we want to estimate world geometry without
requiring calibrated cameras?

— Archival videos

— Photos from multiple unrelated users
— Dynamic camera system



Uncalibrated cameras

X world point

E-TR /\

* For an uncalibrated stereo rig, can we we express the
epipolar constraints algebraically via the Essential Matrix?

* No, we do not know T or R
e However we can use the Fundamental Matrix

— Estimate epipolar geometry from a (redundant) set of
point correspondences between two uncalibrated
cameras



Uncalibrated case

. Camera
mtp coordinates

For a given
5 p=M

camera.

So, for two cameras (left and right):

I\ [_1 _
Camera coordinates p (left) left ,int p (left).—
\ Image pixel
___— coordinates
p (right) M

right ,int p(rlght)
J

Internal calibration
matrices, one per camera




P =M P Uncalibrated case:

P o =M i Poriann Fundamental matrix

. 1 _ F before, th
p(right) Ep(leﬁ) —O rom berore, the

essential matrix E.

—1

_1 T _
( right, mtprzght ) E( leﬁ,intpleft ) — O

prlght (M right, 1ntEMleﬁ int )ﬁleﬁ — O

N !
—

ﬁl:l;ghtF_ﬁleﬁ — O
|

Fundamental matrix




Fundamental matrix

Relates pixel coordinates in the two views

More general form than essential matrix: we remove need to
know intrinsic parameters

If we estimate fundamental matrix from correspondences in
pixel coordinates, can reconstruct epipolar geometry without
Intrinsic or extrinsic parameters



Computing F from correspondences

F=(™,",  EM.. )

right ,int

przghtFpleft = ()

 Cameras are uncalibrated: we don’t know E or left or right

M. . matrices

Int

* Estimate F from 8+ point correspondences.



Computing F from correspondences

Each point
correspondence
generates one
constrainton F

T fn fr
{?ﬂf v’ 1 for fao
f31 f3o

Collect n of these
constraints

Solve for f, vector of parameters.

fis ||

f23

f33 |1

przghtF pleﬁ = ()

U
U
I ]

= 0

Cvhuy vy b vy vy v oug vy 1

it

fi3
fa1

f23
f31
f32

| f33 ]




Rank constraint

x=wvl), x'=@uW,V))

_fn fio f13_ U
[”’ v 1] Jo S Tu||V|=
_f31 /3 f33__1_

Enforce rank-2 constraint
(take SVD

of F and throw out the
smallest singular value)

/ S A 4 r.. .t
‘[uuuvuvuvvvuvl]

@

Solve homogeneous
linear system using
eight or more matches




The Bible by Hartley & Zisserman

Pt A e
SECOND EDITION

Multiple View
Geometry

in computer vision

Richard Hartley and Andrew Zisserman




The Fundamental Matrix Song

Inlthelother view passing tAROUE hIXEDEime

F = il
r.-

http://danielwedge.com/fmatrix/
https://www.youtube.com/watch?time continue=8&v=DgGV3I82N Tk&feature=emb title



http://danielwedge.com/fmatrix/
https://www.youtube.com/watch?time_continue=8&v=DgGV3l82NTk&feature=emb_title
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