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Vision systems

One camera Two cameras N cameras



Let’s consider two eyes

One camera Two cameras N cameras



Why multiple views?
• Structure and depth are inherently ambiguous from single 

views.

Images from Lana Lazebnik



Why multiple views?
• Structure (geometry) and depth are inherently ambiguous 

from single views.

Optical center

P1
P2

P1’=P2’



Stereo images



Stereoscope



Depth without objects
Random dot stereograms (Bela Julesz)

Julesz, 1971 



disparity

Left image Right image

Antonio took one picture, then he moved ~1m to the right and took a second picture.



disparity

Left image Right image



disparity

Left image Right image



Disparity map

Z(x,y) =
a

D(x,y)

I(x,y) I’(x,y) = I(x+D(x,y), y)I’(x,y) D(x,y)



Rotation vs. Translation



Rotation vs. Translation



Parallax

Parallax    = from ancient Greek parállaxis
= Para (side by side) + allássō, (to alter)
= Change in position from different view point

Two eyes give you parallax, you can also move to see more 
parallax = “Motion Parallax”

parallax!



Two cameras, simultaneous 
views

Single moving camera and static 
scene

Stereo vision



• Assume parallel optical axes, known camera parameters (i.e., 
calibrated cameras).  

Use similar triangles (pl, P, pr) and 
(Ol, P, Or):

Geometry for a simple stereo system

Z
T

fZ
xxT rl =

−
−+

lr xx
TfZ
−

=
disparity

Grauman

want Z



image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y), y)

Non-parametric transformation!

Grauman



Triangulation for Ship Navigation



Triangulation



• Assume parallel optical axes, known camera parameters (i.e., 
calibrated cameras).  

Use similar triangles (pl, P, pr) and 
(Ol, P, Or):

Geometry for a simple stereo system

Z
T

fZ
xxT rl =

−
−+

lr xx
TfZ
−

=
disparity

Grauman

want Z



Correspondence problem

Figure from Gee & Cipolla 1999 Grauman



Intensity profiles

Source: Andrew Zisserman



Correspondence problem

Source: Andrew Zisserman

Neighborhood of corresponding points are  similar 
in intensity patterns.



Correlation-based window matching

Source: Andrew Zisserman



Dense correspondence search

For each epipolar line
For each pixel / window in the left image

• compare with every pixel / window on same epipolar line in right image

• pick position with minimum match cost (e.g., SSD, correlation)

Adapted from Li Zhang Grauman



Textureless regions

Source: Andrew Zisserman

Textureless regions are 
non-distinct; high 
ambiguity for matches.

Grauman



Failures of Correspondence Search

Image credit: S. Lazebnik

? ?

Repeated Patterns. Why?



Effect of window size

Source: Andrew Zisserman Grauman



Effect of window size

W = 3 W = 20

Figures from Li Zhang

Want window large enough to have sufficient intensity 
variation, yet small enough to contain only pixels with about 
the same disparity.

Grauman



Feature correspondences

points = detectHarrisFeatures(img);

1) detect keypoints 2) extract SIFT
at each keypoint



Finding correspondences (SIFT)



Active stereo with structured light

• Project “structured” light patterns onto the object
– simplifies the correspondence problem

camera 2

camera 1

projector

camera 1

projector

Li Zhang’s one-shot stereo



CNN-based Stereo Matching



Can also learn depth from a single image

35
Source: Torralba, Isola, Freeman



• Assume parallel optical axes, known camera parameters (i.e., 
calibrated cameras).  

Use similar triangles (pl, P, pr) and 
(Ol, P, Or):

Geometry for a simple stereo system

Z
T

fZ
xxT rl =

−
−+

lr xx
TfZ
−

=
disparity

Grauman

want Z



General case
• The two cameras need not have parallel optical axes.

37

Source: Torralba, Isola, Freeman



Situating Camera in the world
There is a world coordinate frame and camera looking at the world 

How can we model the geometry of a camera?

“The World”

Camera

x

y

z

v

w

u

o

COP

Three important coordinate 
systems:
1. World coordinates
2. Camera coordinates
3. Image coordinates

(x, y, z)

Slide credit: Noah Snavely



Coordinate frames + Transforms

World coordinates Camera coordinates Image coordinates

Figure credit: Peter Hedman

Extrinsics (R, T)

Orientation + Location of 
the camera in the World

Intrinsics (K)

How the camera maps a 
point in 3D to image



Review: Camera parameters

(X, Y, Z)

(x, y)
?

x

y

w
=

X

Y

Z
1

? ? ? ?

? ? ? ?

? ? ? ?

.

3D world

2D image

World coordinatesPixels



Camera parameters

Sensor

x

y

w

=

X

Y

Z
1

a 0 0 0

0 b 0 0

0 0 1 0

. =

aX

bY

Z

(a X/Z, b Y/Z)

if pixels are rectangular



Camera parameters

T

World coordinates

Camera coordinates

YW

XW

ZW

YC

XC

ZC

What if the camera origin is not at the world coordinates origin?



