Practicals of Flow Models

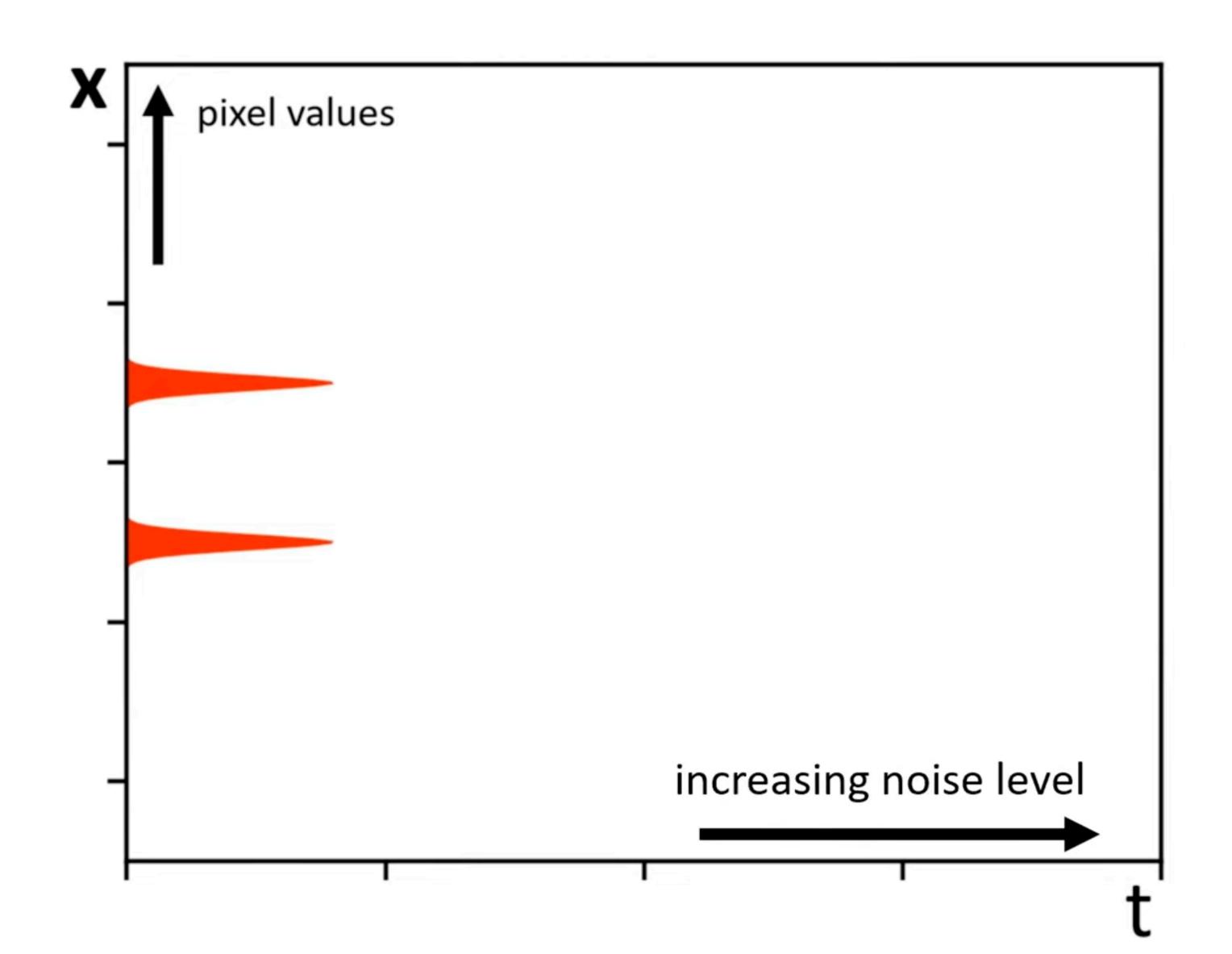
CS180 Fall 2025

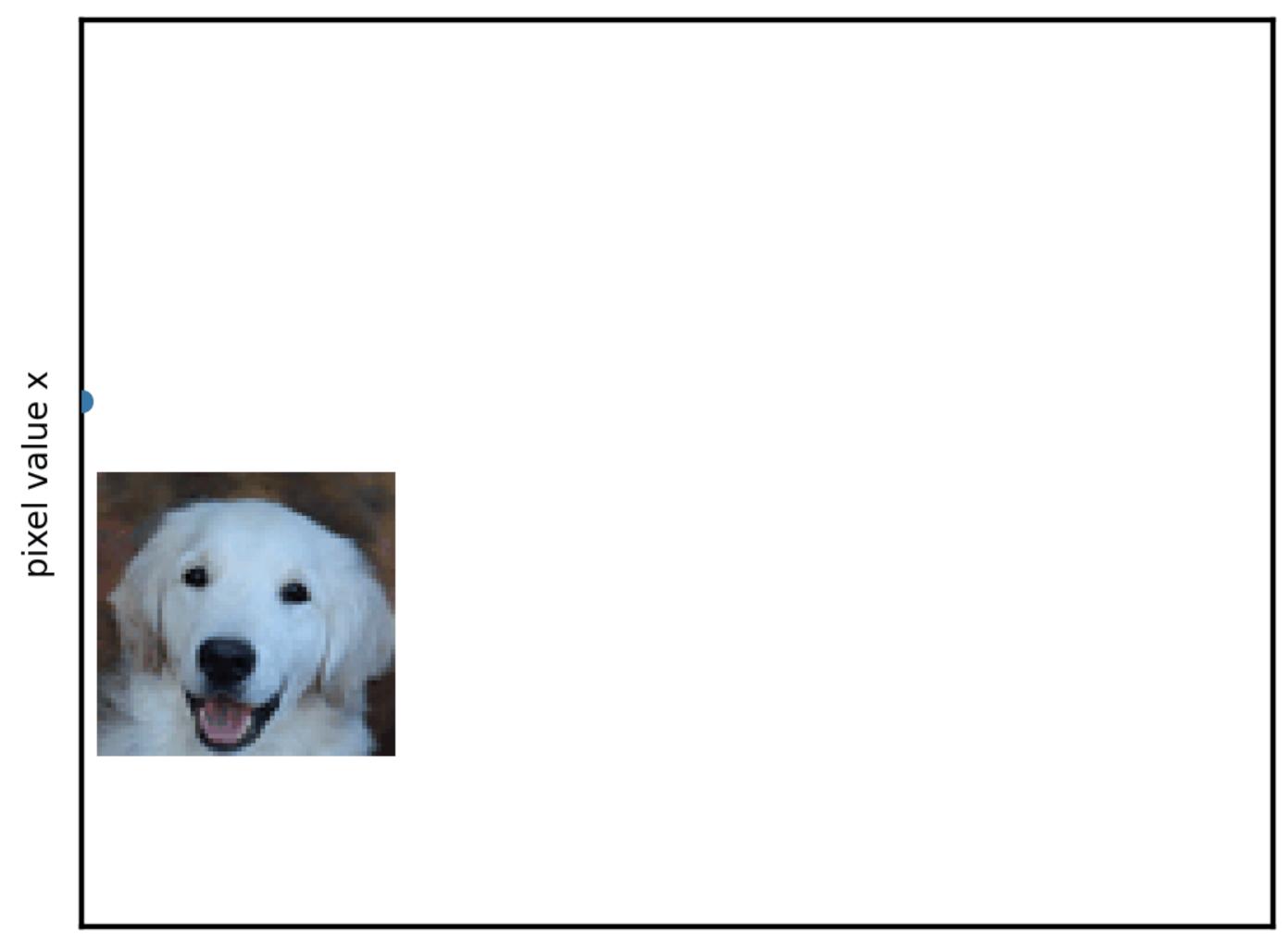
Angjoo Kanazawa & Alexei Efros

Slide heavily based on one made by Songwei Ge & David McAllister

Outline

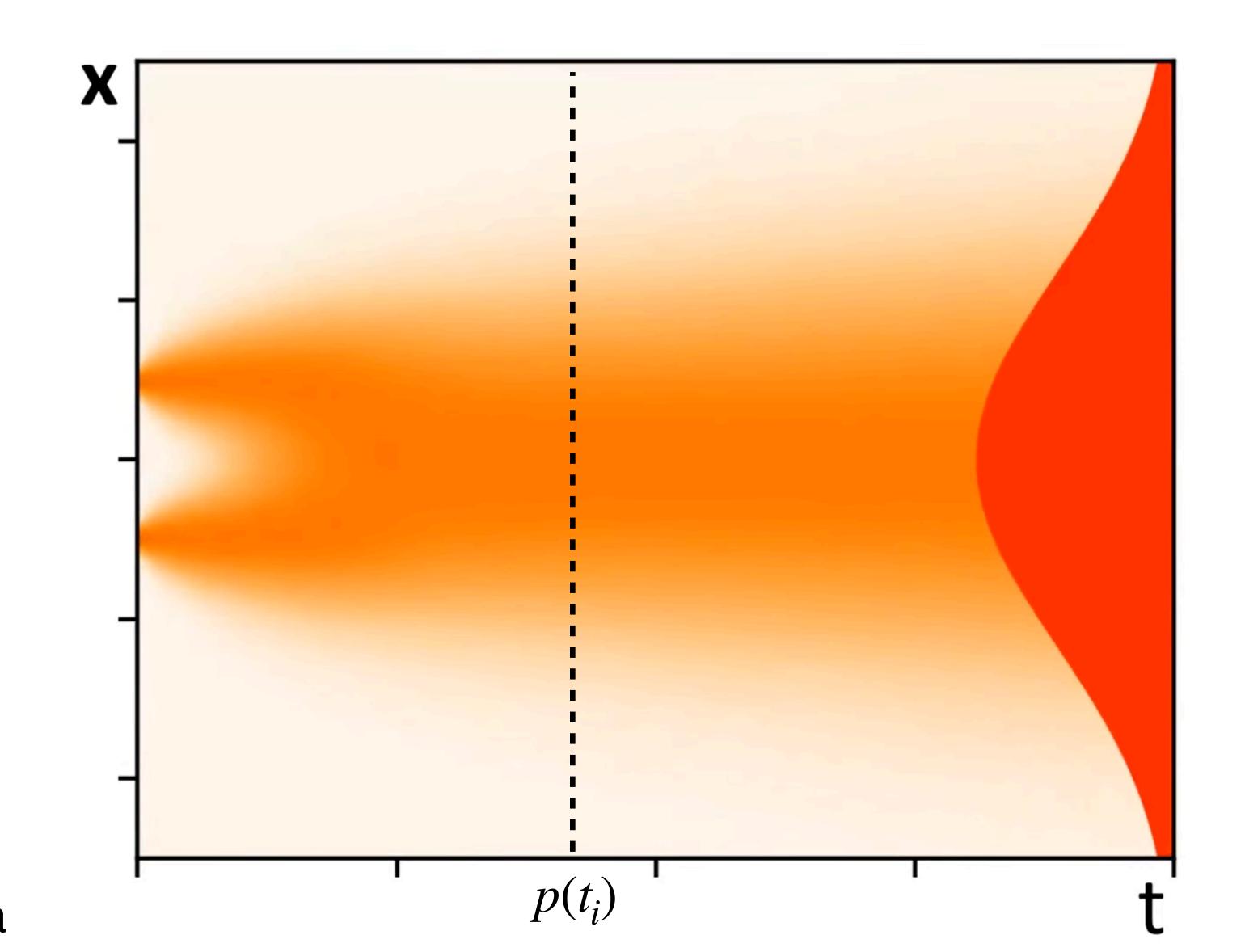
- Flow matching model samplers
- Inversion/Distillation
- Guidance
- Application



