The Camera

(c) 7omasz Pluciennik

CS180: Intro to Comp. Vision, and Comp. Photo Efros & Kanazawa, UC Berkeley, Fall 2025

Etymology

Image Formation

Digital Camera

The Eye

How do we see the world?

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

DIY Pinhole Camera

Figure 5.4: A simple setting for creating images on a white piece of paper. In front of the white piece of paper we place another piece of black paper with a hole in the middle. The black paper projects a shadow on the white paper and, in the middle of the shadow, appears a picture of the scene in front of the hole. By making the hole large you will get a brighter, but blurrier image.

Camera Obscura: the pre-camera

- First Idea: Mo-Ti, China (470-390 BC)
- First build: Al Hacen, Iraq/Egypt (965-1039 AD)

Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

8-hour exposure (Abelardo Morell)

http://www.abelardomorell.net/books/books_m02.html

From *Grand Images Through a Tiny Opening*, **Photo District News**, February 2005

"Trashcam" Project

http://petapixel.com/2012/04/18/german-garbage-men-turn-dumpsters-into-giant-pinhole-cameras/

Pinhole cameras everywhere

Accidental pinhole cameras

My hotel room, contrast enhanced.

Accidental pinholes produce images that are unnoticed or misinterpreted as shadows

Torralba and Freeman, CVPR'12

Accidental pinhole camera

Window turned into a pinhole

View outside

Pinhole camera model

Pinhole model:

- Captures pencil of rays all rays through a single point
- The point is called Center of Projection (COP)
- The image is formed on the Image Plane
- Effective focal length f is distance from COP to Image Plane

Modeling Projection

- How do we find the projection P' of a scene point P?
 - Form the visual ray connecting P to the Center Of Projection O and find where it intersects the image plane
- All scene points that lie on this visual ray have the same projection in the image
- Are there scene points for which this projection is undefined?

Modeling Projection

Canonical coordinate system

- The optical center (0) is at the origin
- The z axis is the optical axis perpendicular to the image plane
- The xy plane is parallel to the image plane, x and y axes are horizontal and vertical directions of the image plane

Deriving perspective projection

$$(x, y, z) \rightarrow \left(f\frac{x}{z}, f\frac{y}{z}\right)$$

Avoiding Inversion

Instead of dealing with an image that is **upside down**, most of the time we will pretend that the image plane is **in front** of the camera center

Dimensionality Reduction Machine (3D to 2D)

3D world

Point of observation

2D image

But there is a problem...

Emission Theory of Vision

"For every complex problem there is an answer that is clear, simple, and wrong."

-- H. L. Mencken

Eyes send out "feeling rays" into the world

Supported by:

- Empedocles
- Plato
- Euclid (kinda)
- Ptolemy
- ...
- 50% of US college students*

*http://www.ncbi.nlm.nih.gov/pubmed/12094435?dopt=Abstract

How we see the world

3D world

Point of observation

2D image

How we see the world

3D world

2D image

$$(x, y, z) \rightarrow \left(f\frac{x}{z}, f\frac{y}{z}\right)$$

Fooling the eye

Fooling the eye

Making of 3D sidewalk art: http://www.youtube.com/watch?v=3SNYtd0Ayt0

Dimensionality Reduction Machine (3D to 2D)

3D world

Point of observation

2D image

Why did evolution opt for such strange solution?

- Nice to have a passive, long-range sensor
- Can get 3D with stereo or by moving around, plus experience

Dimensionality Reduction Machine (3D to 2D)

3D world

Point of observation

2D image

What have we lost?

- Angles
- Distances (lengths)

Funny things happen...

Parallel lines aren't...

Exciting New Study!

Lengths can't be trusted...

Orthographic or parallel projection

 What happens if we walk infinitely far away and zoom infinitely far in?

Orthographic or parallel projection

- Special case of perspective projection
 - Distance from center of projection to image plane is infinite
 - Projection equation: simply drop the z coordinate!

$$(x, y, z) \rightarrow (x, y)$$

Orthographic or parallel projection

- Special case of perspective projection
 - Distance from center of projection to image plane is infinite
 - Projection equation: simply drop the z coordinate!

SimCity 2000

12th century Chinese scroll (via A. Hertzmann)

Scaled Orthographic or "Weak Perspective"

Scaled Orthographic or "Weak Perspective"

If
$$\Delta z << -\overline{z}: \begin{array}{l} x' \approx -mx \\ y' \approx -my \end{array} \quad m = -\frac{f'}{\overline{z}}$$

Justified if scene depth is small relative to average distance from camera

Spherical Projection

What if PP is spherical with center at COP? In spherical coordinates, projection is trivial:

$$(\theta,\phi,f) \rightarrow (\theta,\phi)$$

Note: doesn't depend on focal length f!

Building a real camera

Another way to make pinhole camera

http://www.debevec.org/Pinhole/

Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

Shrinking the aperture

The reason for lenses

Replacing pinholes with lenses

Photography, London et al

Focus

Focus and Defocus

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

Thin lenses

Thin lens equation:
$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

- Any object point satisfying this equation is in focus
- What is the shape of the focus region?
- Thin lens applet: http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html (by Fu-Kwun Hwang)

Varying Focus

Varying Focus

(a)

(b)

(c)

Depth Of Field

Depth of Field

Aperture controls Depth of Field

Changing the aperture size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus
- But small aperture reduces amount of light need to increase exposure

F-number: focal length / aperture diameter

Varying the aperture

Wide apeture = small DOF

Narrow apeture = large DOF

Nice Depth of Field effect

Field of View (Zoom)

Field of View (Zoom)

From London and Upton

Field of View (Zoom) = Cropping

From London and Upton

FOV depends of Focal Length

Size of field of view governed by size of the camera retina:

$$\varphi = \tan^{-1}(\frac{d}{2f})$$

Smaller FOV = larger Focal Length

Expensive toys...

Sigma 200-500mm F2.8 EX DG lens

What does 1600mm lens look like?

http://www.digitalpixels.net/varia/the-web/sigma-200-500mm-f28-ex-dg-lens-on-the-field/

http://dancarrphotography.com/blog/wp-content/uploads/2011/05/Canon_super_tele_comparison.jpg

Field of View / Focal Length

Large FOV, small *f*Camera close to car

Small FOV, large *f*Camera far from the car

Focal length / distance in portraiture

Perspective Compression

Dolly Zoom ("Vertigo Shot")

http://filmmakermagazine.com/83872-hitchcock-to-scorcese-47-years-of-the-dolly-zoom/#.VBNtn_ldVac

Exposure

Shutter Speed

http://en.wikipedia.org/wiki/Shutter_speed

Exposure: shutter speed vs. aperture

Fun with slow shutter speeds

Photos by Fredo Durand

More fun

http://vimeo.com/14958082

Lens Flaws

Lens Flaws: Chromatic Aberration

Dispersion: wavelength-dependent refractive index

(enables prism to spread white light beam into rainbow)

Modifies ray-bending and lens focal length: $f(\lambda)$

color fringes near edges of image

Corrections: add 'doublet' lens of flint glass, etc.

Chromatic Aberration

Slide by Carl Doersch

Chromatic Aberration

Near Lens Center

Near Lens Outer Edge

Radial Distortion (e.g. 'Barrel' and 'pin-cushion')

straight lines curve around the image center

Radial Distortion

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Radial Distortion

Programming Project #1

Project out TONIGHT!