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Low Pass vs. High Pass filtering
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Application: Hybrid Images

Gaussian Filter

Laplacian Filter

A. Oliva, A. Torralba, P.G. Schyns, 

“Hybrid Images,” SIGGRAPH 2006

Gaussianunit impulse Laplacian of Gaussian

http://cvcl.mit.edu/hybridimage.htm
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Band-pass filtering in spatial domain

Gaussian Pyramid

(low-pass images)

up

up

up

Laplacian Pyramid

(sub-band images)

…



As a stack

Gaussian Pyramid (low-pass images)

Laplacian Pyramid (sub-band images)
Created from Gaussian pyramid by subtraction

up up up up



Collapsing Laplacian Pyramid

Laplacian Pyramid (sub-band images)
Created from Gaussian pyramid by subtraction

up up up up



Collapsing Laplacian Pyramid

up up up

Original

image

Need this! 
(Lowest Freq)

How can we reconstruct (collapse) this pyramid 

into the original image?



Da Vinci and The Laplacian Pyramid



Leonardo playing with peripheral vision

Livingstone, Vision and Art: The Biology of Seeing

Da Vinci and The Laplacian Pyramid

https://www.amazon.com/Vision-Art-Biology-Margaret-Livingstone/dp/0810995549


Blending



Alpha Blending / Feathering
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Affect of Window Size
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Affect of Window Size
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Good Window Size
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1

“Optimal” Window:  smooth but not ghosted



To avoid seams
• window = size of largest prominent feature

To avoid ghosting
• window <= 2*size of smallest prominent feature

What is the Optimal Window?

Natural to cast this in the Fourier domain
• largest frequency <= 2*size of smallest frequency

• image frequency content should occupy one “octave” (power of two)

FFT



What if the Frequency Spread is Wide

Use a band-pass (Laplacian) Pyramid!
• Split image into set of band-pass images (one octave 

of frequencies each)

• Blend each level of the pyramid separately

• Collapse the pyramid!

FFT

Burt and Adelson (1983), A Multiresolution Spline With Application to Image Mosaics 



Band-pass Pyramid Blending
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Pyramid Blending (Burt and Adelson)

Burt and Adelson (1983), A Multiresolution Spline With Application to Image Mosaics 
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Image Blending with mask
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𝐼𝐴 𝐼𝐵 𝑚 𝐼

𝐼 = 𝑚 ∗ 𝐼𝐴 + (1 −𝑚) ∗ 𝐼𝐵
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Image Blending with mask



Result
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Blending Regions



Image Blending with the Laplacian Pyramid

2

4
http://persci.mit.edu/pub_pdfs/pyramid83.pdf

Build Laplacian pyramid for both images: LA, LB

Build Gaussian pyramid for mask: G

Build a combined Laplacian pyramid L

Collapse L to obtain the blended image 



Horror Photo

© david dmartin (Boston College)



Results from this class (fall 2005)

© Chris Cameron



Simplification: Two-band Blending

Brown & Lowe, 2003
• Only use two bands -- high freq. and low freq. – without downsampling

• Blends low freq. smoothly

• Blend high freq. with no smoothing: use binary alpha



Low frequency (l > 2 pixels)

High frequency (l < 2 pixels)

2-band “Laplacian Stack” Blending



Linear Blending



2-band Blending



Review: Smoothing vs. derivative filters

Smoothing filters
• Gaussian: remove “high-frequency” components; 

“low-pass” filter

• Can the values of a smoothing filter be negative?

• What should the values sum to?

– One: constant regions are not affected by the filter

Derivative filters
• Derivatives of Gaussian

• Can the values of a derivative filter be negative?

• What should the values sum to? 

– Zero: no response in constant regions

• High absolute value at points of high contrast



Template matching

Goal: find       in image

Main challenge: What is a 
good similarity or 
distance measure 
between two patches?
• Correlation

• Zero-mean correlation

• L2 distance

• Normalized Cross Correlation

Side by Derek Hoiem



Matching with filters

Goal: find       in image

Method 0: filter the image with eye patch

Input Filtered Image

],[],[],[
,

lnkmflkgnmh
lk



What went wrong?

f = image

g = filter

Side by Derek Hoiem



Matching with filters

Goal: find       in image

Method 1: filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image

True detections

False 

detections

mean of g

f = image

g = filter



Matching with filters

Goal: find       in image

Method 2: L2 distance (sum of squared diffs)

Input 1- sqrt(SSD) Thresholded Image

2

,

)],[],[(],[ lnkmflkgnmh
lk



True detections



Matching with filters

Can L2 be implemented with linear filters?