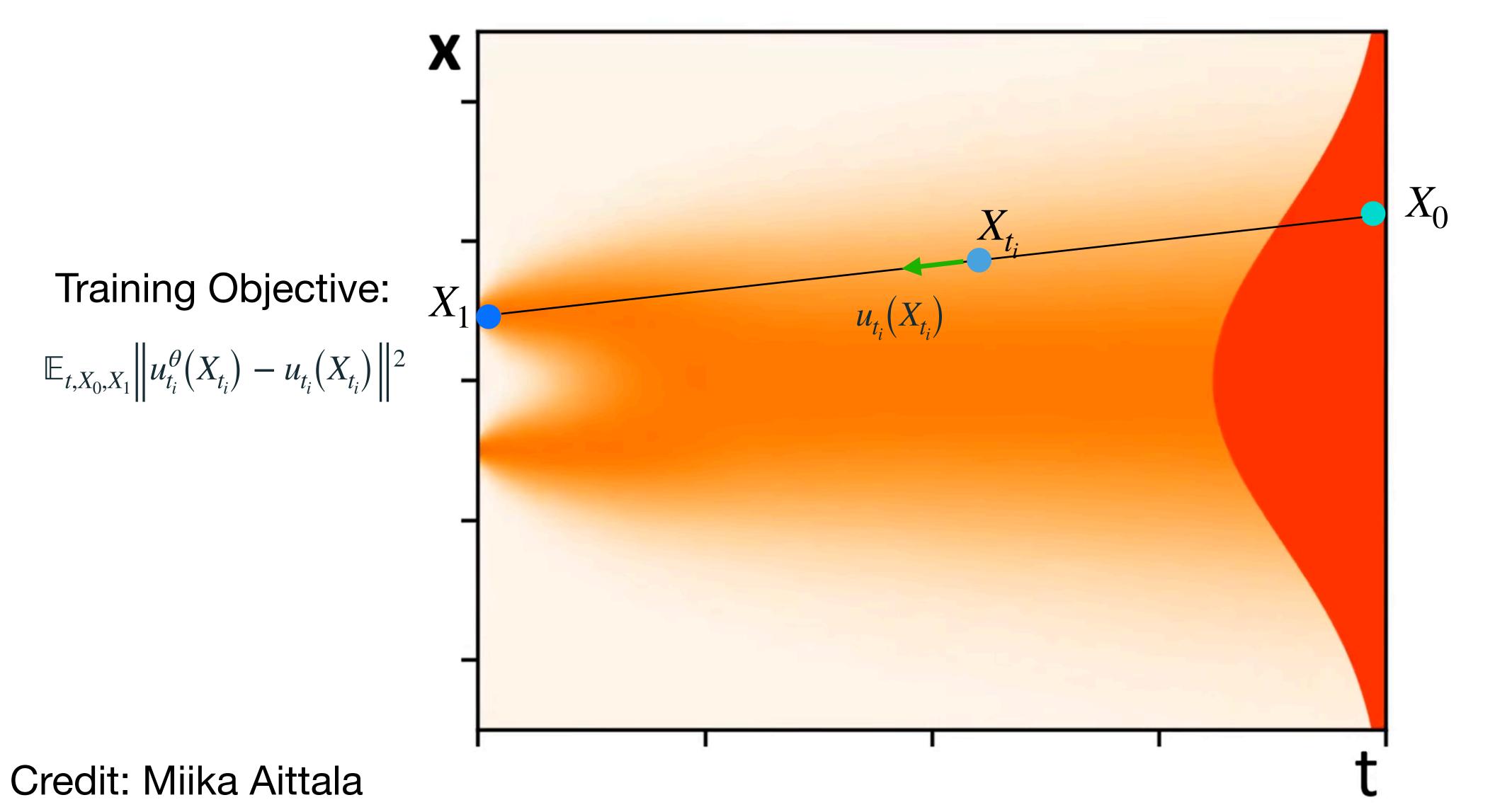


time t

time t



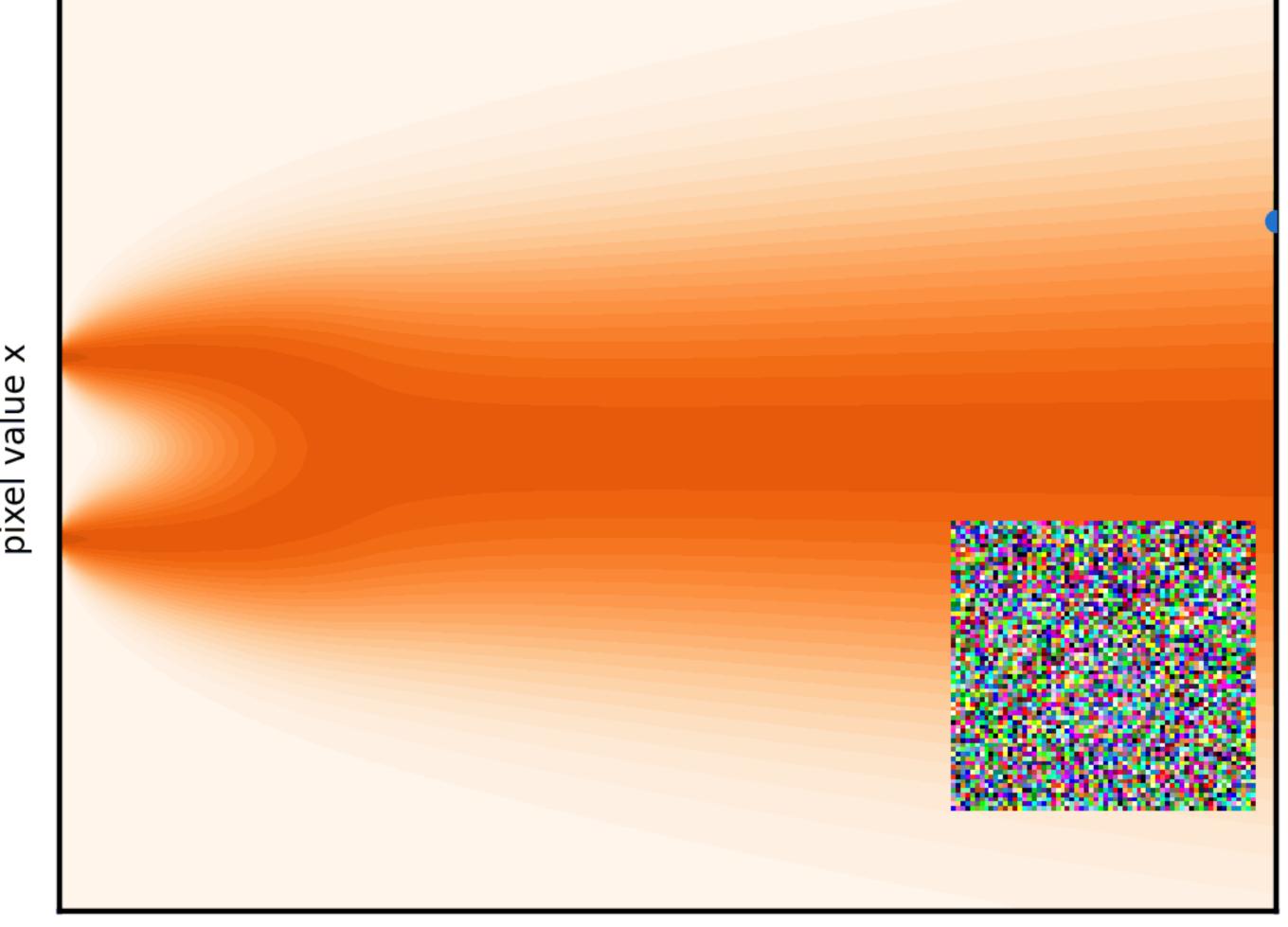
Flow matching model training



Sampling by solving the flow ODE

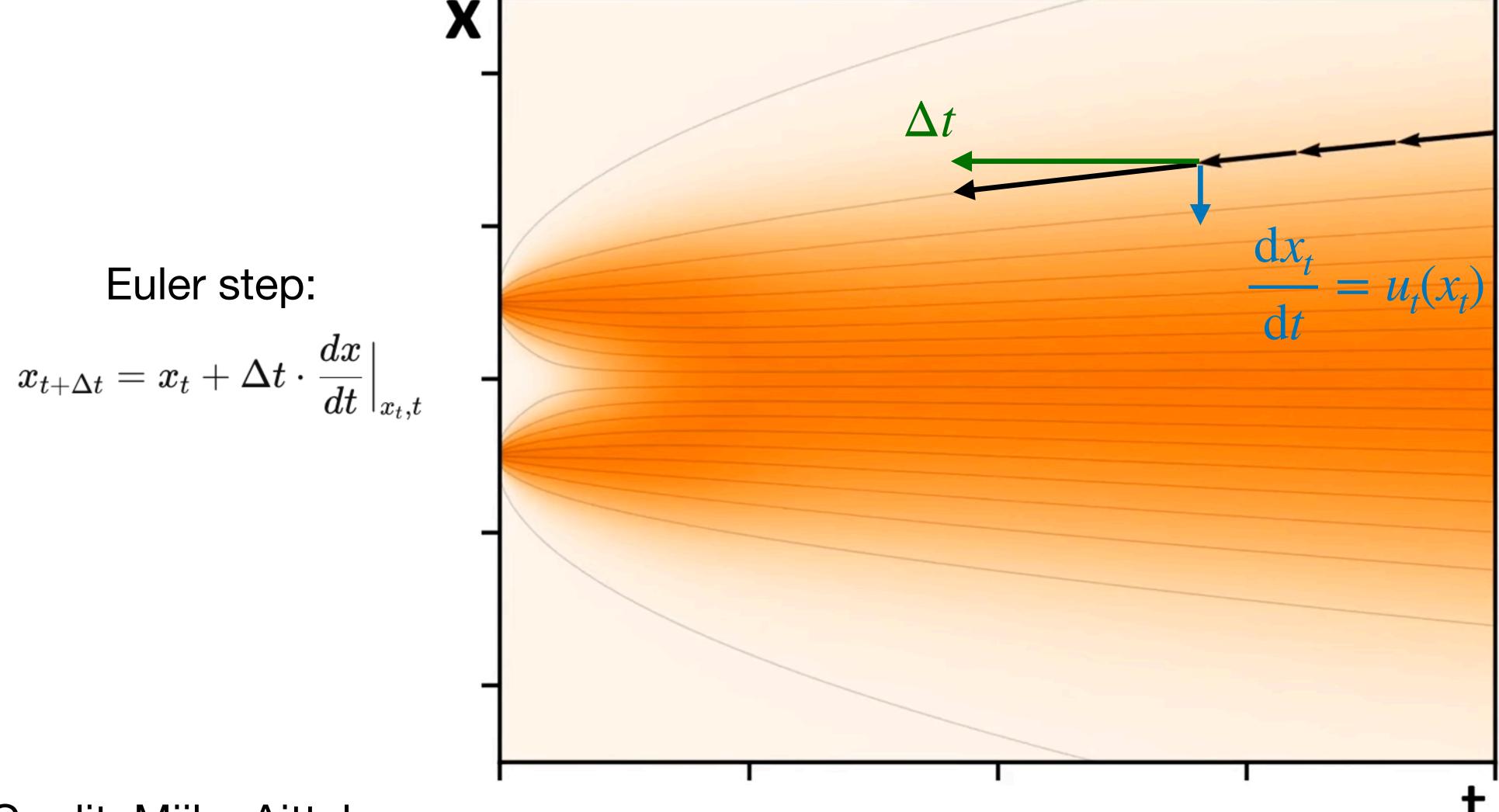
Flow ODE

$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = u_t^{\theta}(x_t)$$

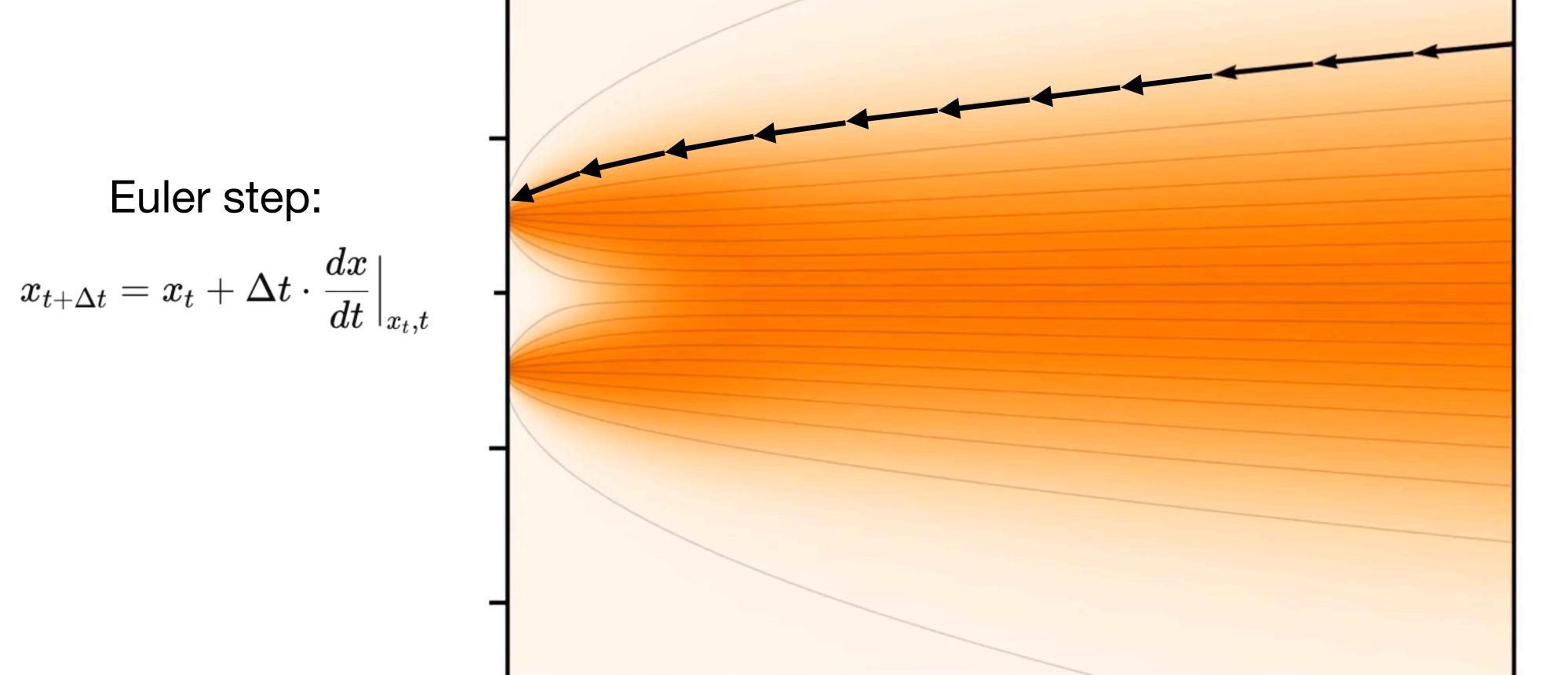


time t

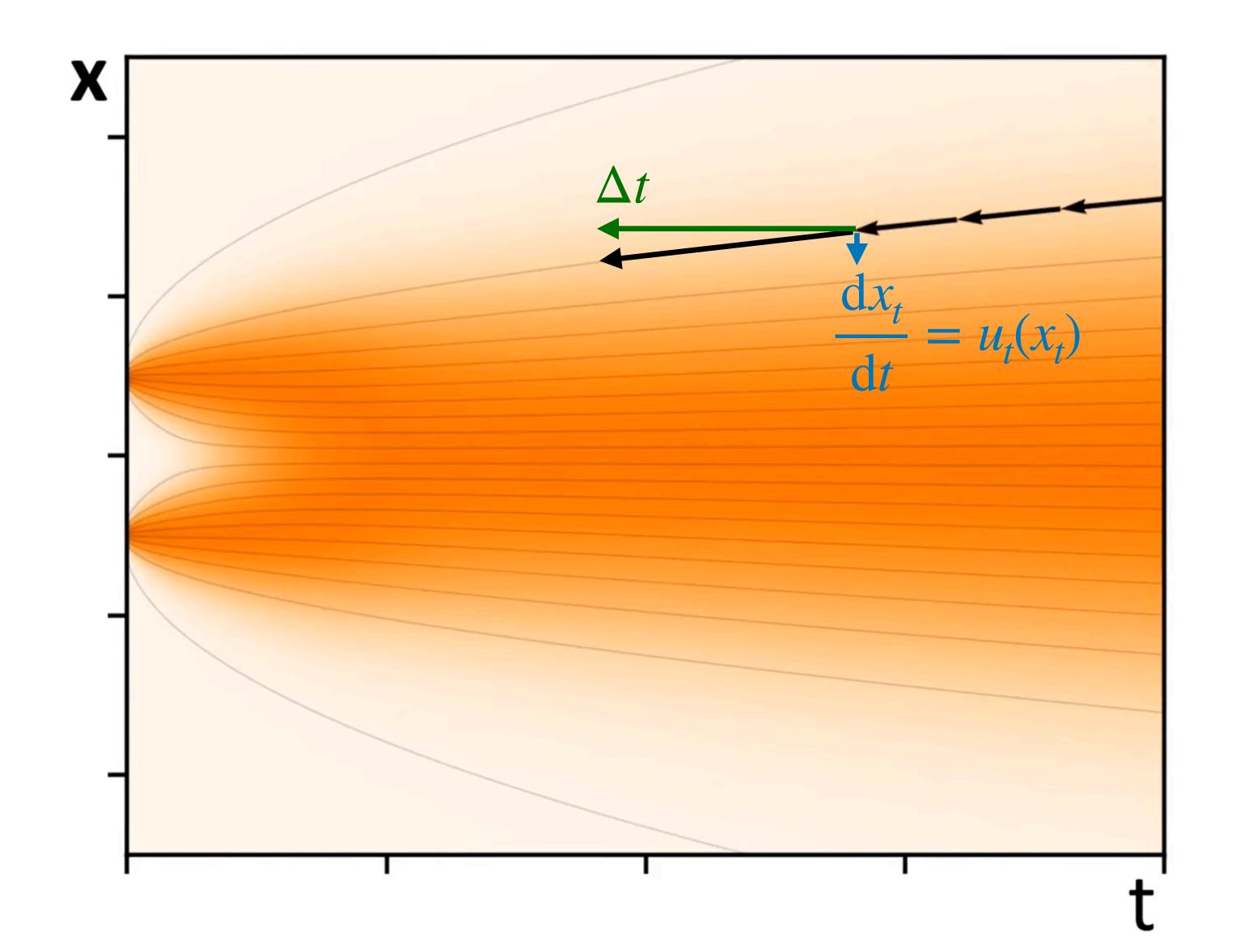
Solving the flow ODE with discretization



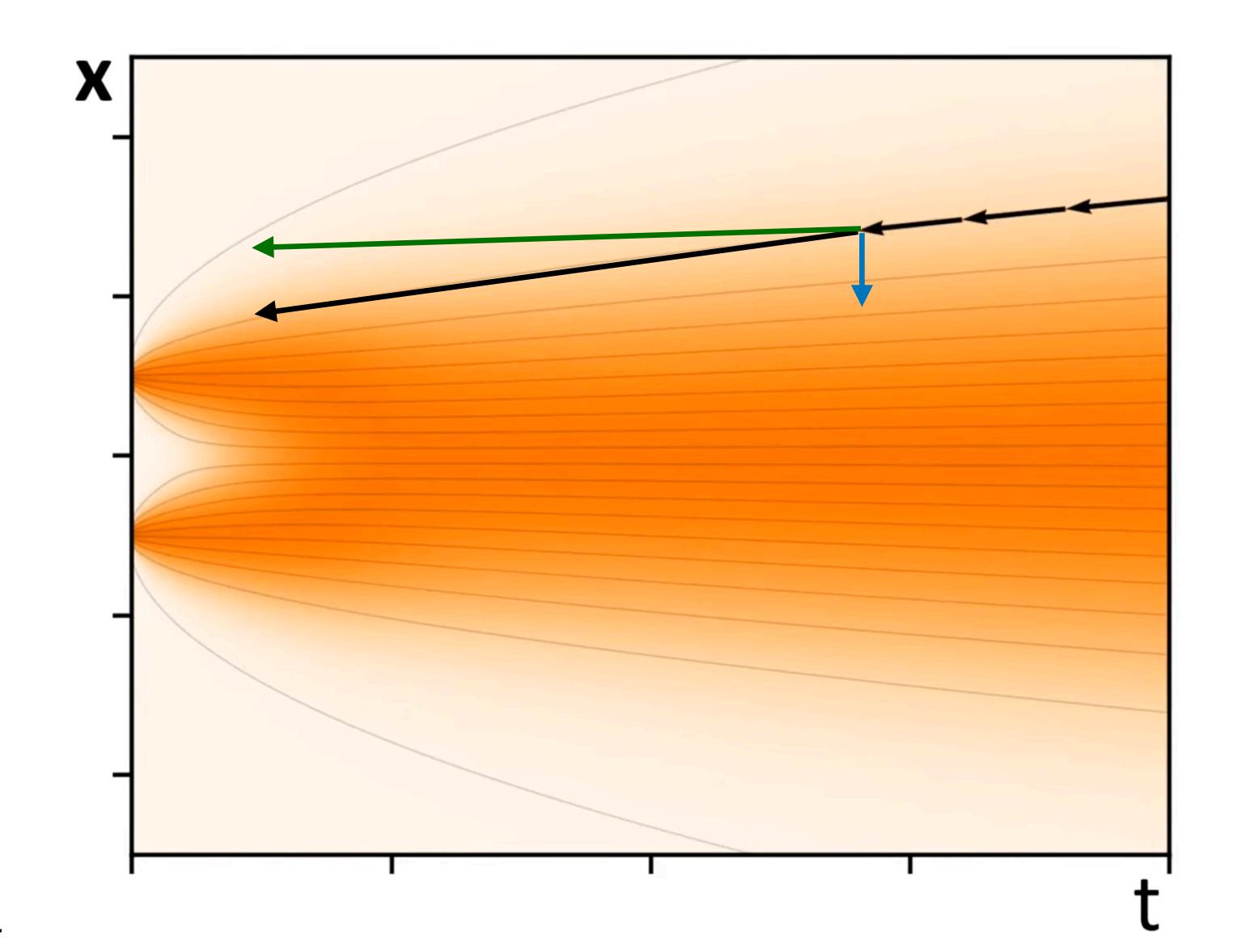
Solving the flow ODE with discretization



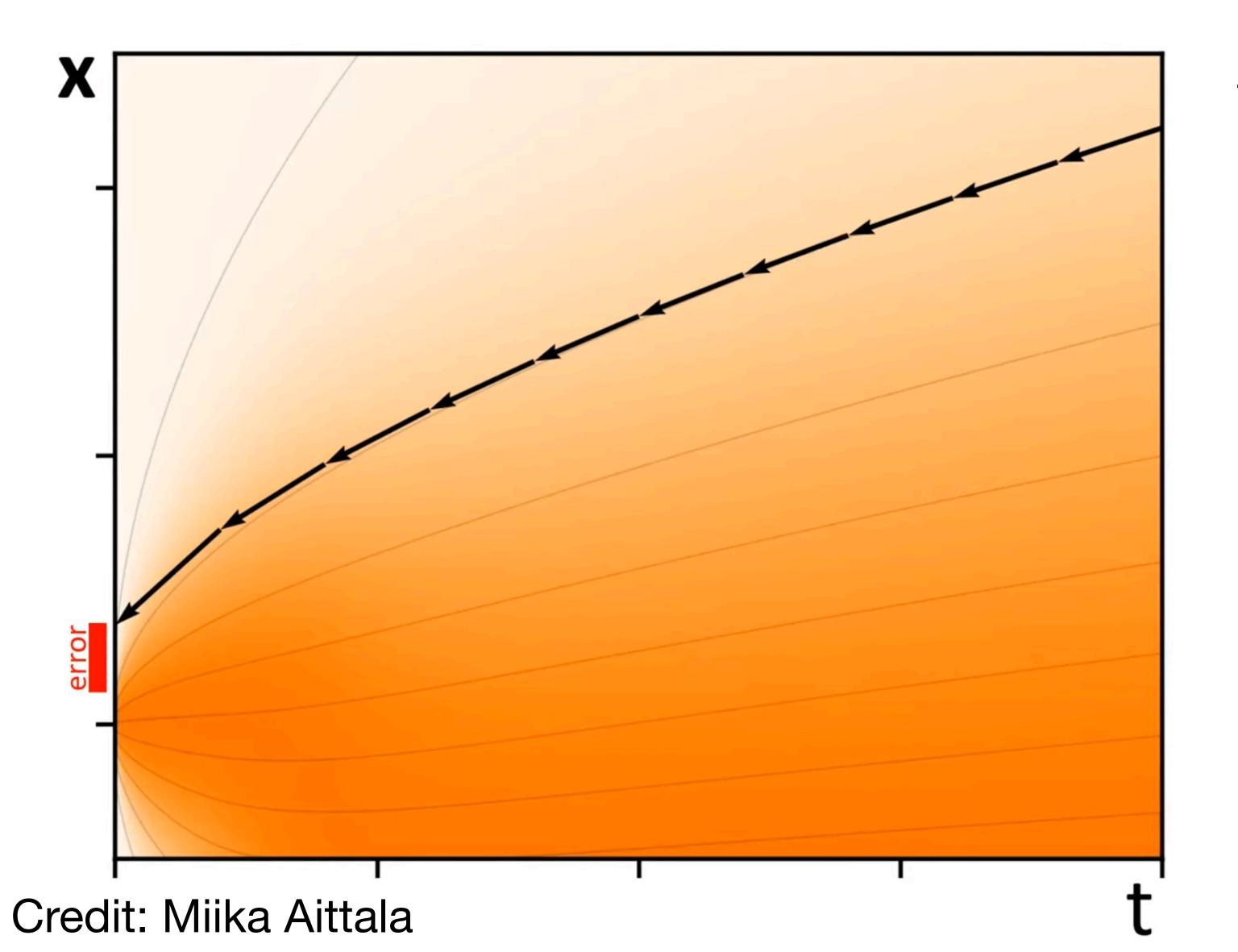
What can go wrong with this sampling process



What can go wrong with this sampling process

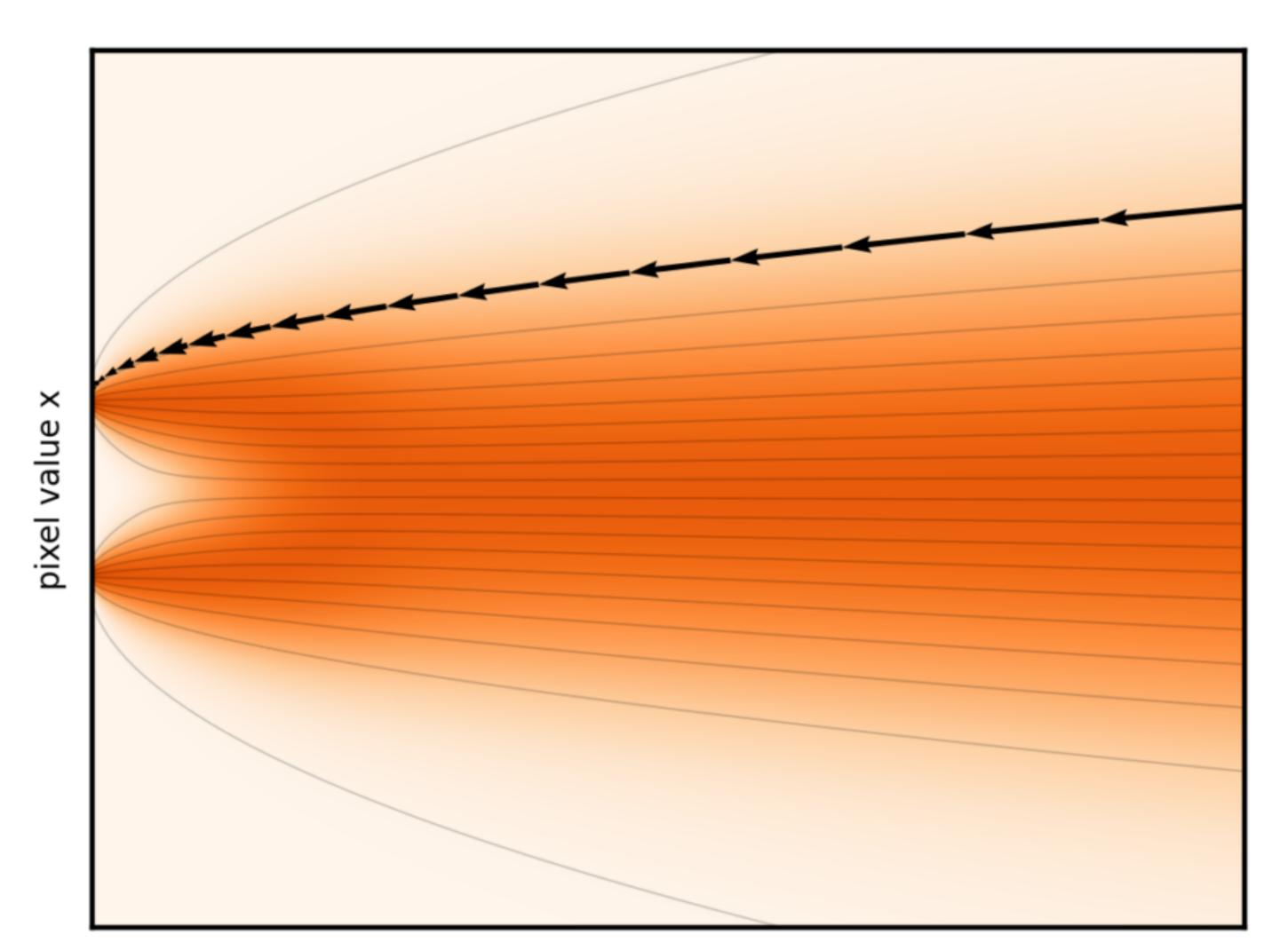


Error Sources when Solving the flow ODE



- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
 - 1. Naive solution: sampling with more steps.

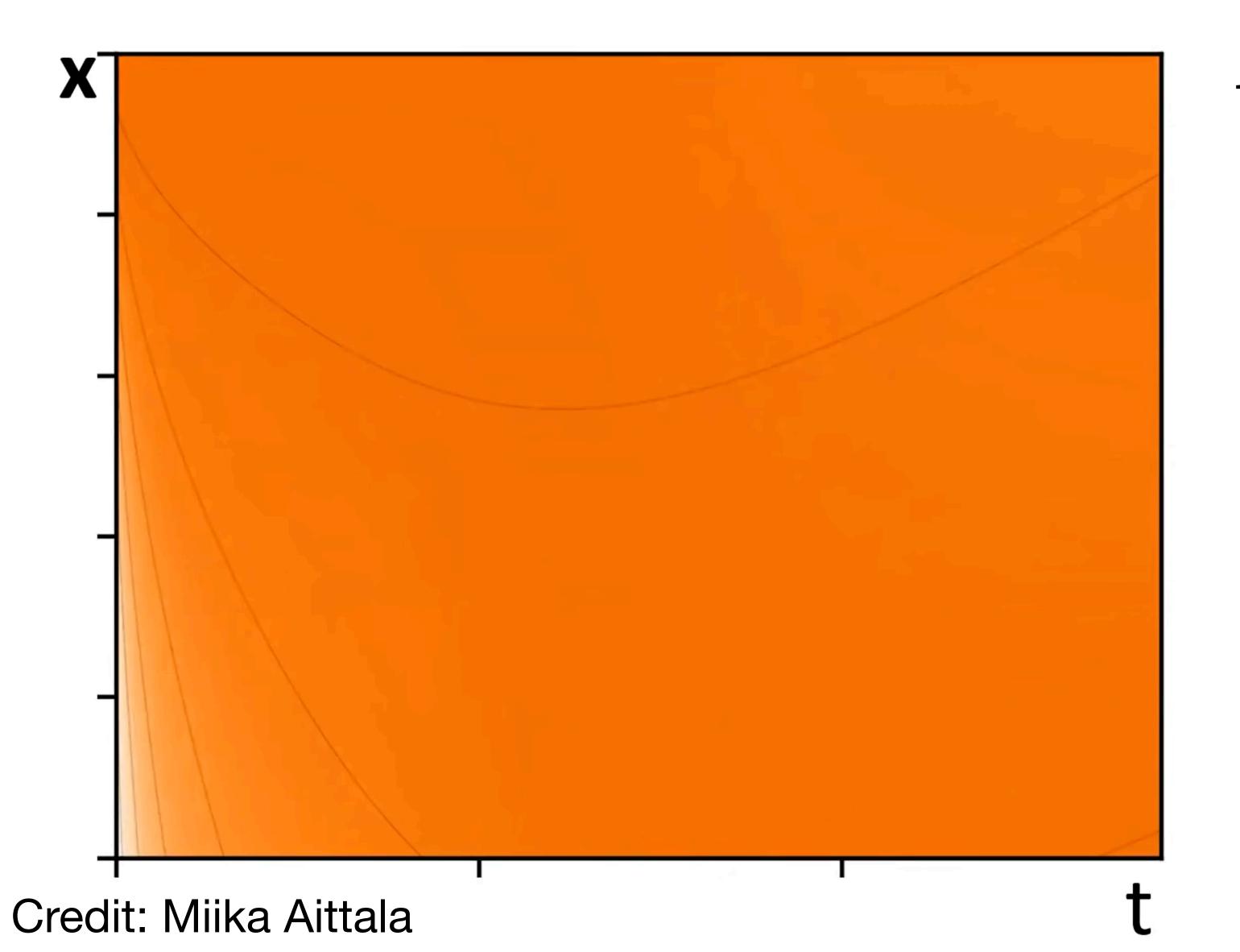
Smart Time Step Schedule



- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
 - 1. Naive solution: sampling with more steps.
 - 2. Time steps are long at high noise levels and short at low noise levels