Camera parameters

T

World coordinates

Camera coordinates

PWYW

XW

ZW

YC

XC

ZC

PC

In heterogeneous coordinates:

PC = PW  - T



Camera parameters

T

Camera coordinates

PWYW

XW

ZW

YC

XC

ZC

PC

In heterogeneous coordinates:

PC = R(PW  - T)

R

World coordinates



Camera parameters

T

Camera coordinates
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ZW
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PC

In homogeneous coordinates:

R

=
R -RT
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.
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Zc

1

Xw

Yw

Zw
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World coordinates



Camera parameters

T

YW
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ZC

R
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0 0 1 0

.
Xc
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1

1. World coordinates to camera coordinates

2. Camera coordinates to image coordinates (square pixels)

World coordinates



Camera parameters

T
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Camera parameters
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Camera parameters
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Camera parameters
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Camera Projection Model

[ ]XtRKx =
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How to calibrate the camera?
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How do we calibrate a camera? Learning problem!

312.747 309.140 30.086
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Calibration using a reference object

• Place a known object in the scene
– identify correspondence between image and scene
– compute mapping from scene to image

Issues
• must know geometry very accurately
• must know 3D -> 2D correspondence
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Method: Setup a linear system

• Solve for m’s entries using linear least squares
Ax=0 form
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Just like how 
you solved for 
homography!



Can we factorize M back to K [R | T]?
• Yes. 
• Why? because K and R have a very special 

form:

• RQ decomposition
• Practically, use camera calibration packages 

(there is a good one in OpenCV)



General case

• The two cameras need not have parallel optical axes.

57
Source: Torralba, Isola, Freeman



58
Source: Torralba, Isola, Freeman



59

Can we search for matches only along horizontal lines?

Source: Torralba, Isola, Freeman



60

Can we search for matches only along horizontal lines?

Source: Torralba, Isola, Freeman



61

It looks like we might need to search everywhere... are there any constraints
that can guide the search?

Can we search for matches only along horizontal lines?

Source: Torralba, Isola, Freeman



Stereo correspondence constraints

O O’

p p’ ?

If we see a point in camera 1, are there any constraints on where we
will find it on camera 2?

Camera 1 Camera 2

62
Source: Torralba, Isola, Freeman



O O’

p
p’ ?

63

Stereo correspondence constraints

Source: Torralba, Isola, Freeman



Some terminology

66

O O’

p
p’ ?

Source: Torralba, Isola, Freeman



Some terminology

67

O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

Baseline

Source: Torralba, Isola, Freeman



Some terminology

68

O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

epipole epipoleBaseline

Source: Torralba, Isola, Freeman



Some terminology

69

O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipolar plane: the plane that contains the two camera centers and a 3D point in the world 

Epipole: point of intersection of baseline with the image plane

epipolar plane

Source: Torralba, Isola, Freeman



Some terminology

70

O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipolar plane: the plane that contains the two camera centers and a 3D point in the world 

Epipolar line: intersection of the epipolar plane with each image plane

Epipole: point of intersection of baseline with the image plane

epipolar line epipolar line

Source: Torralba, Isola, Freeman



Example: converging cameras

Figure from Hartley & Zisserman

As position of 3d point 
varies, epipolar lines 
“rotate” about the 
baseline



Example: motion parallel with image plane

Figure from Hartley & Zisserman



Example



Example: forward motion

Figure from Hartley & Zisserman

e

e’

Epipole has same coordinates in both images.
Points move along lines radiating from e: “Focus of expansion”



The Epipole

Photo by Frank Dellaert



Stereo image rectification

reproject image planes onto a common
plane parallel to the line between optical centers

pixel motion is horizontal after this transformation
two homographies (3x3 transforms), one for each input 

image reprojection

Adapted from Li Zhang

In practice,  it is convenient 
if image scanlines are the 
epipolar lines.

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. CVPR 1999.

http://research.microsoft.com/%7Ezhang/Papers/TR99-21.pdf


Stereo image rectification: example



• For a given stereo rig, how do we express the epipolar constraints algebraically?

• For calibrated cameras, with Essential Matrix
• For uncalibrated cameras, with Fundamental Matrix



Stereo geometry, with calibrated cameras

If the rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to get to 
camera reference frame 2.

Rotation: 3 x 3 matrix; translation: 3 vector.
Grauman

Deriving the Essential Matrix:



3d rigid transformation
The picture can't be displayed.

TRXX +=′

‘
‘
‘

Grauman

Deriving the Essential Matrix:



Stereo geometry, with calibrated cameras

TRXX +=′
Camera-centered coordinate systems are related by known rotation R
and translation T:

Grauman

Deriving the Essential Matrix:



Review: Cross product

Vector cross product takes two vectors and 
returns a third vector that’s perpendicular to 
both inputs.