2

,

)],[],[(],[ lnkmflkgnmh
lk



Side by Derek Hoiem



Matching with filters

Goal: find       in image

Method 2: L2 (SSD)

Input 1- sqrt(SSD)

2

,

)],[],[(],[ lnkmflkgnmh
lk



What’s the potential 

downside of L2?

Side by Derek Hoiem



Matching with filters

Goal: find       in image

Method 3: Normalized cross-correlation

5.0

,

2

,

,

2

,

,

)],[()],[(

)],[)(],[(

],[

















 



lk

nm

lk

nm

lk

flnkmfglkg

flnkmfglkg

nmh
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Side by Derek Hoiem



Matching with filters

Goal: find       in image

Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections



Matching with filters

Goal: find       in image

Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections



Q: What is the best method to use?

A: Depends

Zero-mean filter: fastest but not a great 

matcher

L2/SSD: next fastest, sensitive to overall 

intensity

Normalized cross-correlation: slowest, 

invariant to local average intensity and 

contrast

Side by Derek Hoiem



Denoising

Additive Gaussian Noise

Gaussian 

Filter



Smoothing with larger standard deviations suppresses noise, 

but also blurs the image

Reducing Gaussian noise

Source: S. Lazebnik



Reducing salt-and-pepper noise by Gaussian smoothing

3x3 5x5 7x7



Alternative idea: Median filtering

A median filter operates over a window by 

selecting the median intensity in the window

• Is median filtering linear?
Source: K. Grauman



Median filter

What advantage does median filtering 
have over Gaussian filtering?
• Robustness to outliers

Source: K. Grauman



Median filter
Salt-and-pepper noise Median filtered

Source: M. Hebert

medfilt2(image, [h w])



Median vs. Gaussian filtering

3x3 5x5 7x7

Gaussian

Median



A Gentle Introduction

to Bilateral Filtering

and its Applications

“Fixing the Gaussian Blur”: 

the Bilateral Filter

Sylvain Paris – MIT CSAIL



Blur Comes from 

Averaging across Edges

*

*

*

input output

Same Gaussian kernel everywhere.



Bilateral Filter

No Averaging across Edges

*

*

*

input output

The kernel shape depends on the image content.

[Aurich 95, Smith 97, Tomasi 98]



space weight

not new

range weight

I

new

normalization

factor

new

Bilateral Filter Definition:

an Additional Edge Term
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Same idea: weighted average of pixels.



Illustration a 1D Image

• 1D image = line of pixels

• Better visualized as a plot

pixel

intensity

pixel position



space

Gaussian Blur and Bilateral Filter

space range
normalization

Gaussian blur
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Bilateral filter
[Aurich 95, Smith 97, Tomasi 98]
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Bilateral Filter on a Height Field

output input
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from [Durand 02]



Space and Range Parameters

• space s : spatial extent of the kernel, size of 

the considered neighborhood.

• range r : “minimum” amplitude of an edge
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Influence of Pixels

p

Only pixels close in space and in range are considered.

space

range



s = 2

s = 6

s = 18

r = 0.1 r = 0.25
r = 

(Gaussian blur)

input

Exploring the Parameter Space



s = 2

s = 6

s = 18

r = 0.1 r = 0.25
r = 

(Gaussian blur)

input

Varying the Range Parameter



input



r = 0.1



r = 0.25



r = 
(Gaussian blur)



s = 2

s = 6

s = 18

r = 0.1 r = 0.25
r = 

(Gaussian blur)

input

Varying the Space Parameter



input



s = 2



s = 6



s = 18



EXTRA SLIDES: Image Compression

89k



Lossless Compression (e.g. Huffman coding)

Input image:

Pixel histogram:

Pixel code:

Compressed image:

0 110 110 0 0

0 10 110 111 0

…

https://www.print-driver.com/stories/huffman-coding-jpeg

https://www.print-driver.com/stories/huffman-coding-jpeg


Lossless Compression not enough



Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

cut up into 8x8 blocks



Using DCT in JPEG 

The first coefficient B(0,0) is the DC component, 

the average intensity

The top-left coeffs represent low frequencies, 

the bottom right – high frequencies



Image compression using DCT

Quantize 
• More coarsely for high frequencies (tend to have smaller values anyway)

• Many quantized high frequency values will be zero

Encode
• Can decode with inverse dct

Quantization table

Filter responses

Quantized values



JPEG Compression Summary

Subsample color by factor of 2
• People have bad resolution for color

Split into blocks (8x8, typically), subtract 128

For each block
a. Compute DCT coefficients

b. Coarsely quantize

– Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr

http://en.wikipedia.org/wiki/JPEG

Spatial dimension of color channels are reduced by 2 

(lecture 2)!

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG


JPEG compression comparison

89k 12k