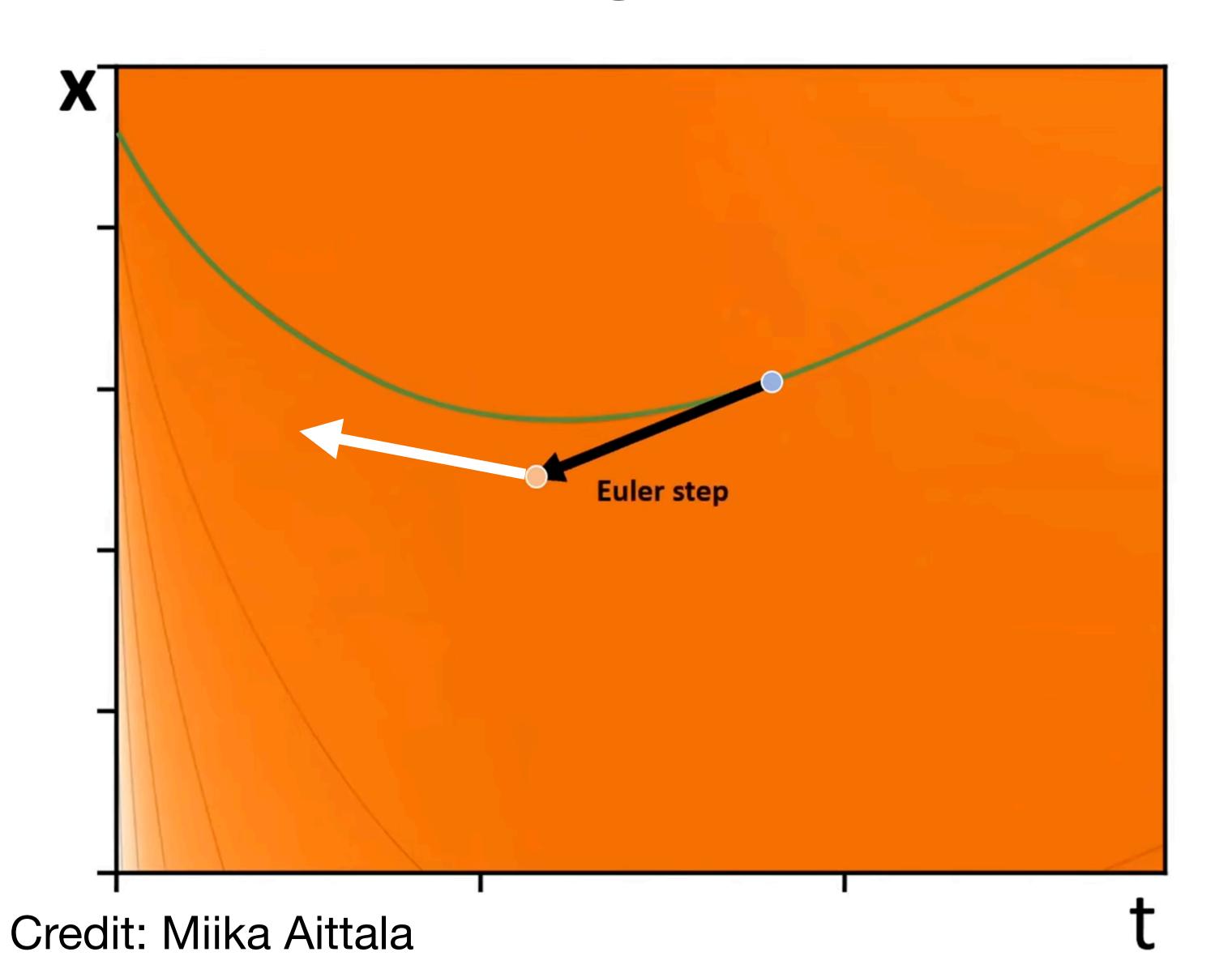
time t

Advanced ODE Solvers



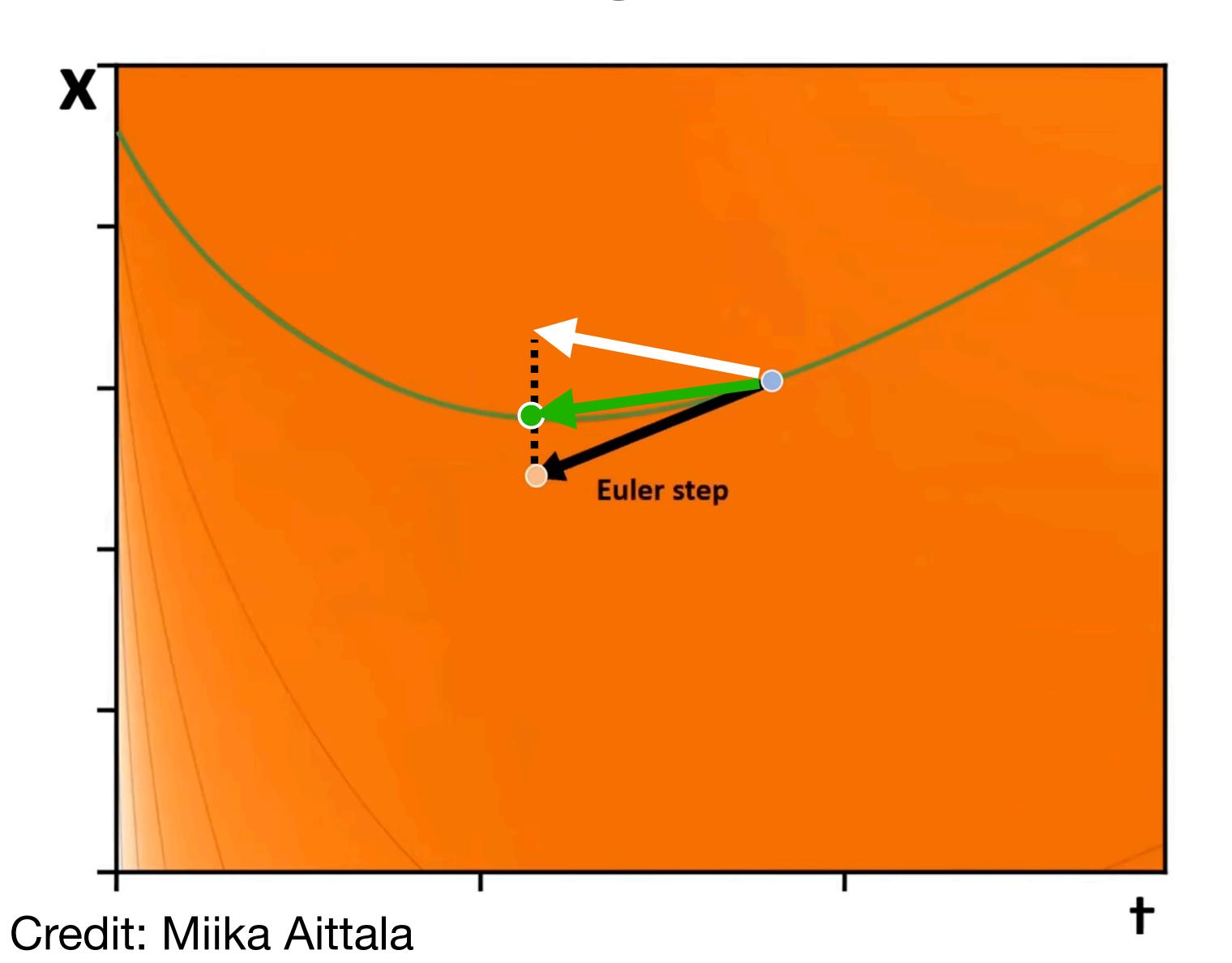
- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
 - 1. Naive solution: sampling with more steps.
 - 2. Time steps are long at high noise levels and short at low noise levels
 - 3. Higher-order ODE solver

Higher-order solvers



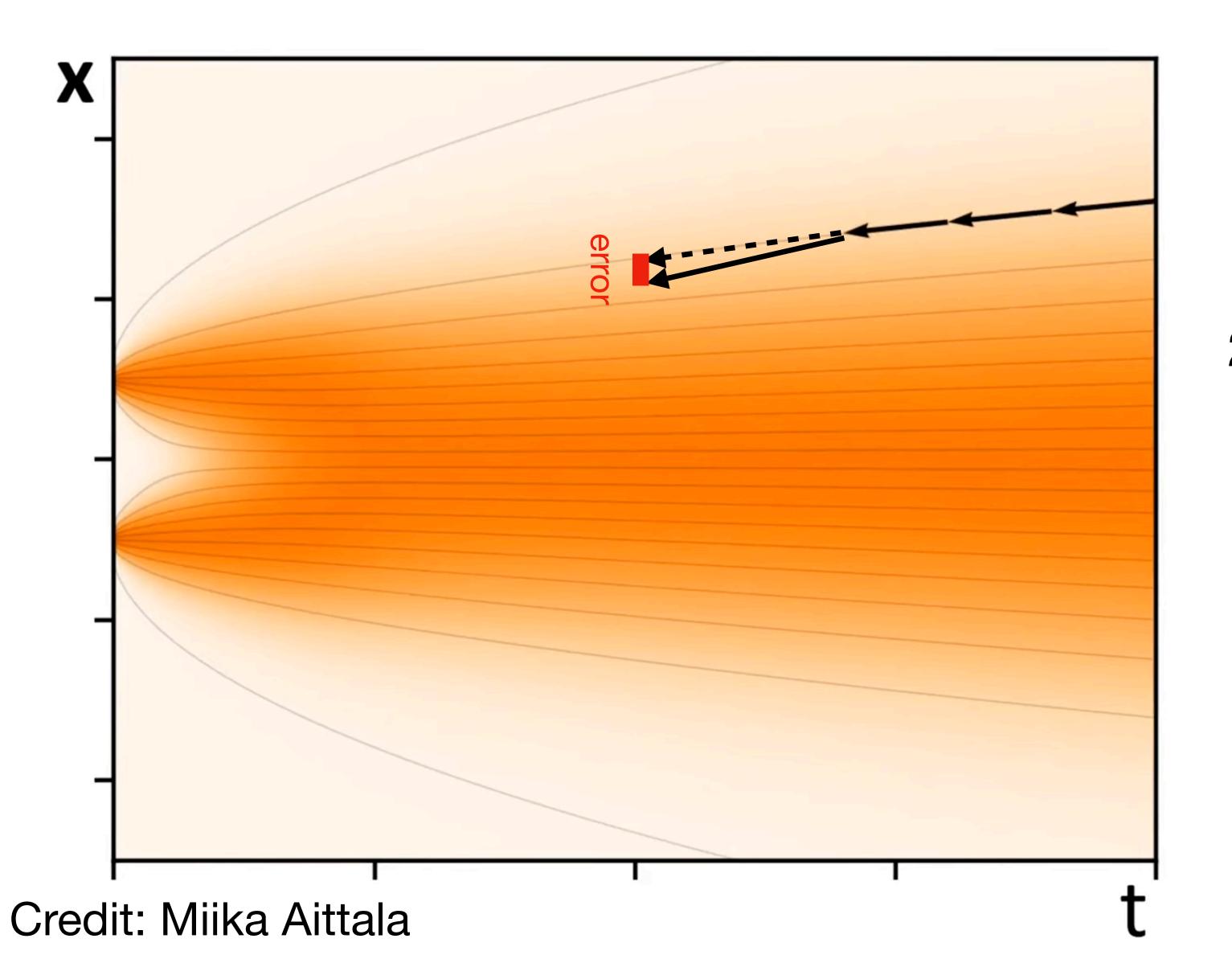
- Clever sub-steps -> higher accuracy though more cost
- 2nd order Heun method as an example

Higher-order solvers



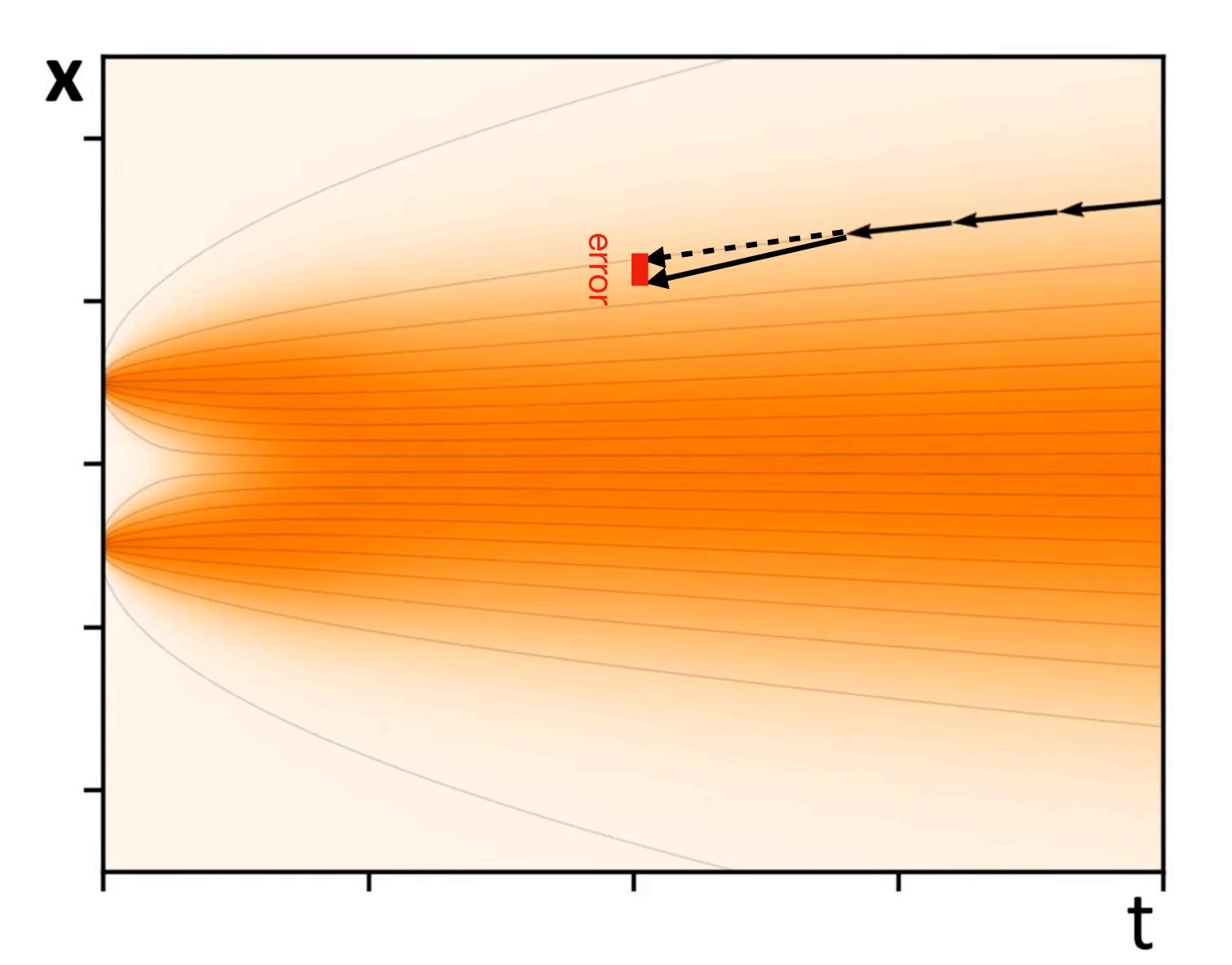
- Clever sub-steps -> higher accuracy though more cost
- 2nd order Heun method as an example

Error Sources when Solving the flow ODE

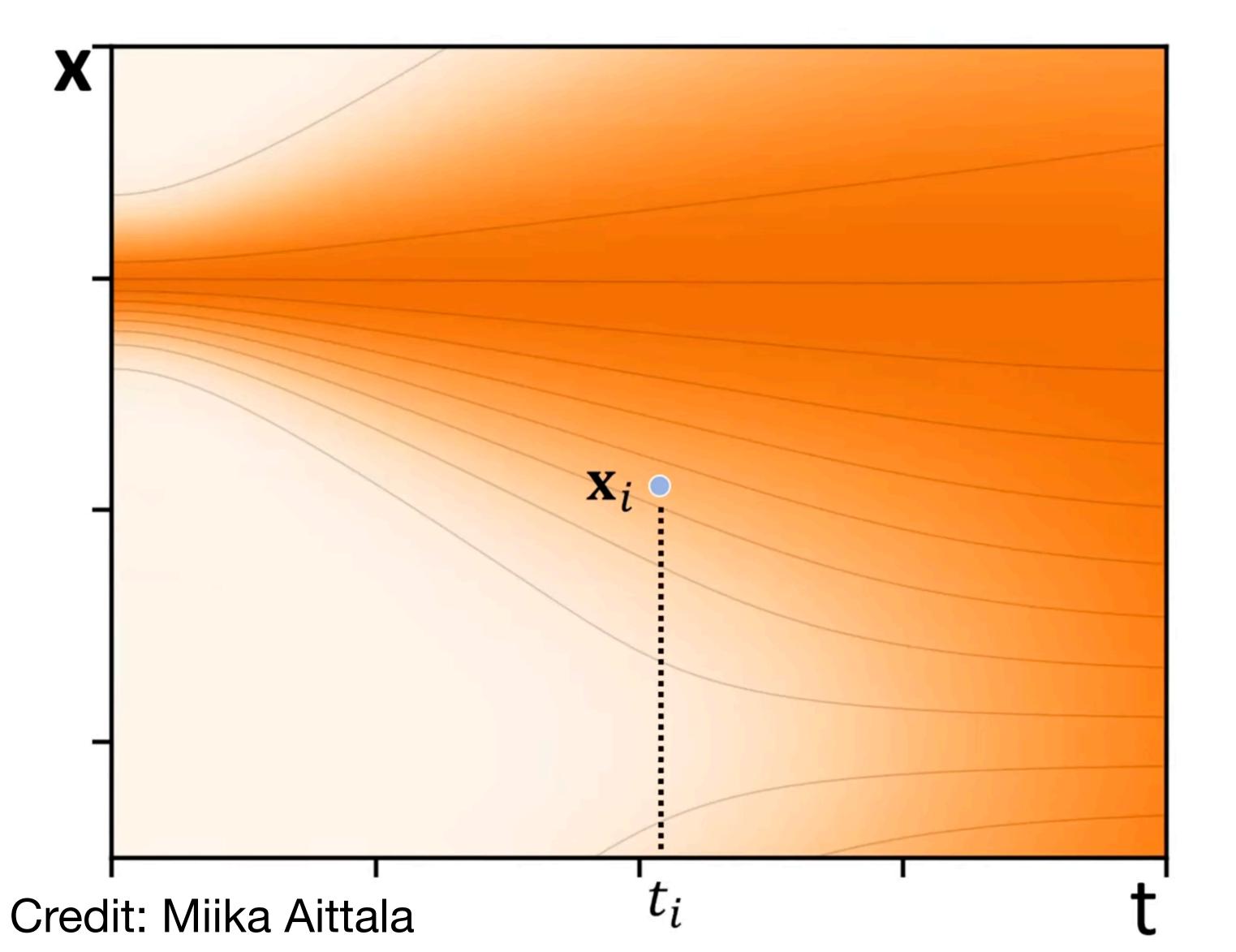


- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.