So here, c is perpendicular to both a and b, 
which means the dot product = 0.

Grauman

Deriving the Essential Matrix:



From geometry to algebra

TRXX' +=

TTRXTXT ×+×=′×

RXT×=

( ) ( )RXTXXTX ×⋅′=′×⋅′

0=
Normal  to the plane

Grauman

Deriving the Essential Matrix:



From geometry to algebra

TRXX' +=

TTRXTXT ×+×=′×

RXT×=

( ) ( )RXTXXTX ×⋅′=′×⋅′

0=
Normal  to the plane

Grauman

Deriving the Essential Matrix:



Matrix form of cross product

Can be expressed as a matrix multiplication.

Grauman

Deriving the Essential Matrix:



Essential matrix

( ) 0=⋅′ RXTX x

E is called the essential matrix, which relates corresponding 
image points [Longuet-Higgins 1981]

Let RTE x=

This holds for the rays p and p’ that are 
parallel to the camera-centered position 
vectors X and X’, so we have:

0=Epp'T

Grauman



Essential matrix and epipolar lines

pE ′T is the coordinate vector representing the 
epipolar line associated with point p’

Ep is the coordinate vector representing the 
epipolar line associated with point p

0=′ΤEpp
Epipolar constraint: if we observe point p in one 
image, then its position p’ in second image must 
satisfy this equation. 

Grauman



Essential matrix: properties

• Relates image of corresponding points in both cameras, given rotation and 
translation

• Assuming intrinsic parameters are known

RTE x=

Grauman

• E x’ is the epipolar line associated with x’ (l = E x’)
• ETx is the epipolar line associated with x (l’ = ETx)
• E e’ = 0   and   ETe = 0
• E is singular (rank two)
• E has five degrees of freedom 

– (3 for R, 2 for t because it’s up to a scale) 



==
−=

=
Τ

]R[TE
T

IR

x

]0,0,[ d
0   0  0
0   0  d
0 –d 0

0=′ΤEpp

Essential matrix example: parallel cameras

For the parallel cameras, image 
of any point must lie on same 
horizontal line in each image 
plane.

Grauman



Weak calibration

• So far, we have assumed calibrated cameras and were able to 
perform dense stereo estimation

• What if we want to estimate world geometry without 
requiring calibrated cameras?
– Archival videos
– Photos from multiple unrelated users
– Dynamic camera system

Grauman



Uncalibrated cameras

• For an uncalibrated stereo rig, can we we express the 
epipolar constraints algebraically via the  Essential Matrix?

• No, we do not know T or R
• However we can use the Fundamental Matrix 

– Estimate epipolar geometry from a (redundant) set of 
point correspondences between two uncalibrated
cameras

0=Epp'T

RTE x=



Uncalibrated case

)()(
1

int, leftleft left pMp −=

)(
1

int,)( rightrightright pMp −=
Camera coordinates

Internal calibration 
matrices, one per camera

Image pixel 
coordinates

pMp int=

So, for two cameras (left and right):

For a given 
camera:

Camera 
coordinates

Grauman



Uncalibrated case: 
Fundamental matrix

0)()( =Τ
leftright Eppc From before, the 

essential matrix E.

( ) ( ) 01
int,

1
int, =−Τ−

leftleftrightright pMEpM

( ) 01
int,int, =−Τ−Τ

leftleftrightright pEMMp

0=Τ
leftright pFp

Fundamental matrix

)()(
1

int, leftleft left pMp −=

)(
1

int,)( rightrightright pMp −=

Grauman



Fundamental matrix

• Relates pixel coordinates in the two views

• More general form than essential matrix: we remove need to 
know intrinsic parameters

• If we estimate fundamental matrix from correspondences in 
pixel coordinates, can reconstruct epipolar geometry without 
intrinsic or extrinsic parameters

Grauman



Computing F from correspondences

• Cameras are uncalibrated: we don’t know E or left or right 
Mint matrices

• Estimate F from 8+ point correspondences.

0=Τ
leftright pFp

( )1
int.int,

−Τ−= leftright EMMF

Grauman



Computing F from correspondences

0=Τ
leftright pFp

Each point 
correspondence 
generates one 
constraint on F

Collect n of these 
constraints

Solve for f , vector of parameters.
Grauman



Rank constraint

Enforce rank-2 constraint 
(take SVD 
of F and throw out the 
smallest singular value)
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Solve homogeneous 
linear system using 
eight or more matches



The Bible by Hartley & Zisserman



The Fundamental Matrix Song

http://danielwedge.com/fmatrix/
https://www.youtube.com/watch?time_continue=8&v=DgGV3l82NTk&feature=emb_title

http://danielwedge.com/fmatrix/
https://www.youtube.com/watch?time_continue=8&v=DgGV3l82NTk&feature=emb_title
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