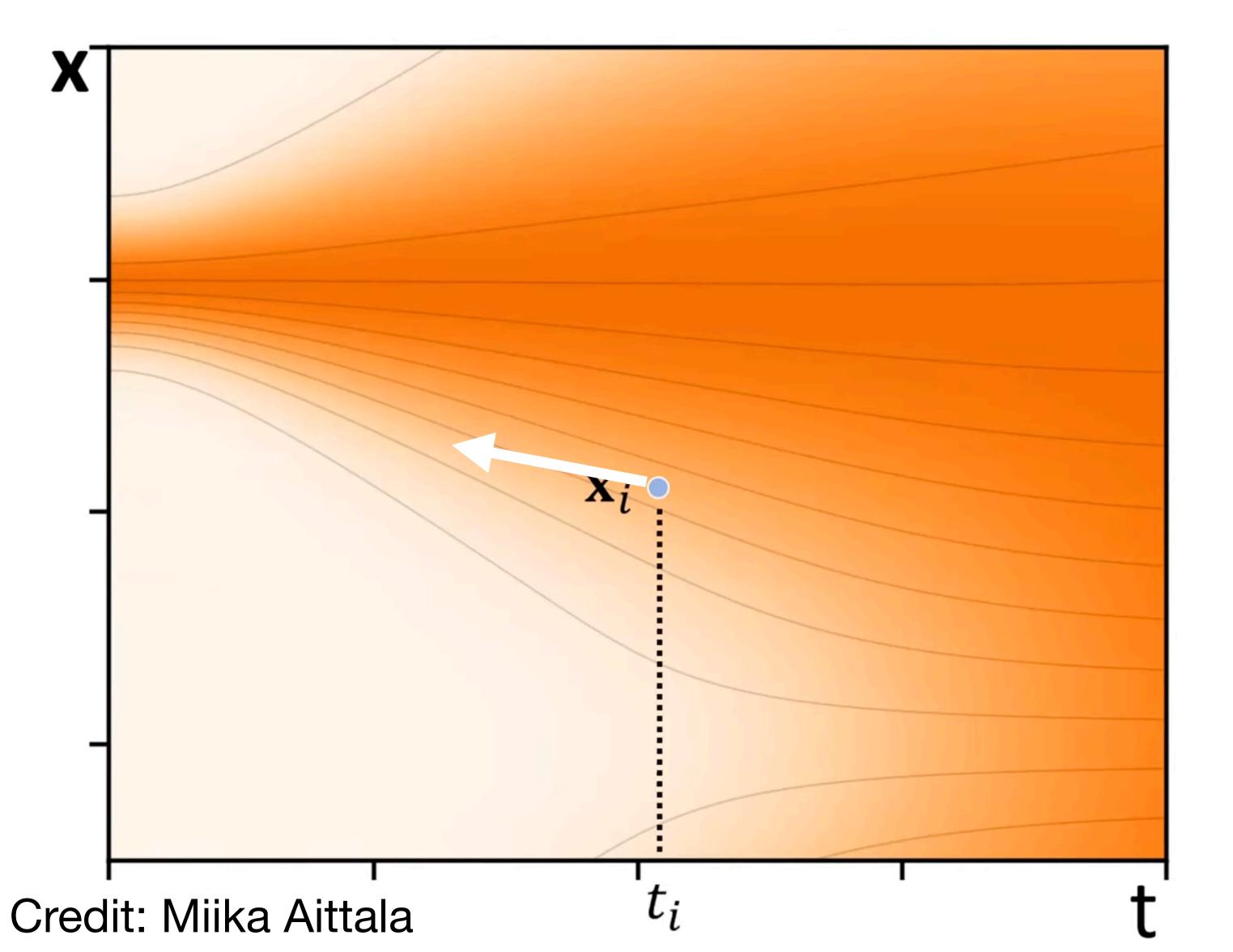
Stochastic Sampler



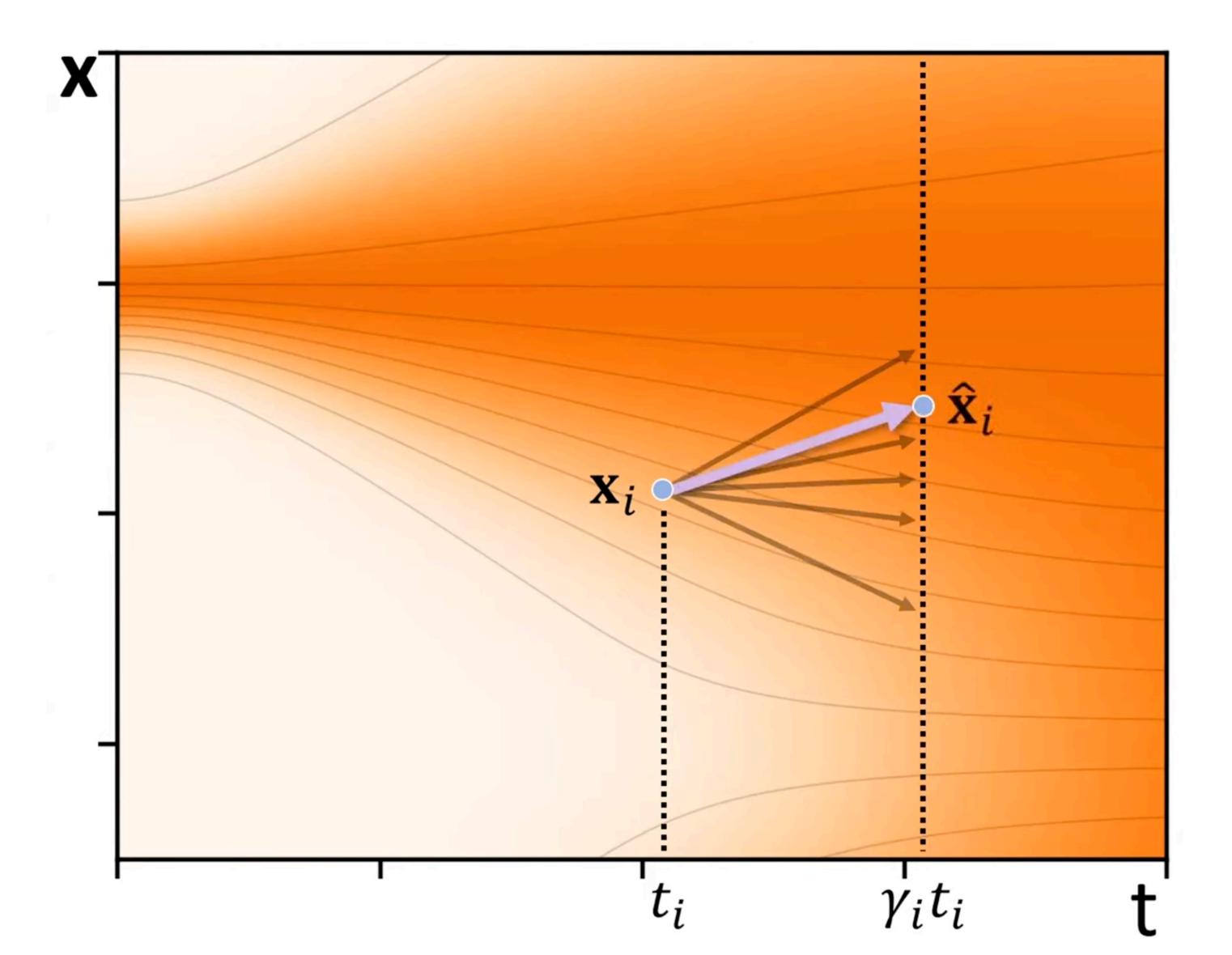
- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution in addition to reducing the noise.



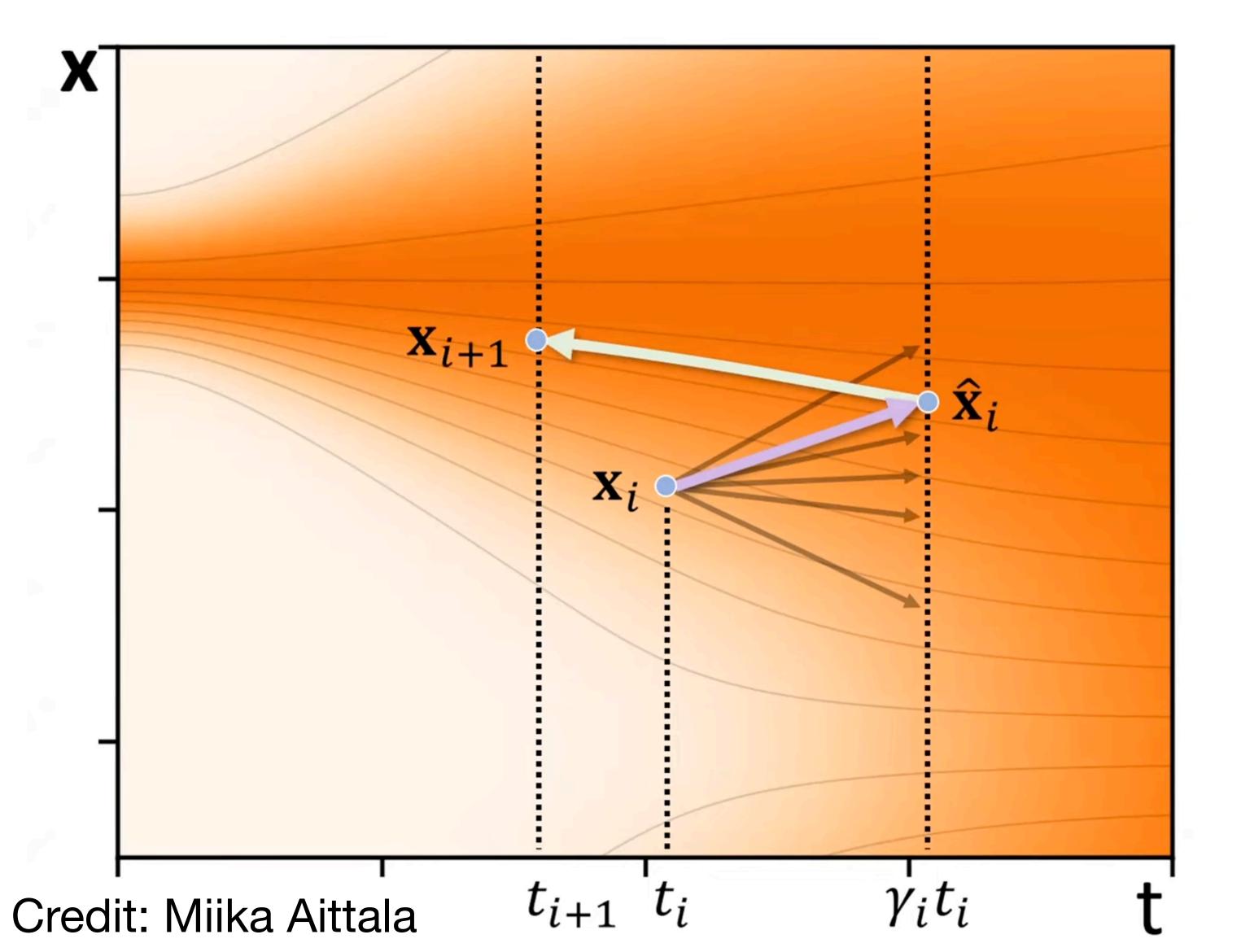
- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution



- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution

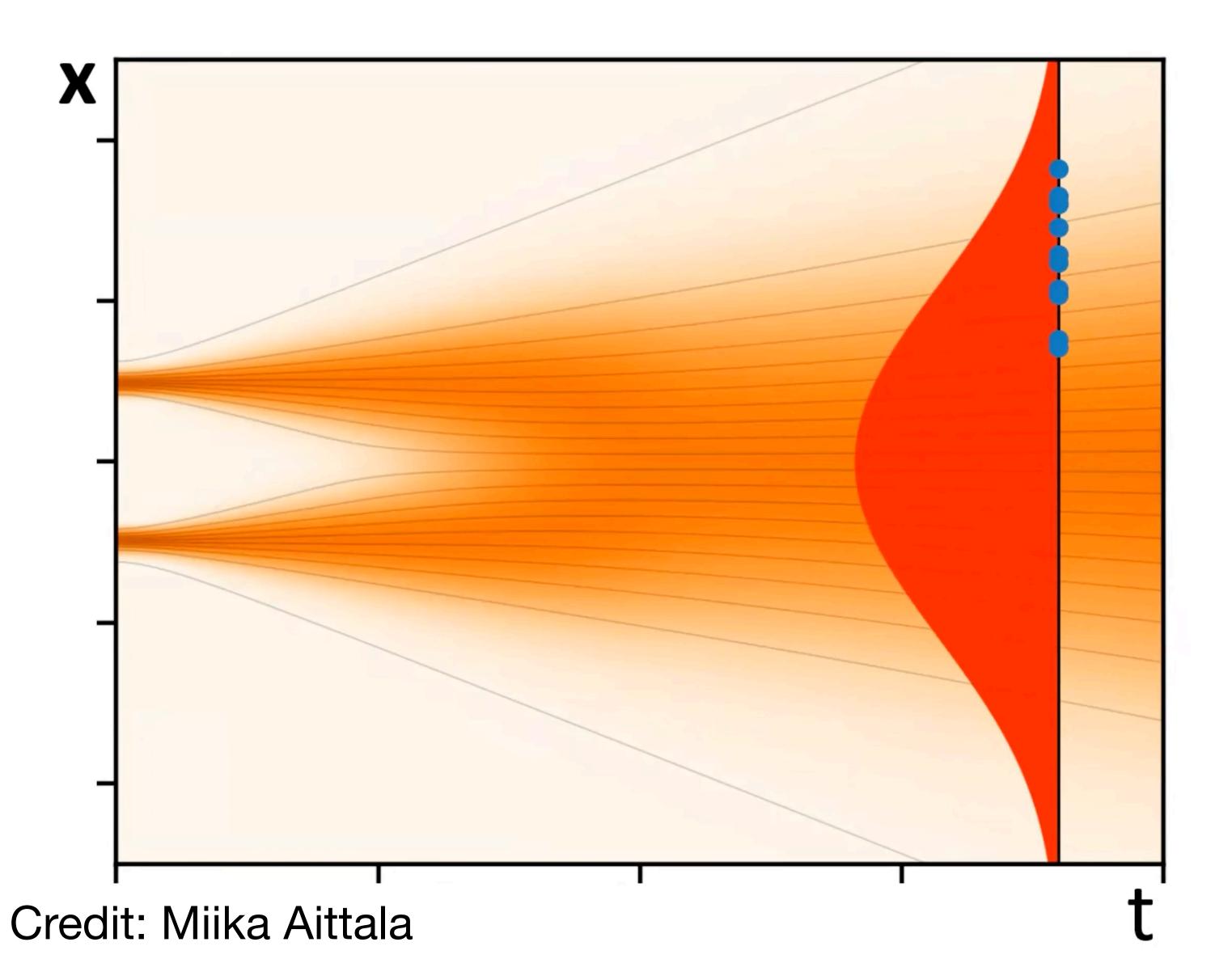


- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution



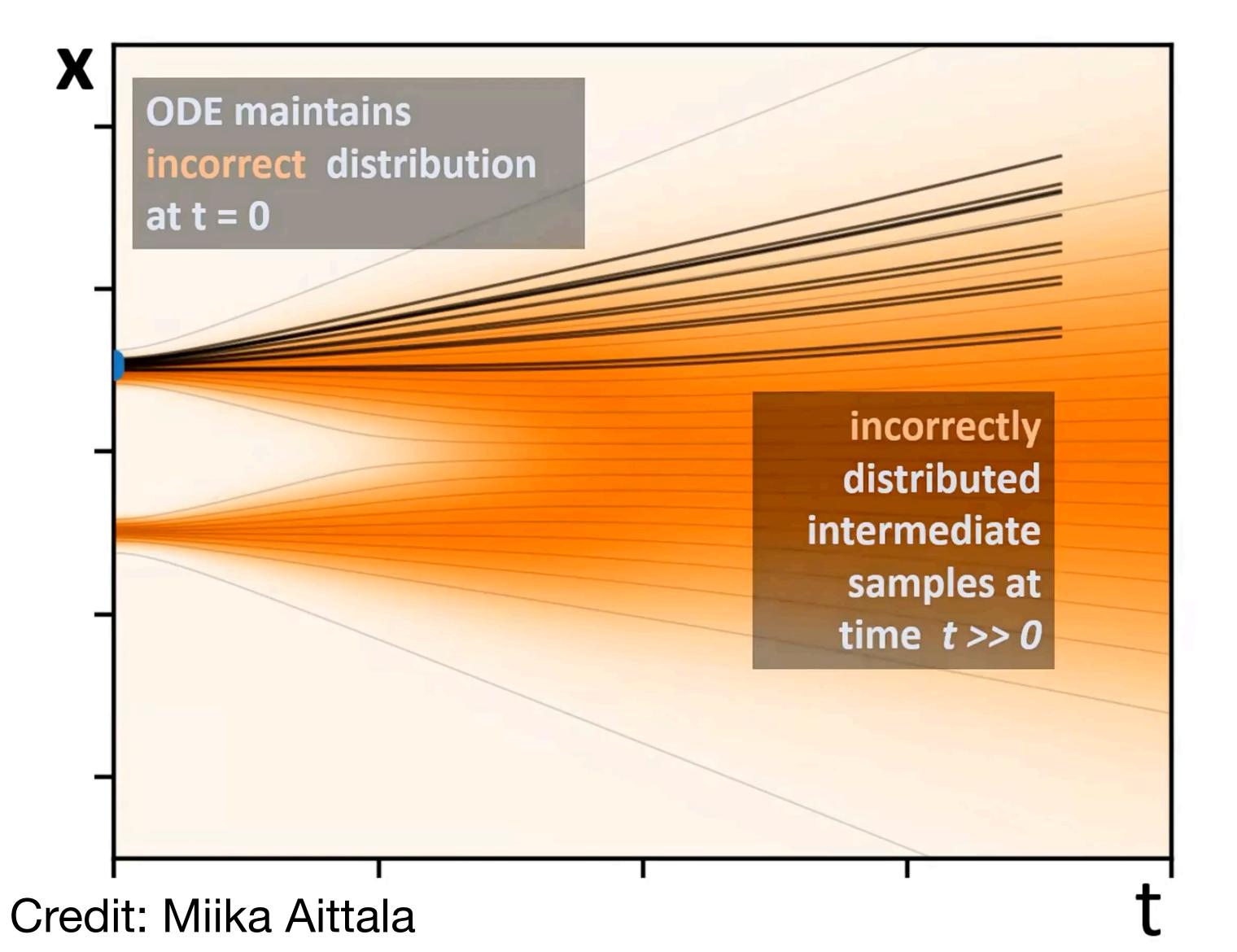
- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution in addition to reducing the noise.

Stochastic Sampler Helps Explore the Distribution



- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution in addition to reducing the noise.

Stochastic Sampler Helps Explore the Distribution

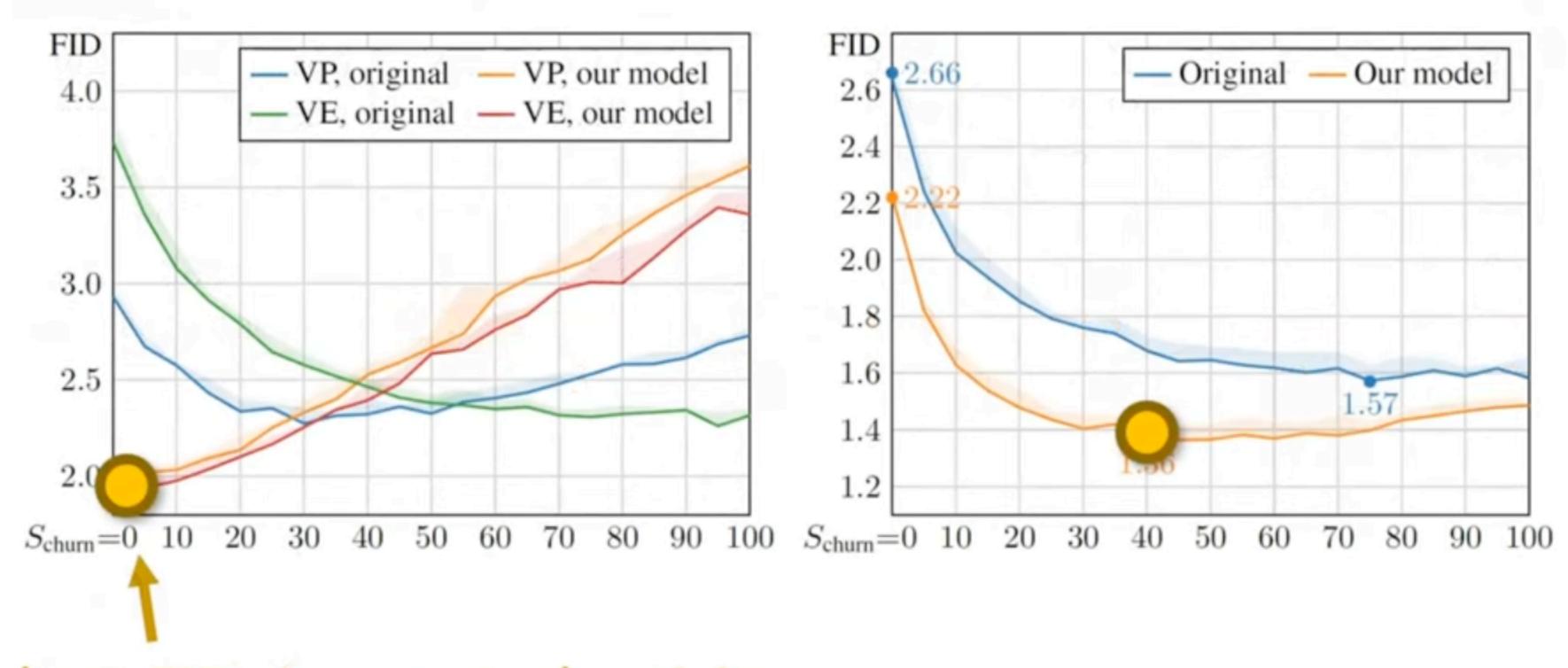


- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution in addition to reducing the noise.

Is stochasticity always helpful?

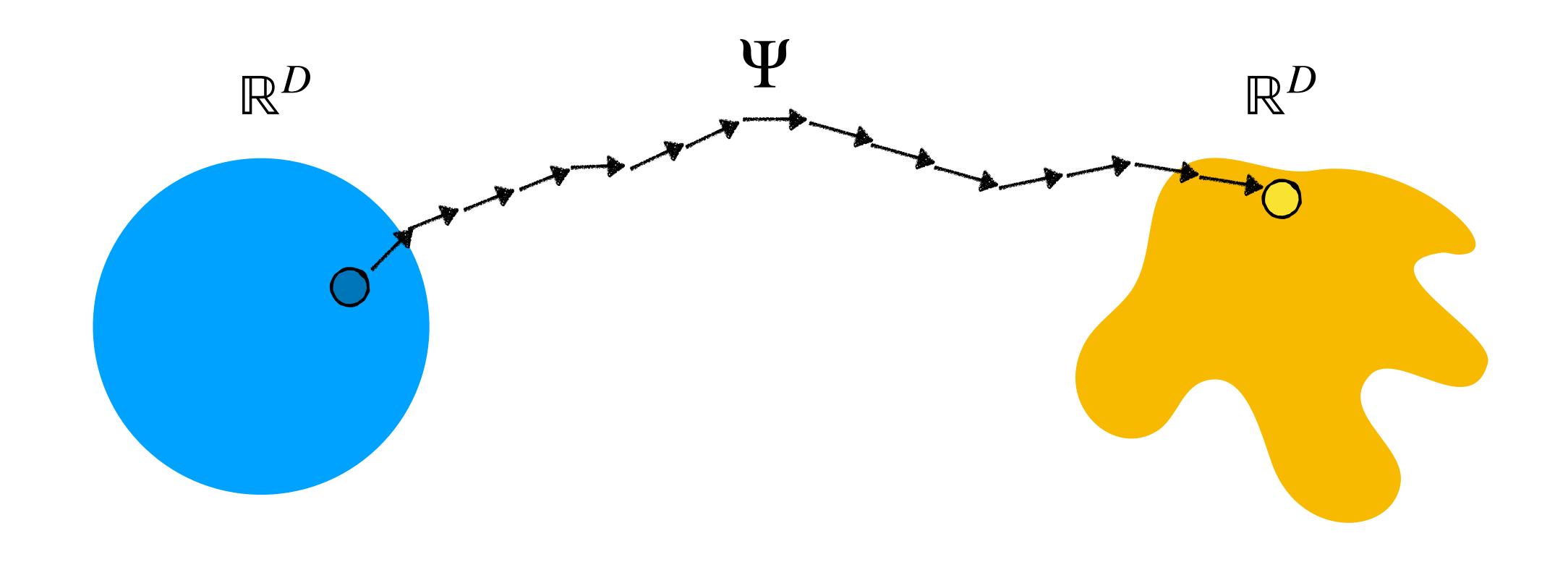
CIFAR-10: no

Imagenet: yes



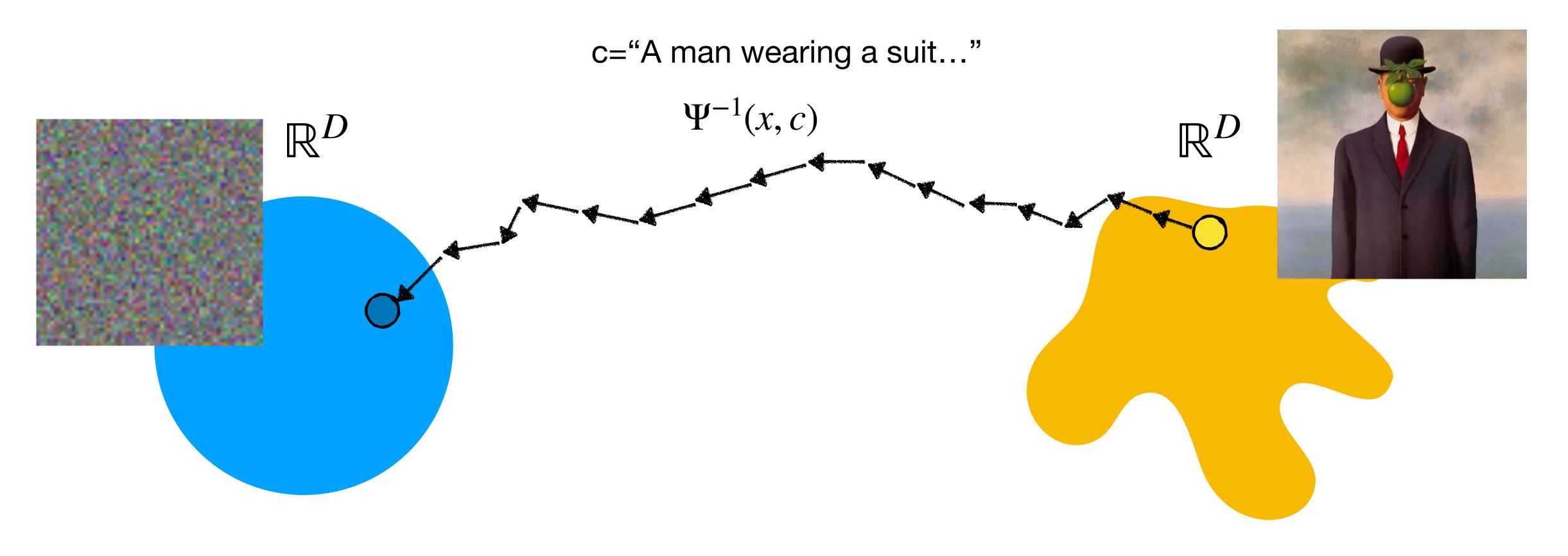
best FID at zero stochasticity

Image Generation by Solving the Flow ODE



 p_{source}

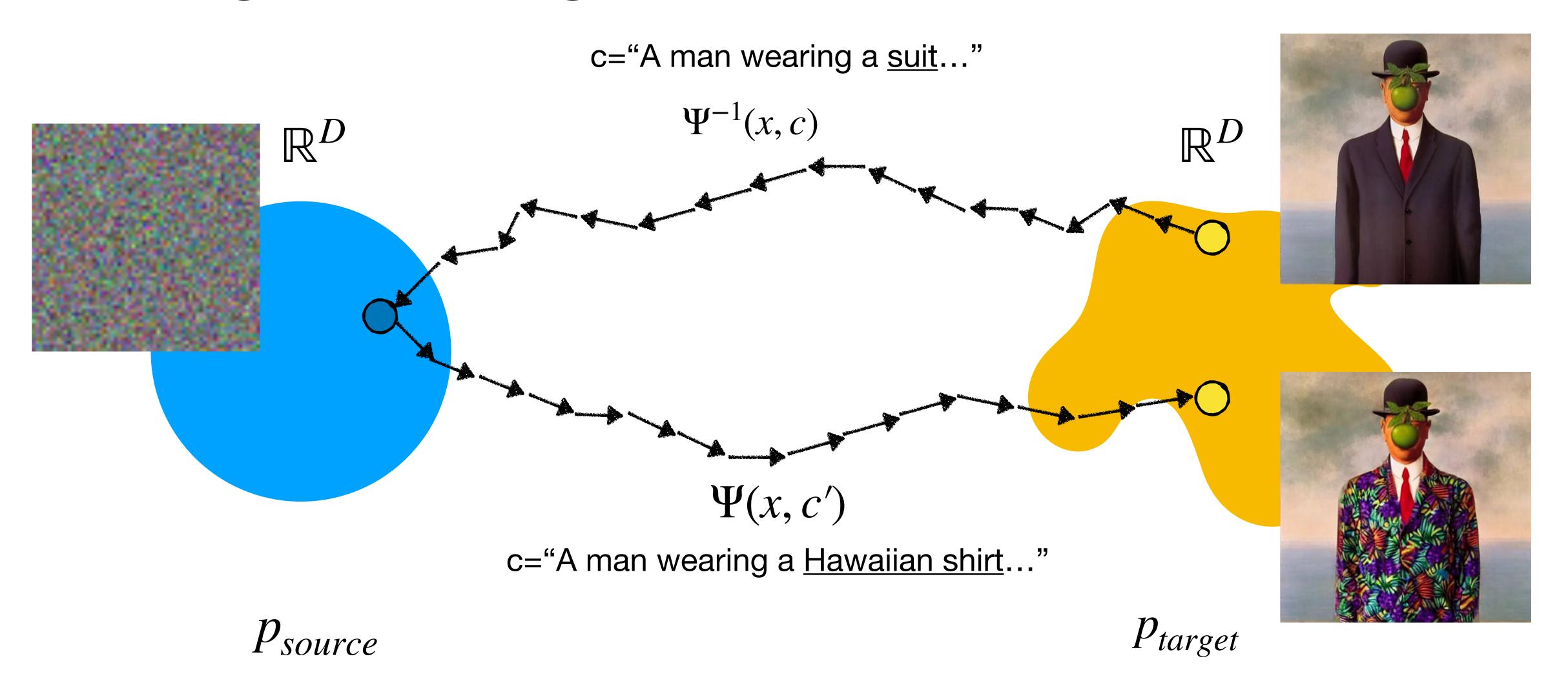
Image Editing with Diffusion Inversion



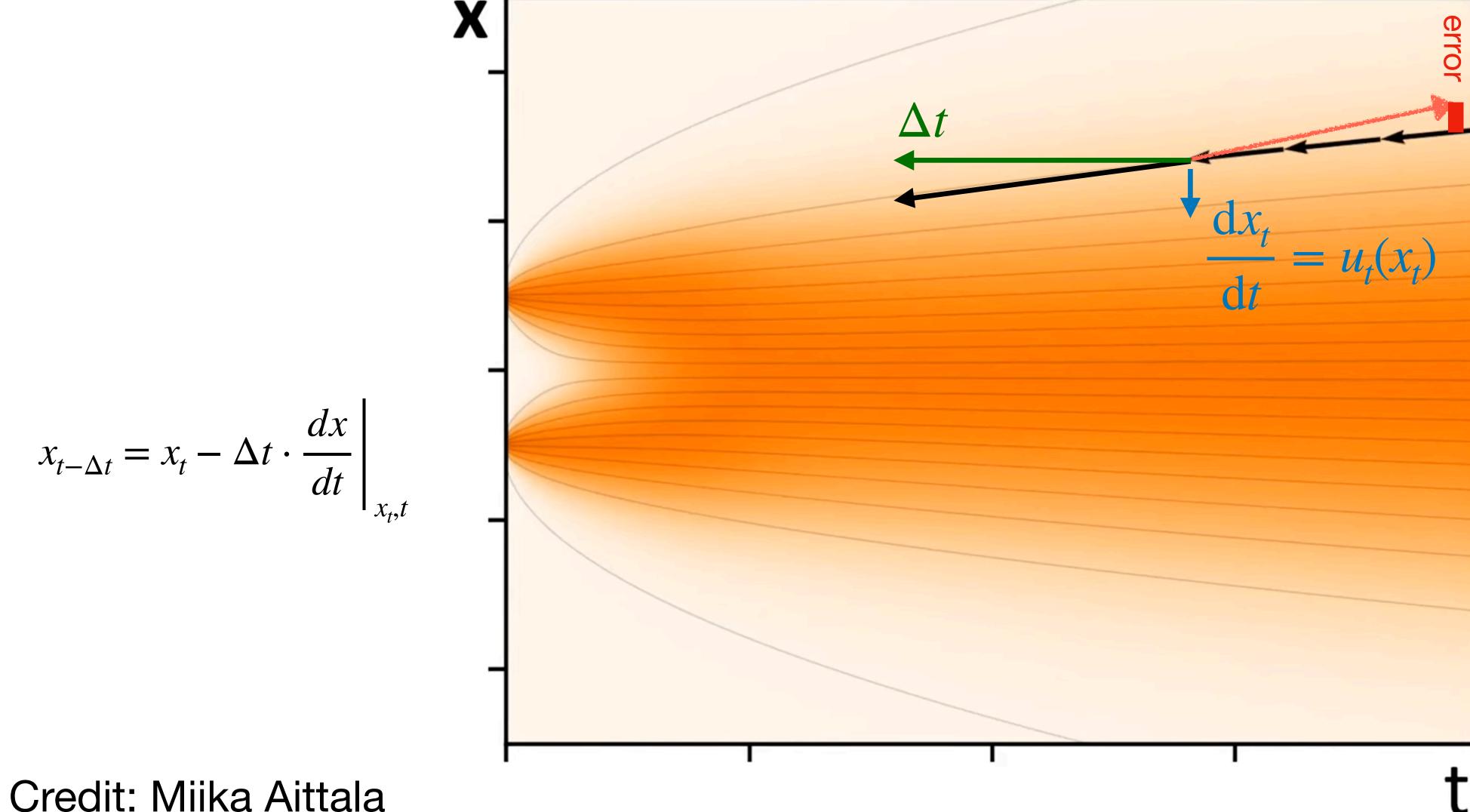
*P*_{source}

 p_{target}

Image Editing with Diffusion Inversion

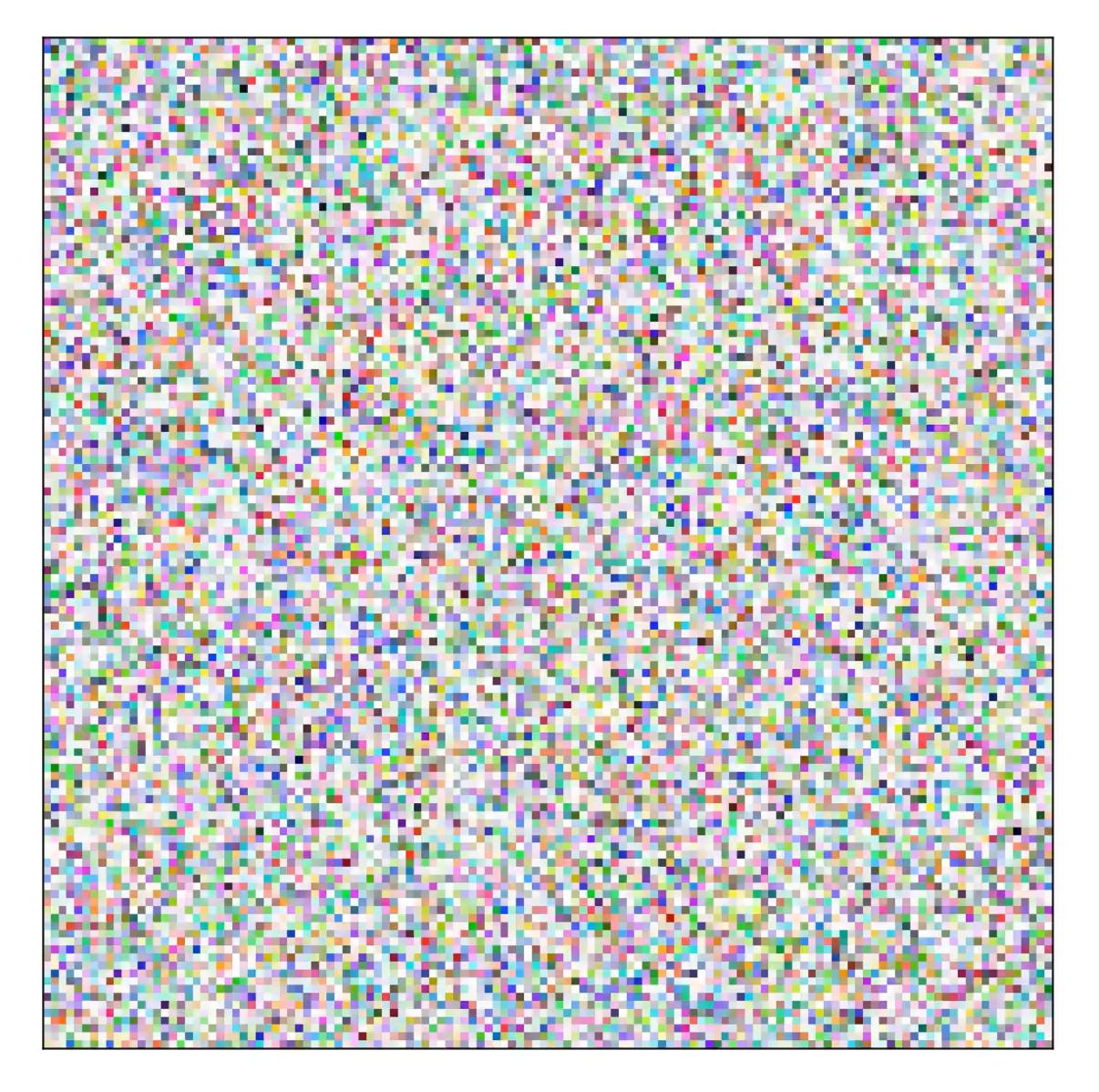


Inverting a diffusion model is not easy



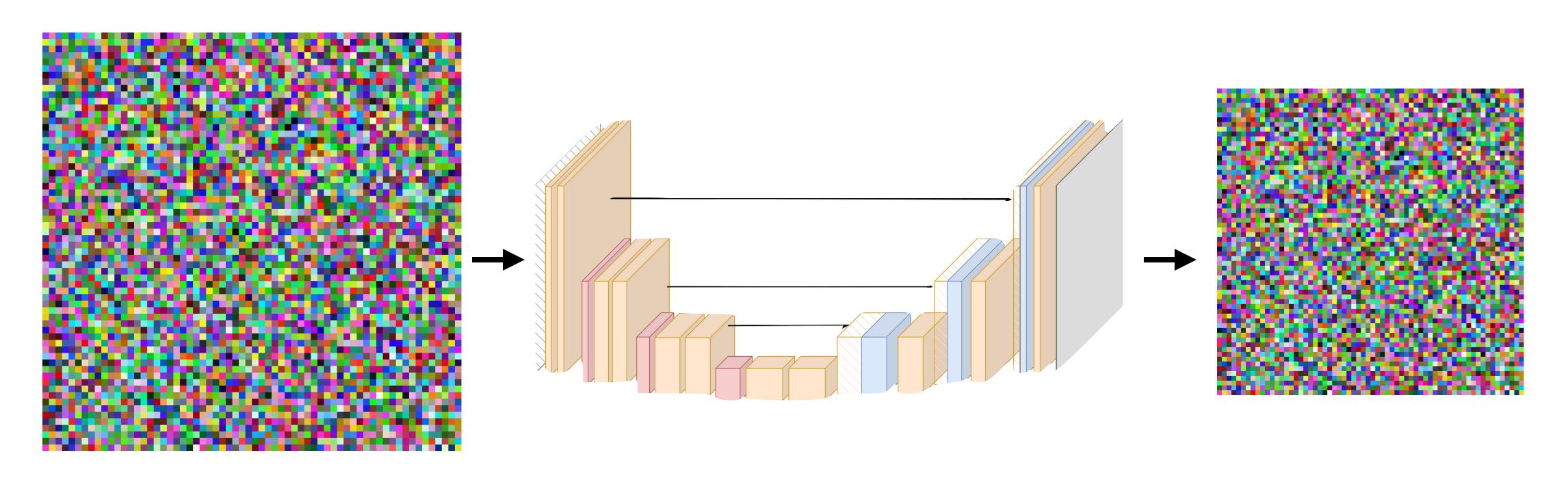
"beret of raspberries"

Conditioning & Guidance



raspberry beret

Motivation

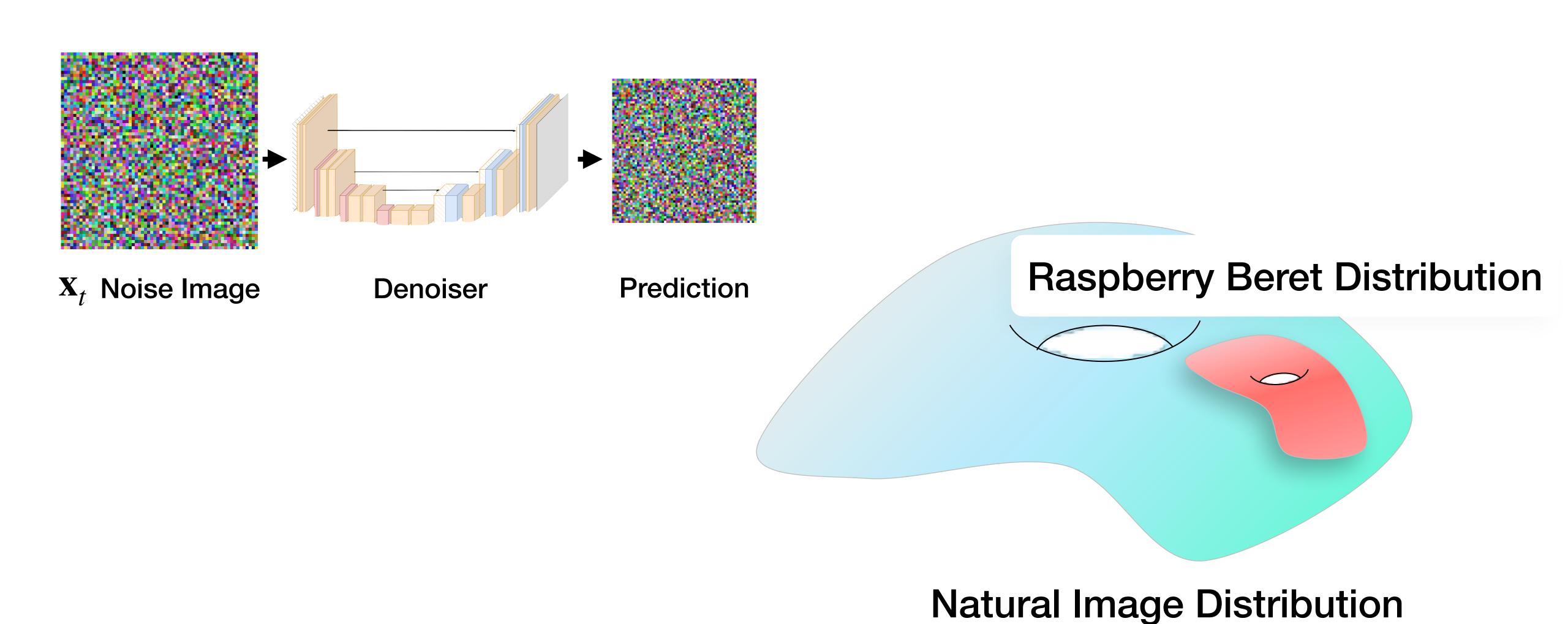


 \mathbf{X}_t Noise Image

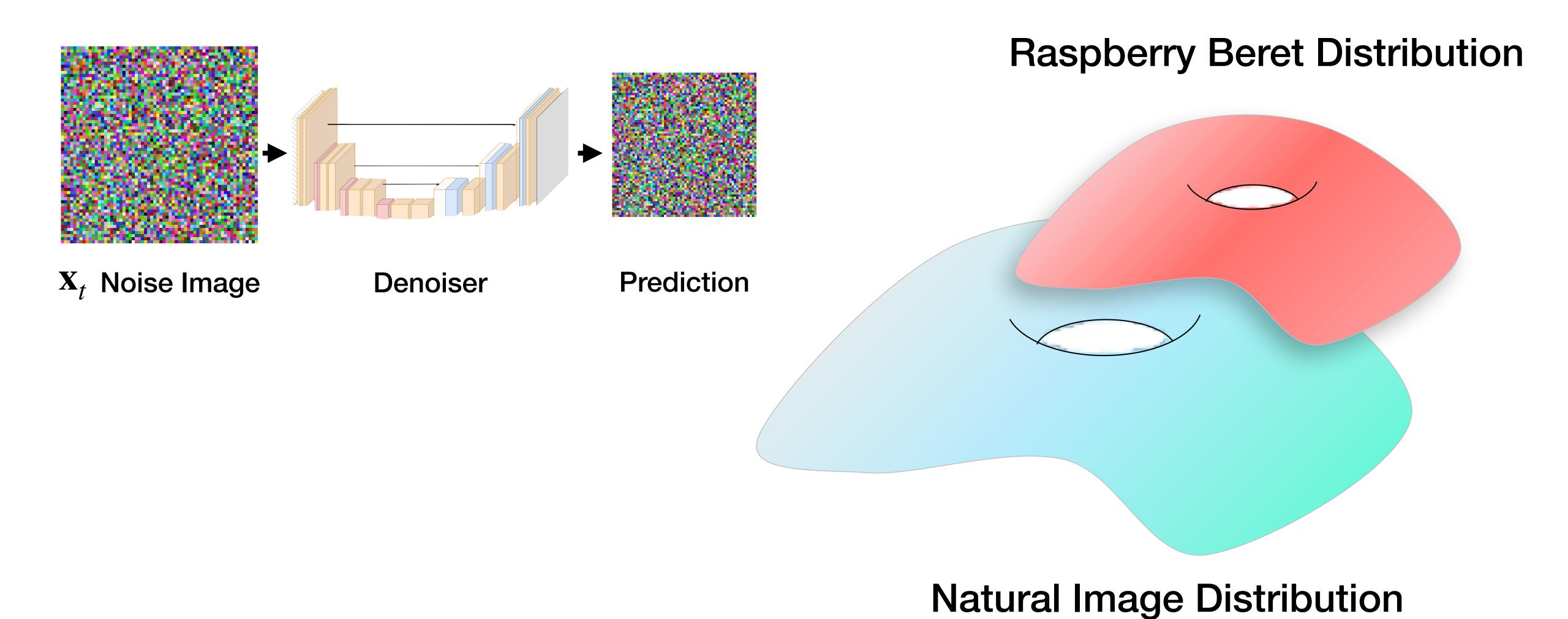
Denoiser

Prediction
(Flow, Epsilon etc.)

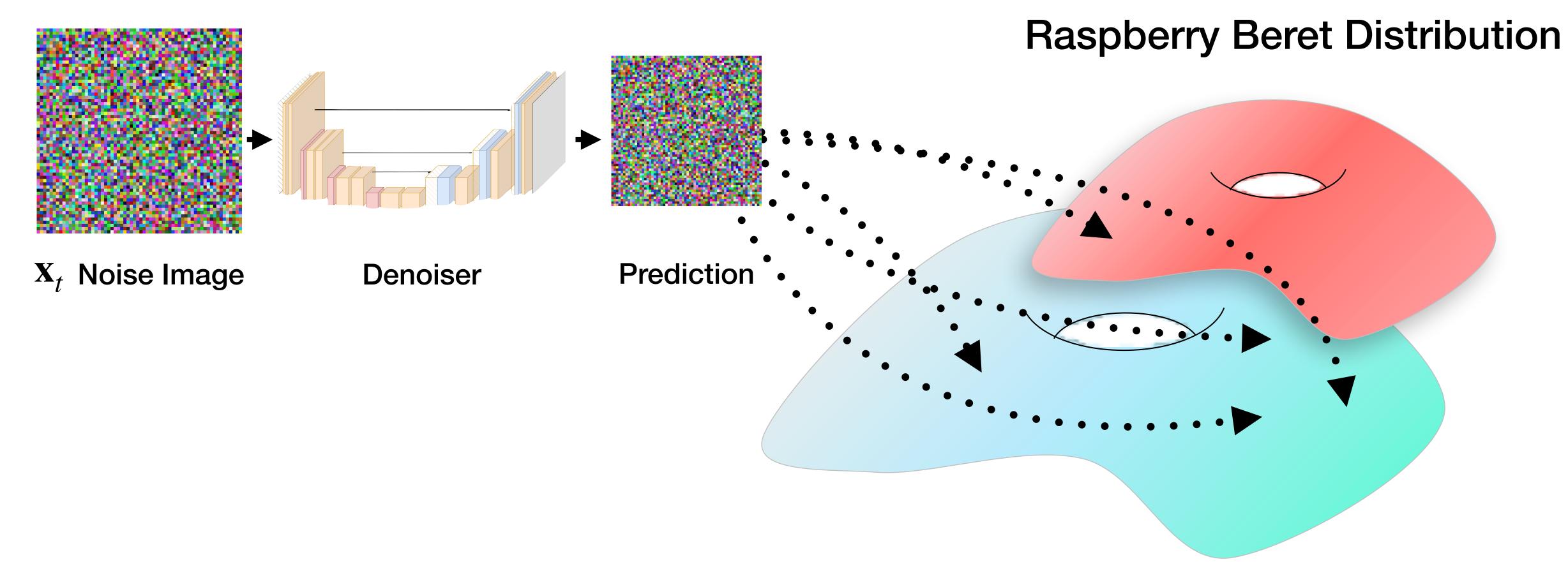
Motivation



Motivation



Motivation

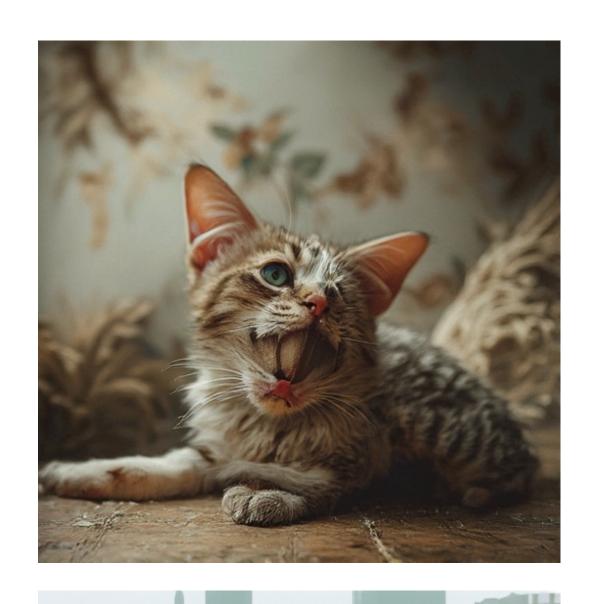


Unguided Diffusion Isn't Too Useful!

Natural Image Distribution

Flux Pro Unguided Samples

Imitates Distribution of Internet Training Data



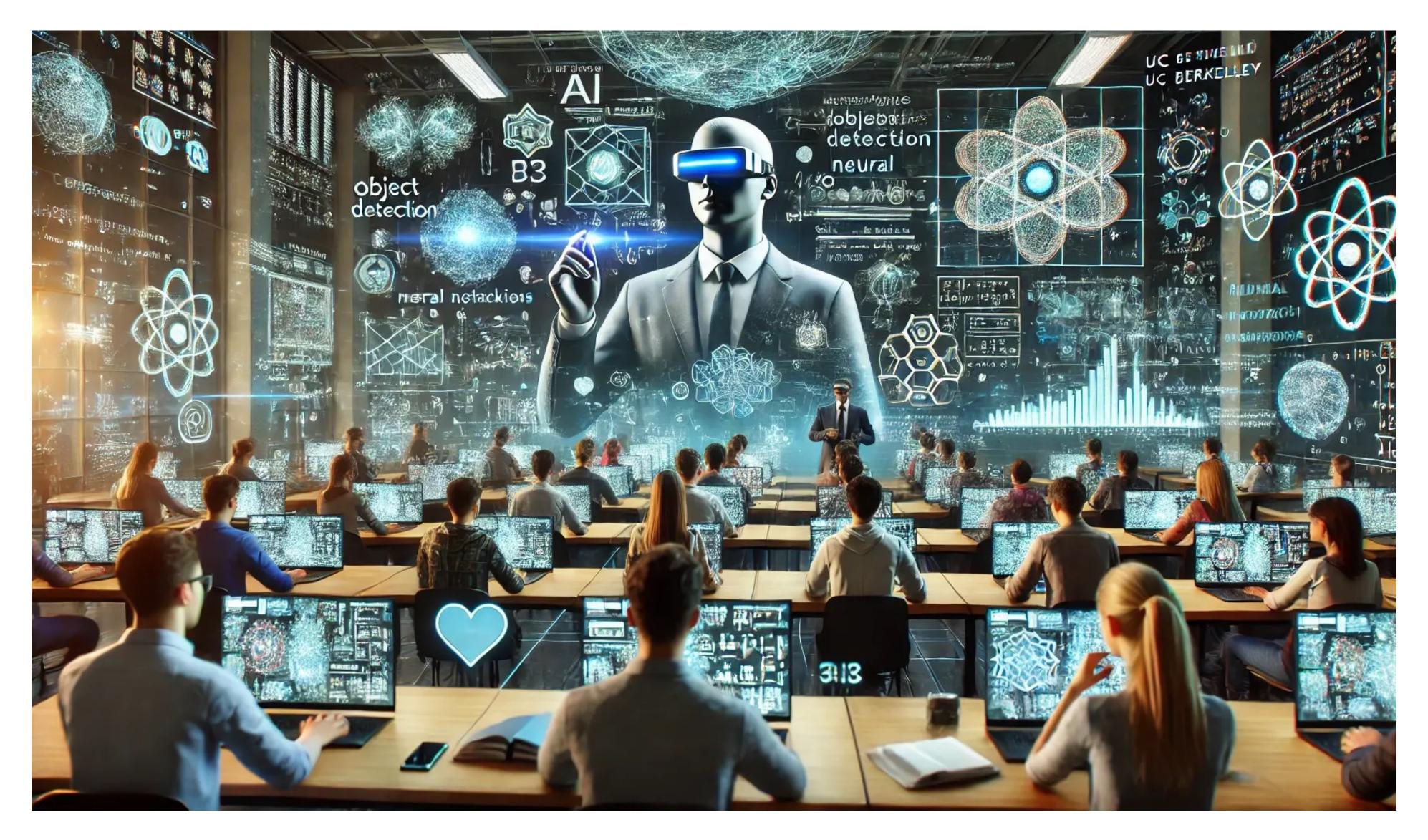




Flux Pro Guided Samples

"beret of raspberries"

Generate a photo of a Berkeley computer vision class

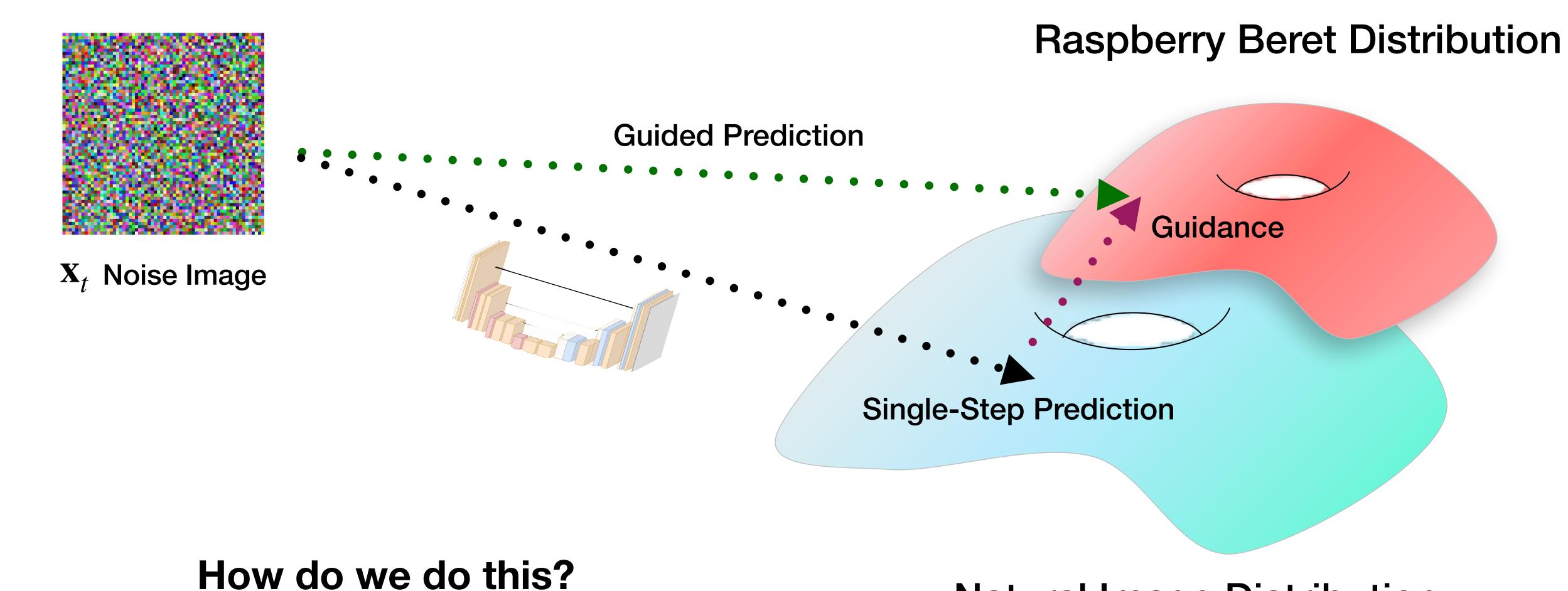


Make it more epic

Make it THE MOST EPIC computer vision class that you can ever think of

Diffusion Guidance

Push Toward a Conditional Mode



Natural Image Distribution

Two Approaches

Original

Classifier Guidance

Guide with a pretrained classifier.

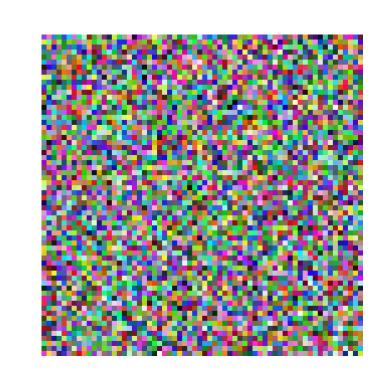
Current

Classifier-Free
Guidance

Guide a diffusion model with itself.

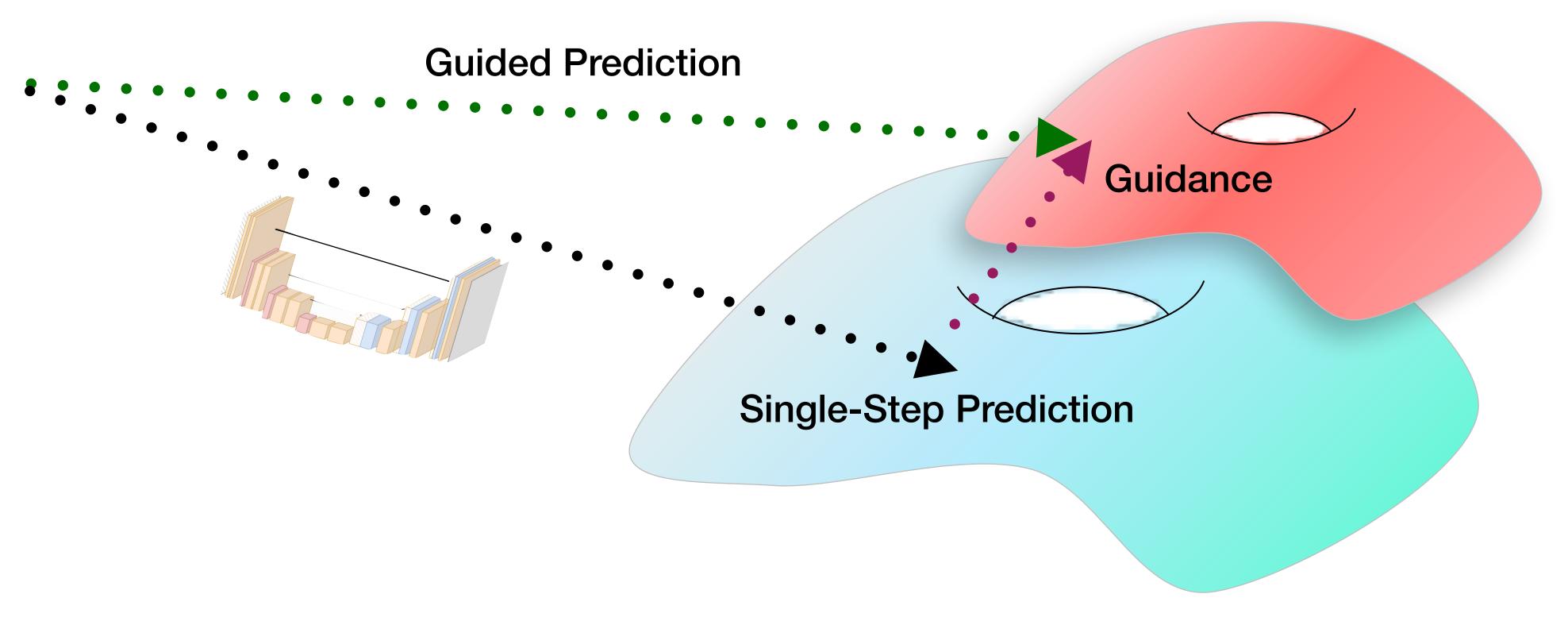
Diffusion Guidance

Push Toward a Conditional Mode



 \mathbf{X}_t Noise Image

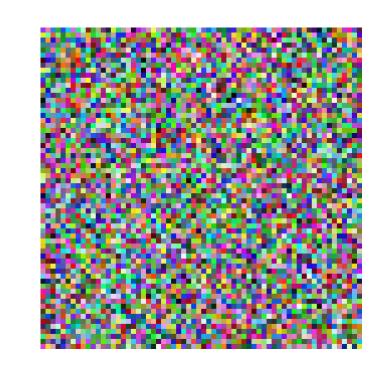
Raspberry Beret Distribution



Natural Image Distribution

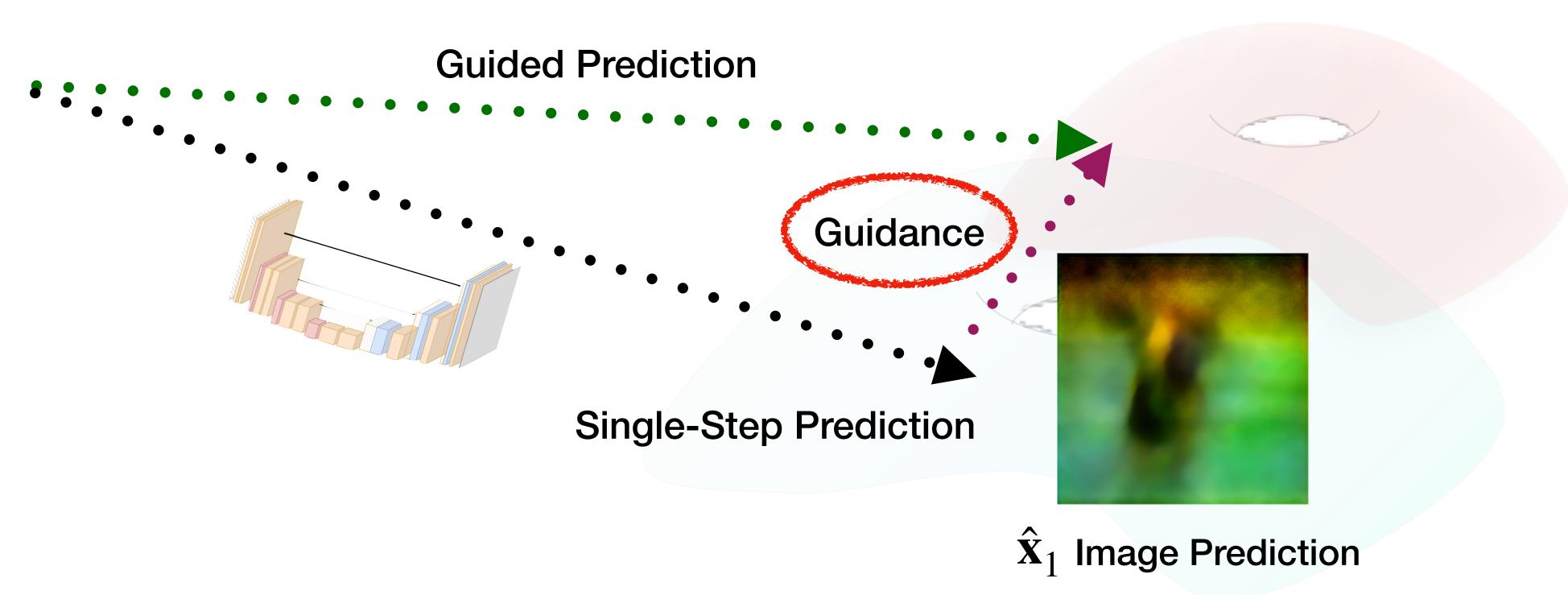
Classifier Guidance

Using a Pretrained Classifier



 \mathbf{X}_t Noise Image

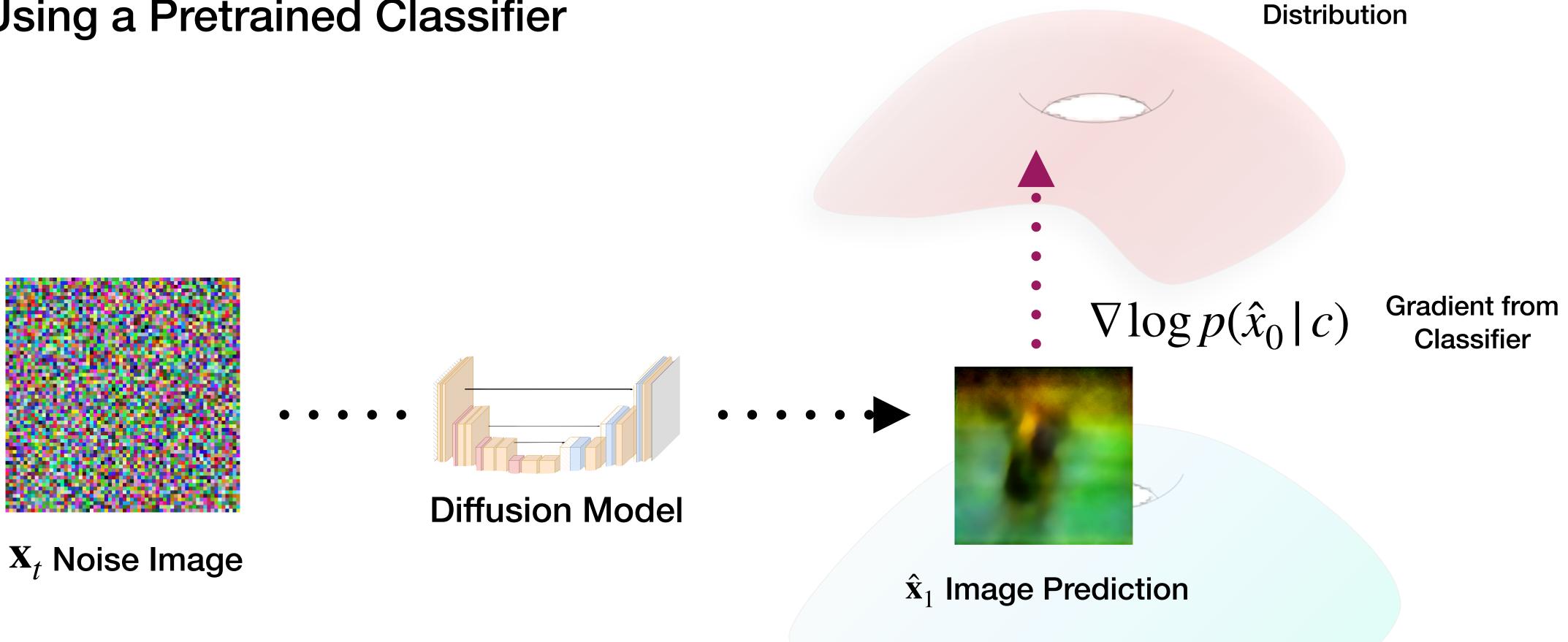
Raspberry Beret Distribution



Natural Image Distribution

Classifier Guidance

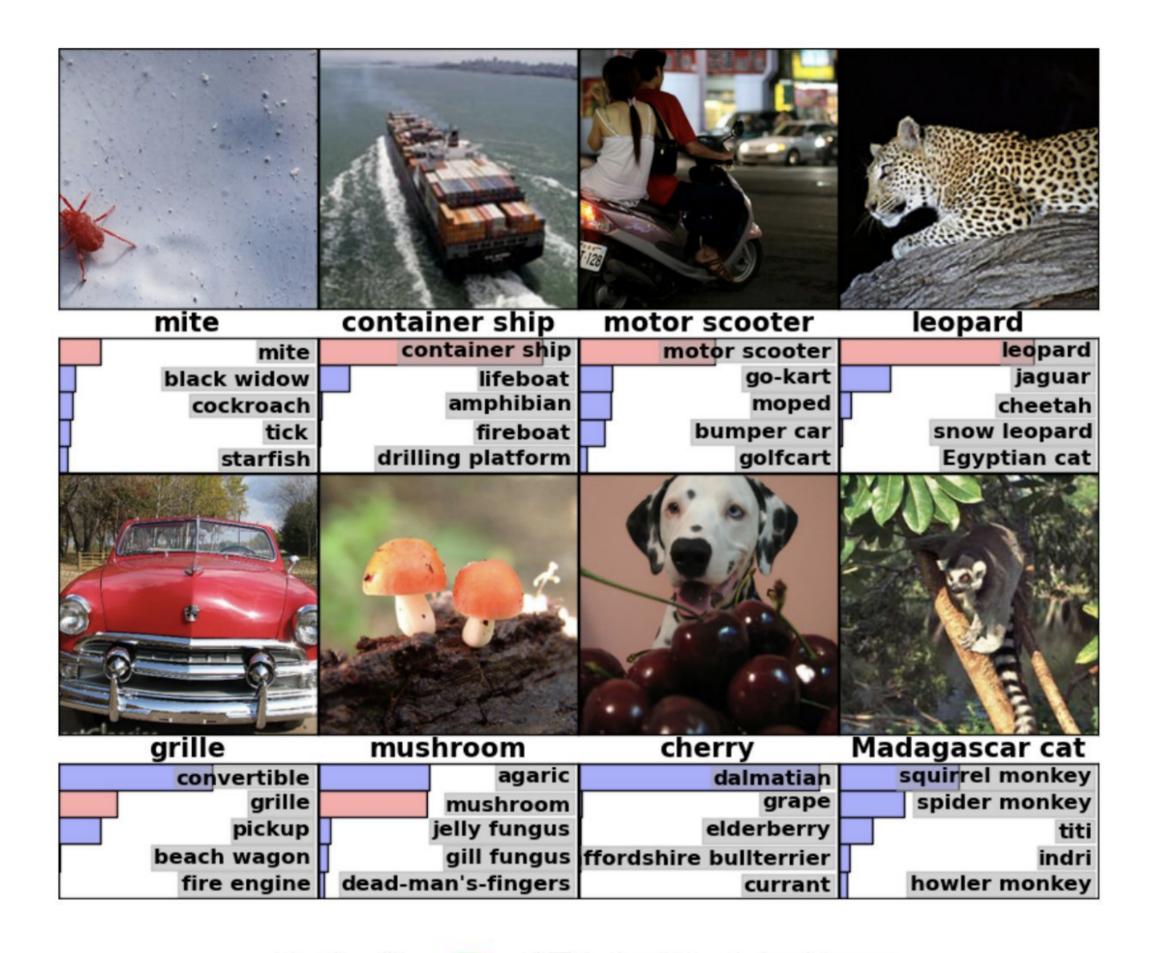
Using a Pretrained Classifier



Natural Image Distribution

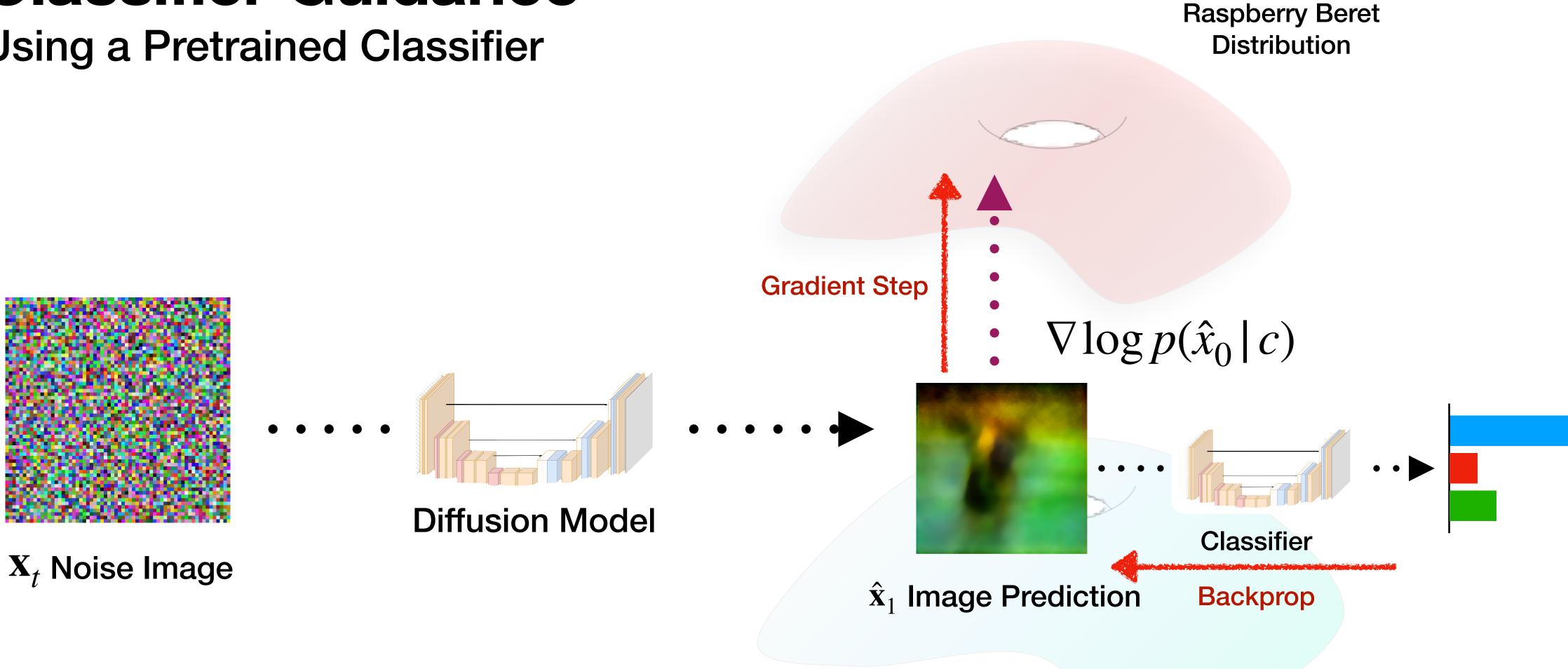
Raspberry Beret

For Example...



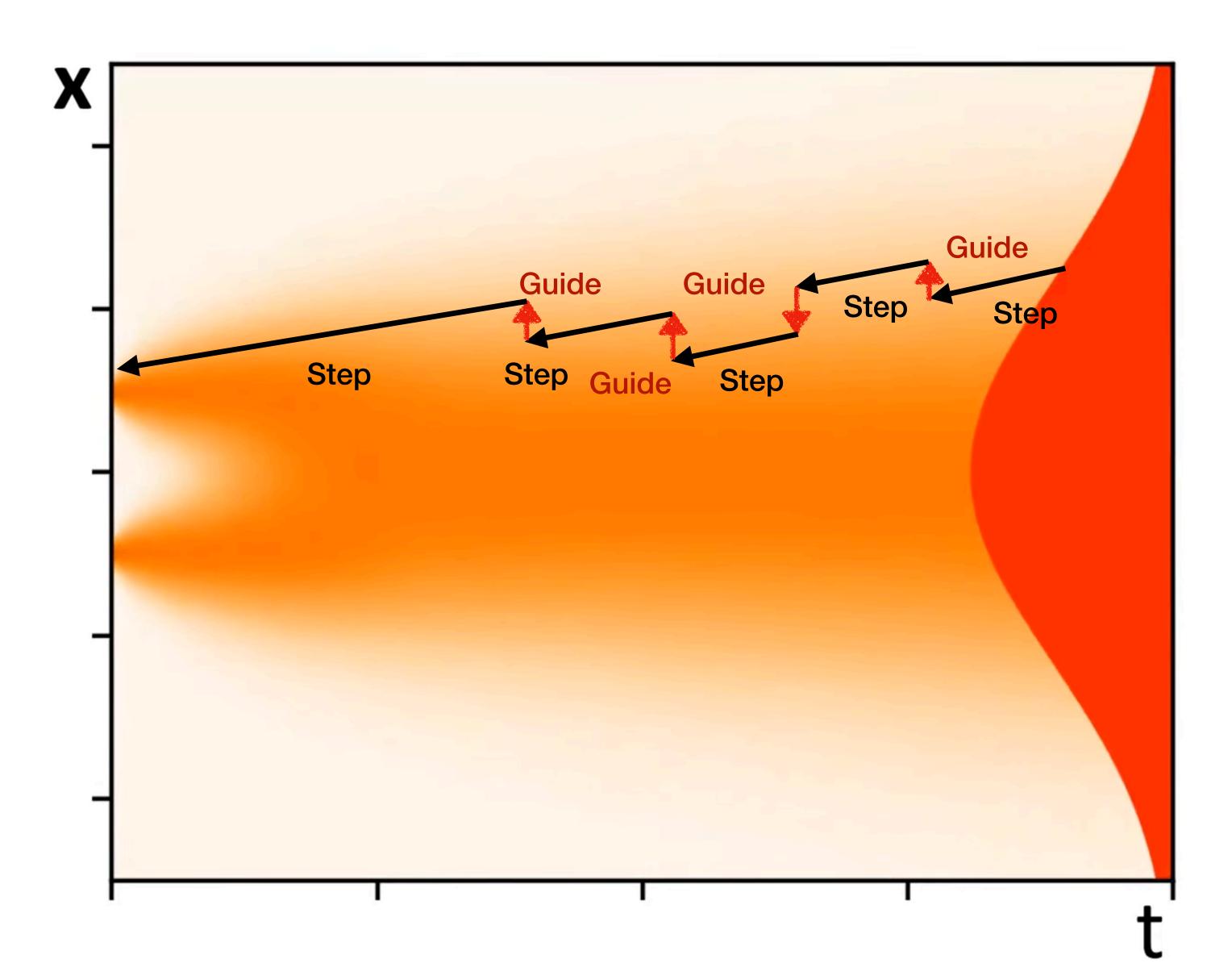
Classifier Guidance

Using a Pretrained Classifier



Natural Image Distribution

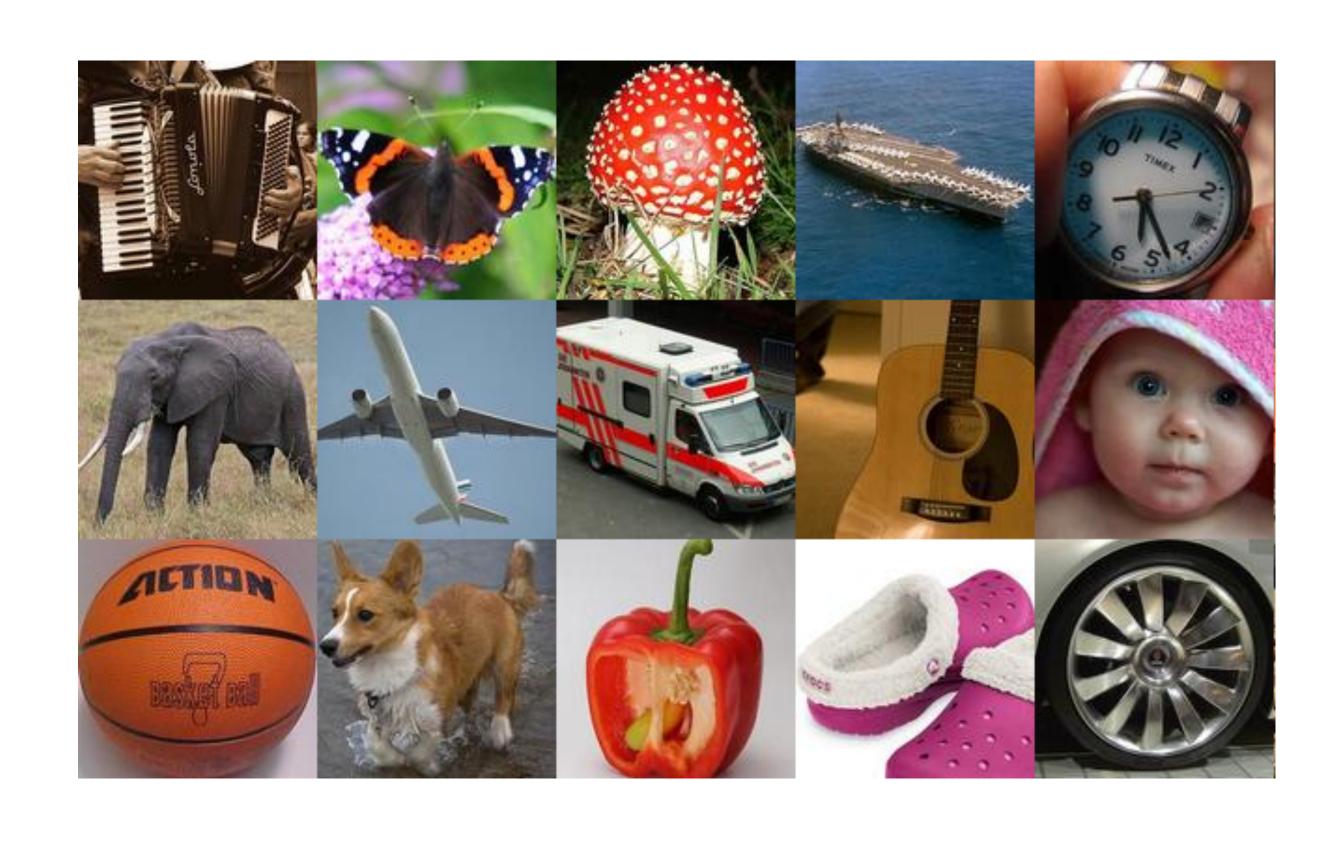
Sampling ODE View



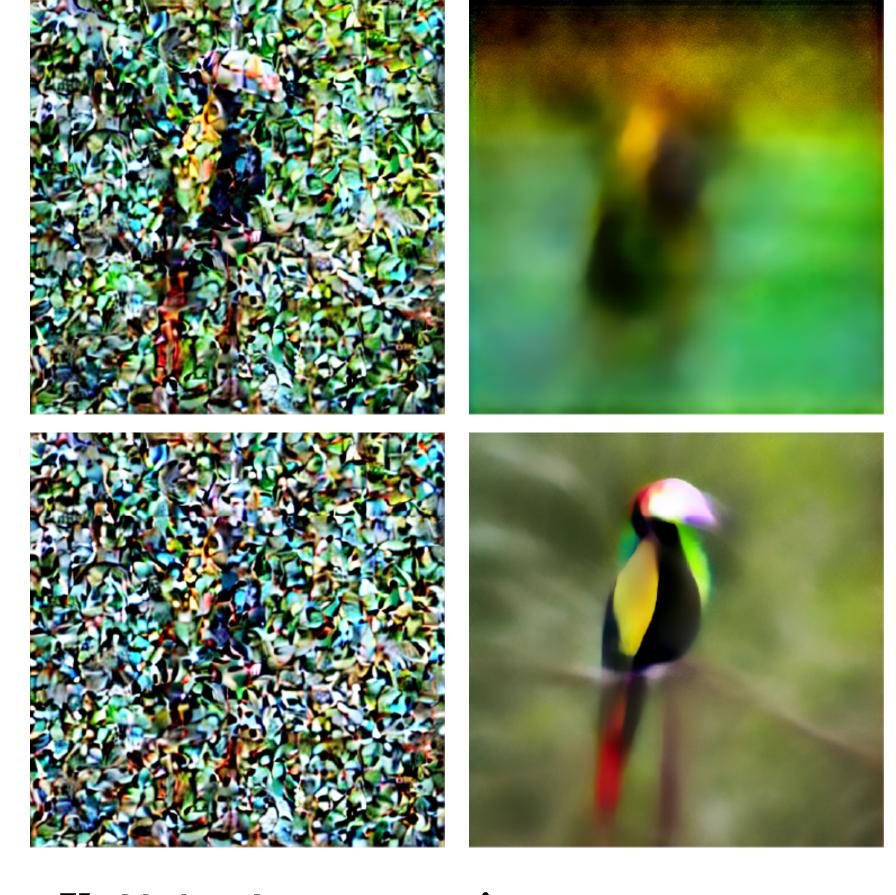
Classify These Images!

Classifier Guidance Pathologies

Intermediate Diffusion Steps are O.O.D. for Classifier



ImageNet Training Data



 \mathbf{X}_t Noise Image

 $\hat{\mathbf{x}}_1$ Image Prediction

Two Approaches

Original

Classifier Guidance

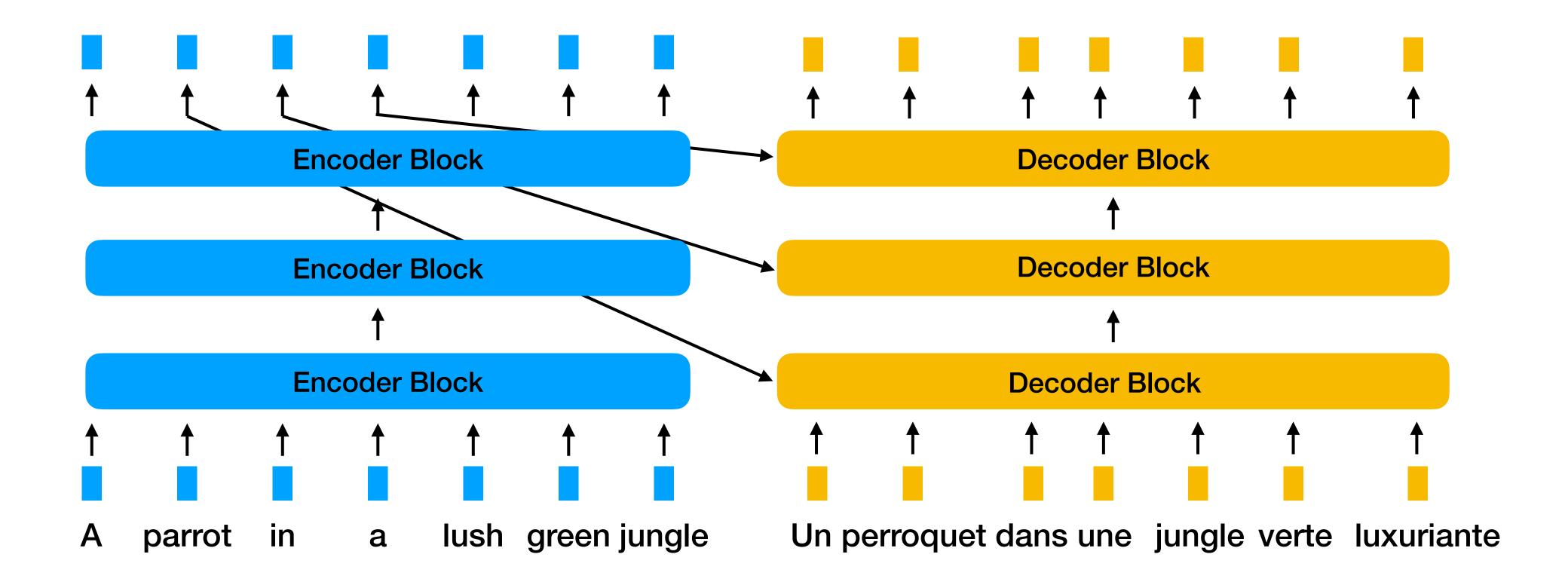
Guide with a pretrained classifier.

Current
Classifier-Free
Guidance

Guide a diffusion model with itself.

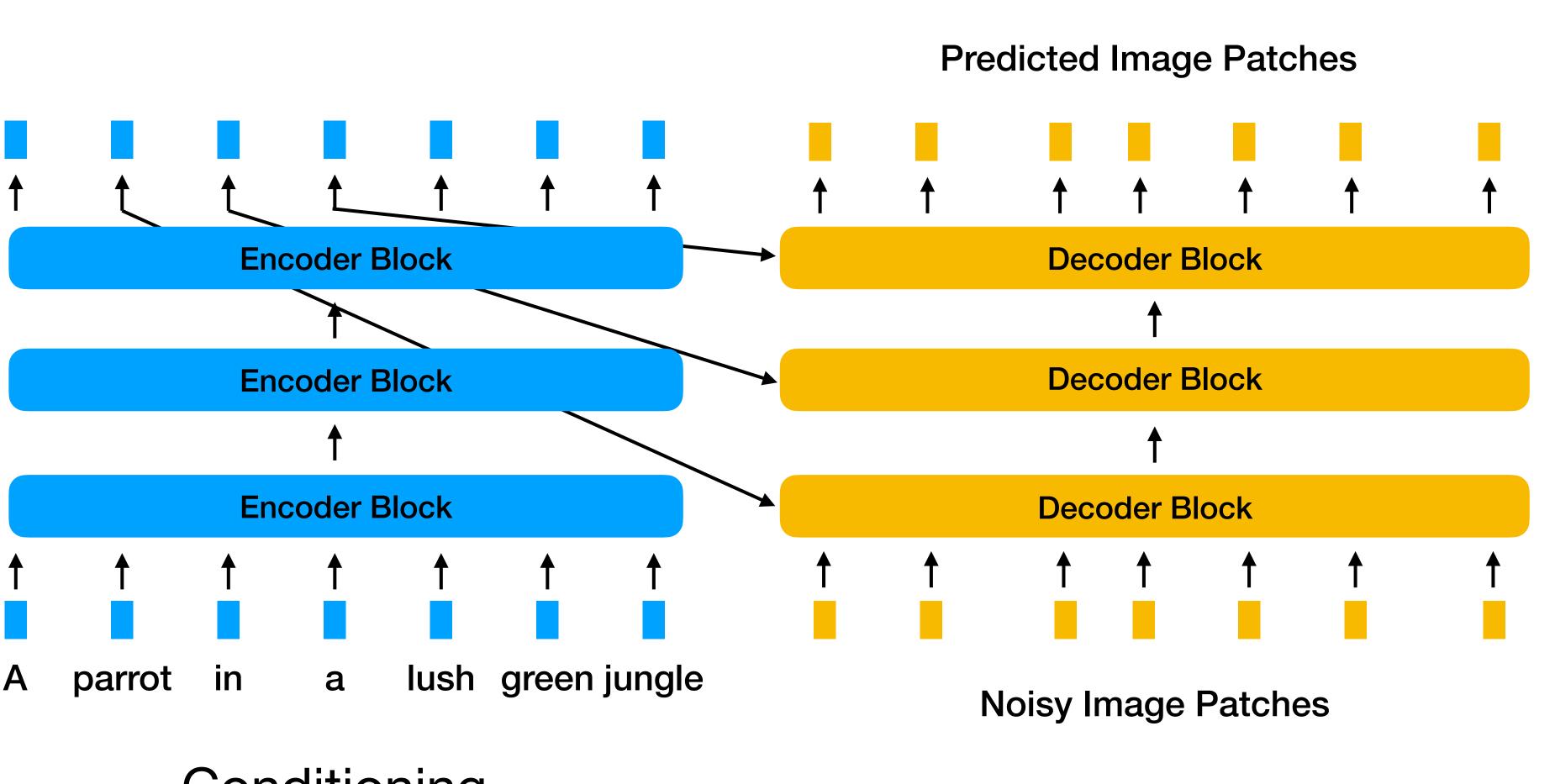
Encoder-Decoder Architecture

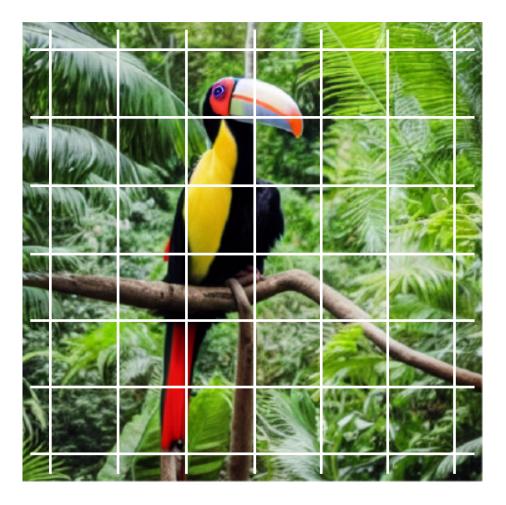
Attention is All You Need



Diffusion Transformer Architecture

DiT, PixArt Alpha, MMDiT, etc.

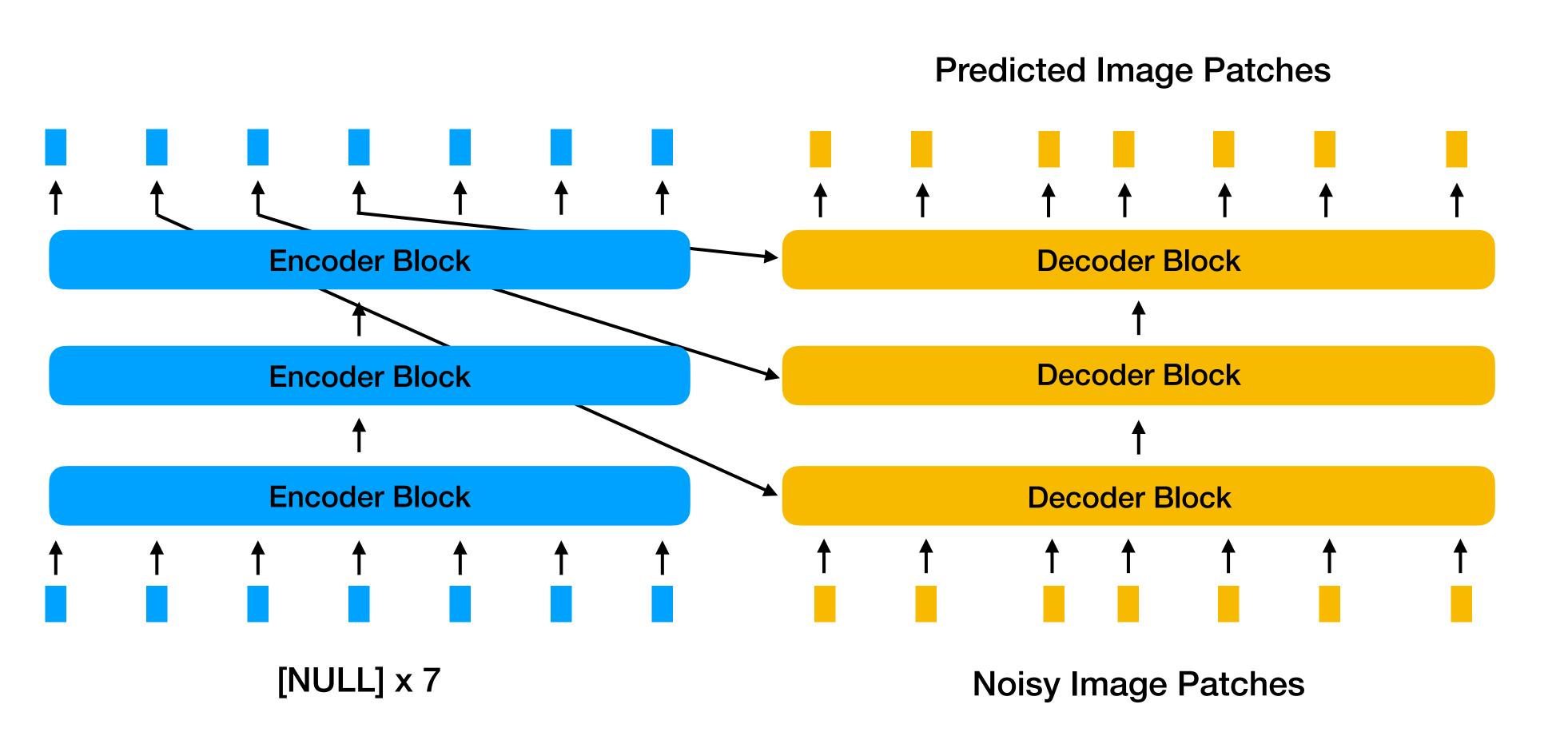


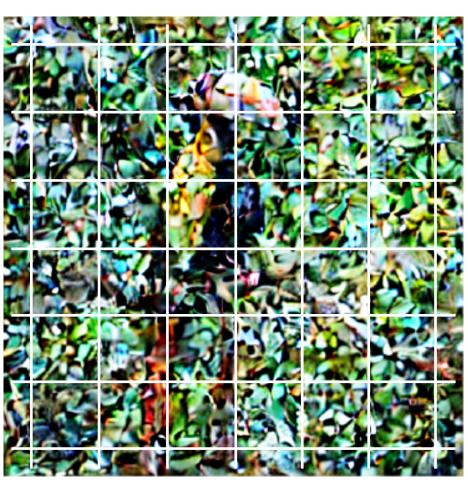


Conditioning

Dropout Conditioning

Maybe 30% of Training Samples



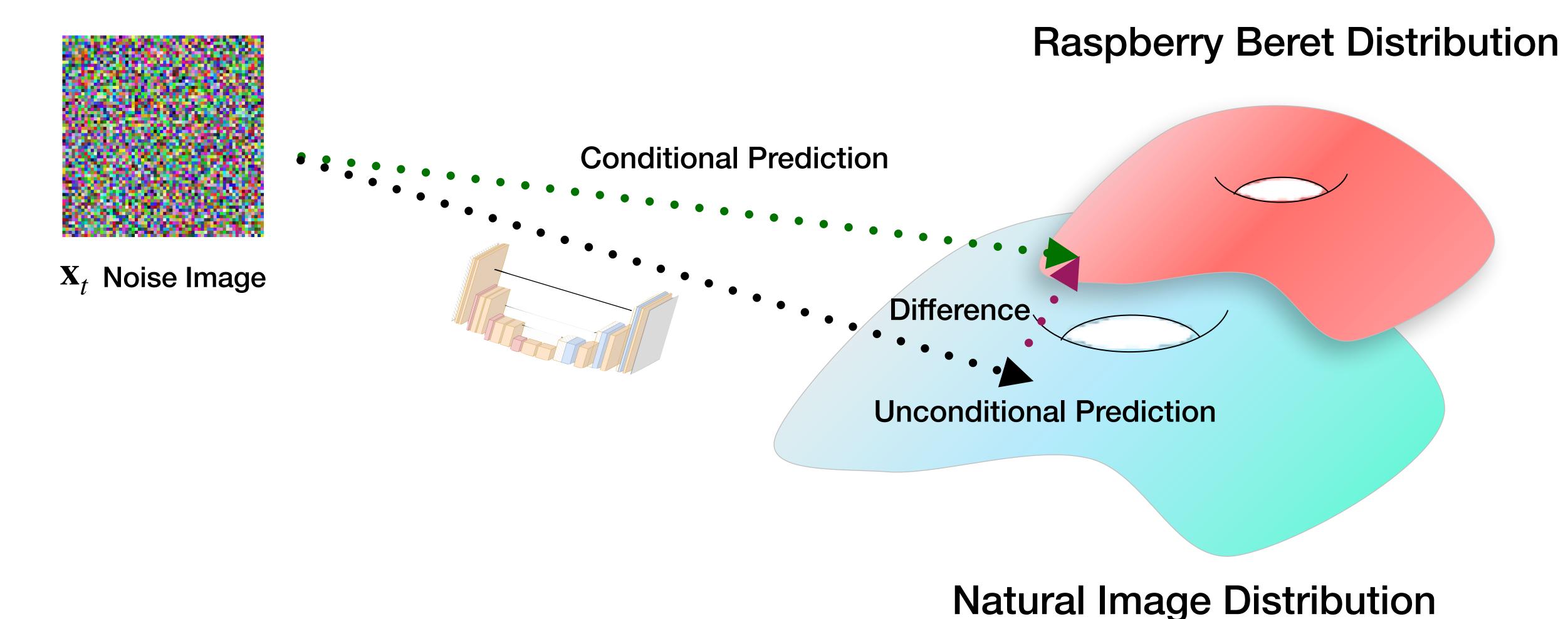


Model is trained to output both

- $\epsilon_{\phi}(\mathbf{X}_t; c)$
- $\epsilon_{\phi}(\mathbf{X}_t; \emptyset)$

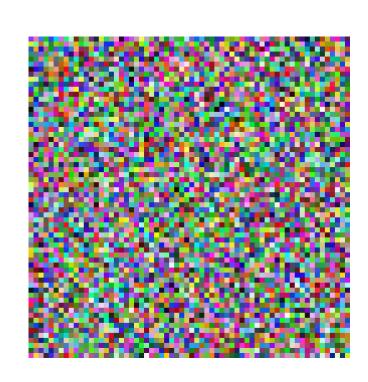
Conditional Diffusion

Model Knows Unconditional, Text-Conditioned Distributions



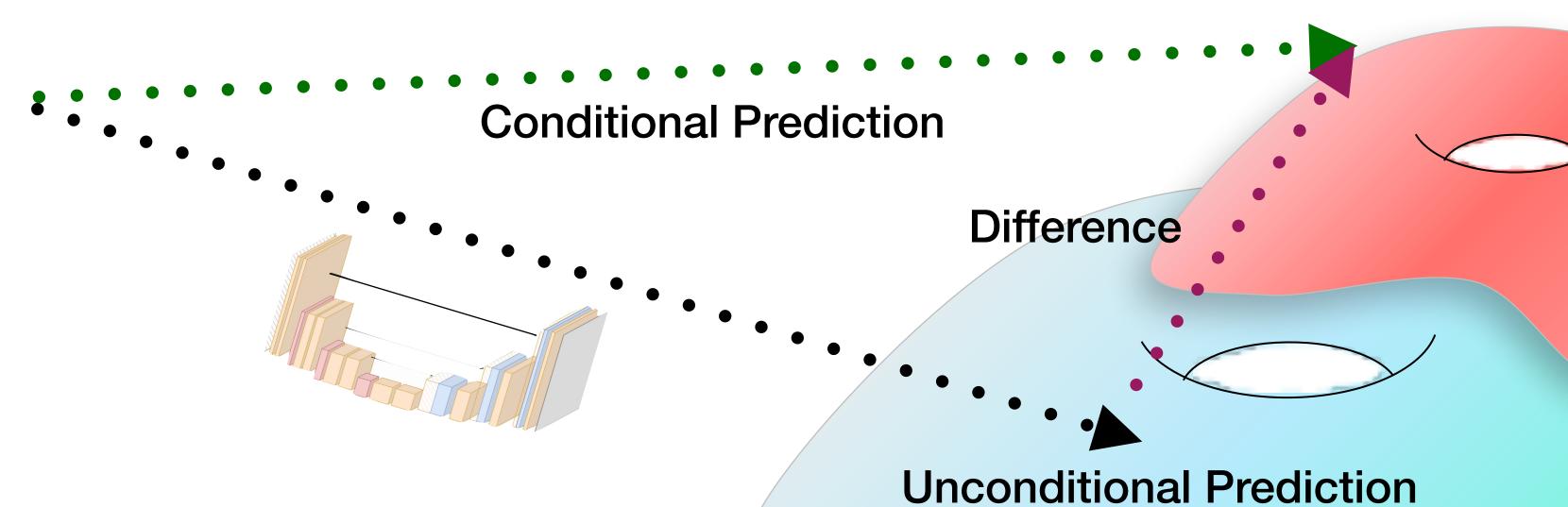
Classifier-Free Guidance

Model Knows Unconditional, Text-Conditioned Distributions



 \mathbf{X}_t Noise Image

Raspberry Beret Distribution



$$\epsilon_{CFG} = s \cdot \left(\epsilon_{\phi}(\mathbf{x}_t; c) - \epsilon_{\phi}(\mathbf{x}_t; \emptyset)\right) + \epsilon_{\phi}(\mathbf{x}_{\theta}; \emptyset)$$

- ϵ_{ϕ} Predicted Noise
- Mull Prompt
- C Target Prompt
- S CFG Scale

Classifier-Free Guidance

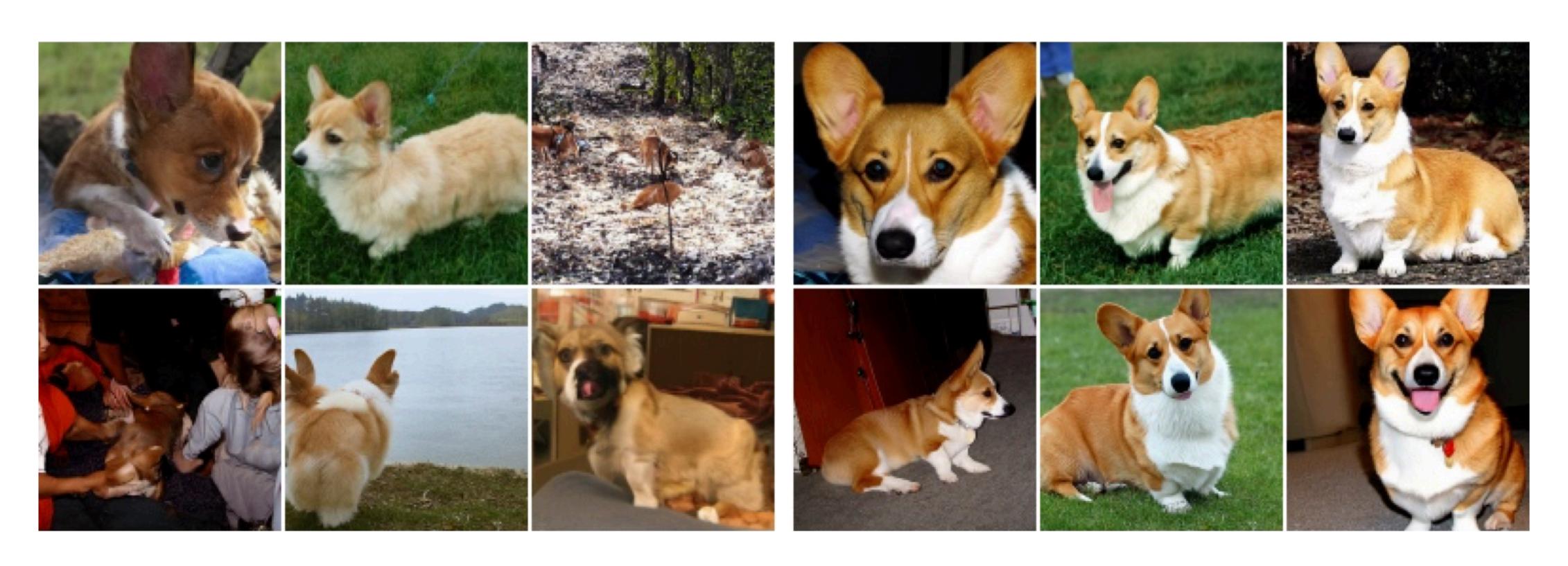
TLDR: Amplify Delta Between Conditional, Unconditional Predictions

$$\epsilon_{\phi,CFG} = s \cdot \left(\epsilon_{\phi}(\mathbf{x}_t;c) - \epsilon_{\phi}(\mathbf{x}_t;\varnothing)\right) + \epsilon_{\phi}(\mathbf{x}_{\theta};\varnothing)$$

- ϵ_{ϕ} Predicted Noise
- Ø Null Prompt
- C Target Prompt
- S CFG Scale

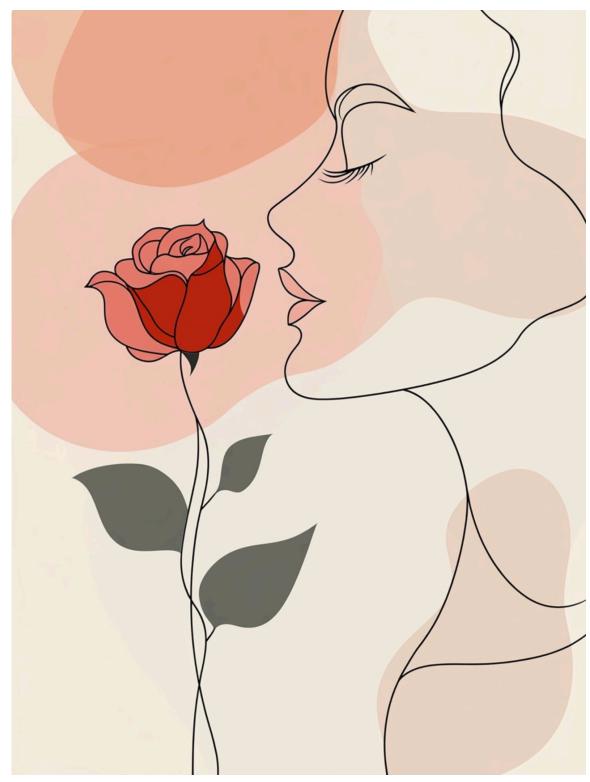
Classifier-Free Guidance

Drives Generations Toward Conditional Mode



s = 1 (Conditional Generation)

s = 3 (Conditional Generation)



Text-Conditioned Diffusion Samples

(Midjourney)

Text-Conditioned Diffusion Sample (Veo 2)

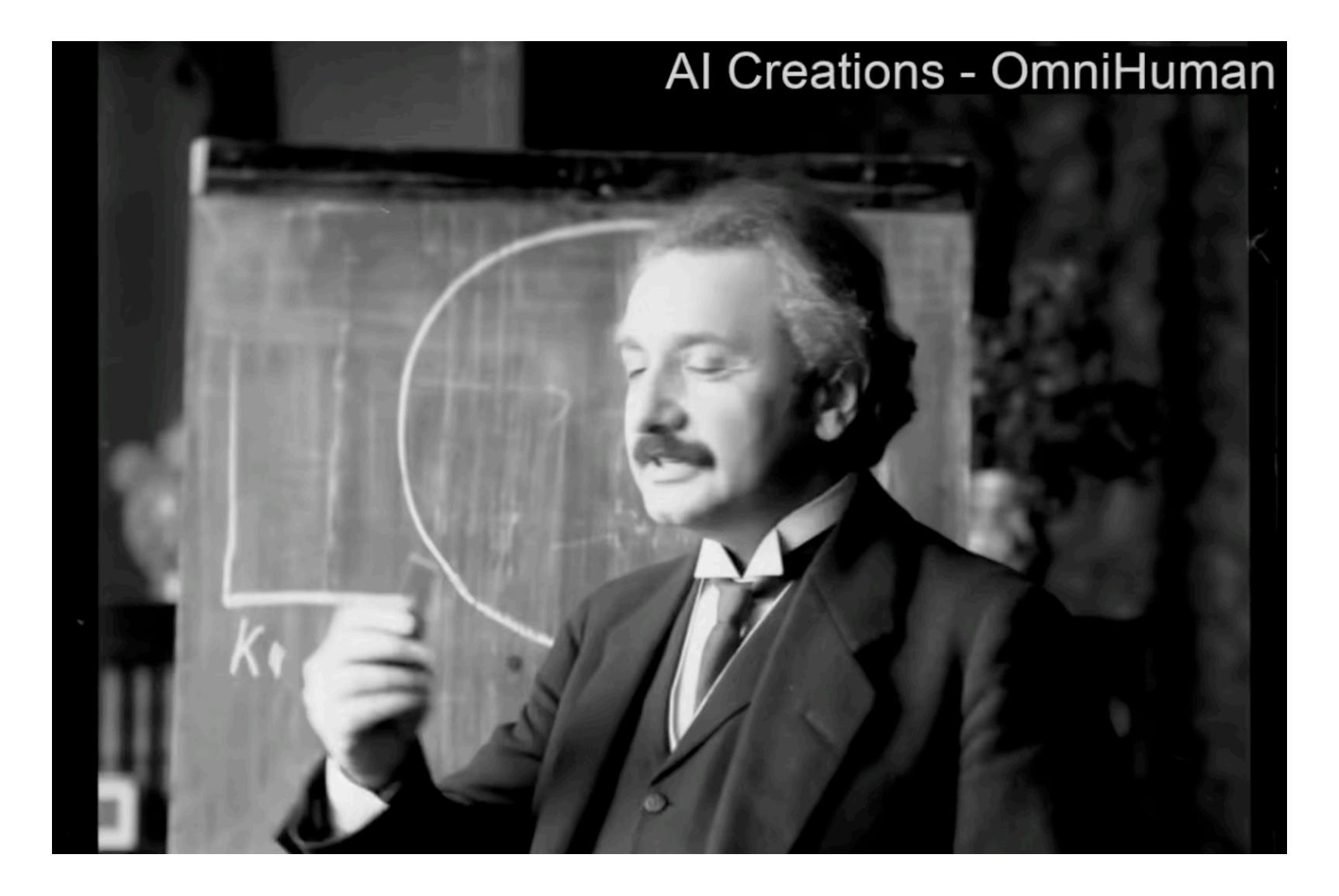
 $p(x \mid c)$

Guidance Lets Us Sample a Conditional Distribution

$$p(x \mid c)$$

Guidance Lets Us Sample a Conditional Distribution

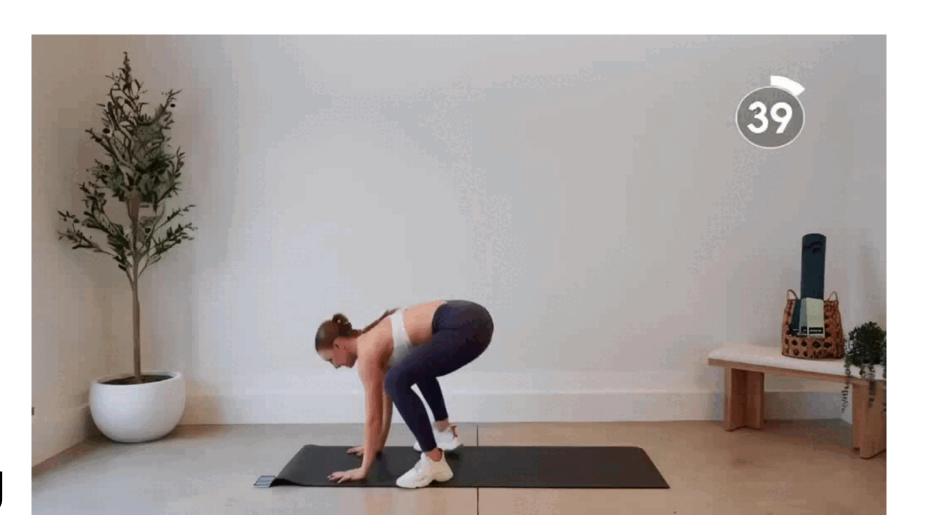
What if we're creative about the conditioning?



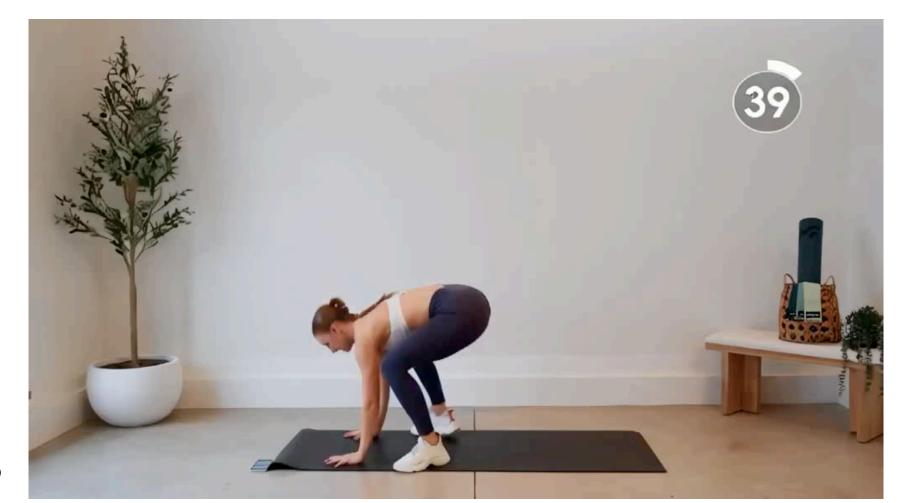
Condition on the First frame and Audio, Generate the Video

Condition on the First Frame and Actions, Generate an Interactive Environment

Condition on Video Pixels, Generate Depth Map

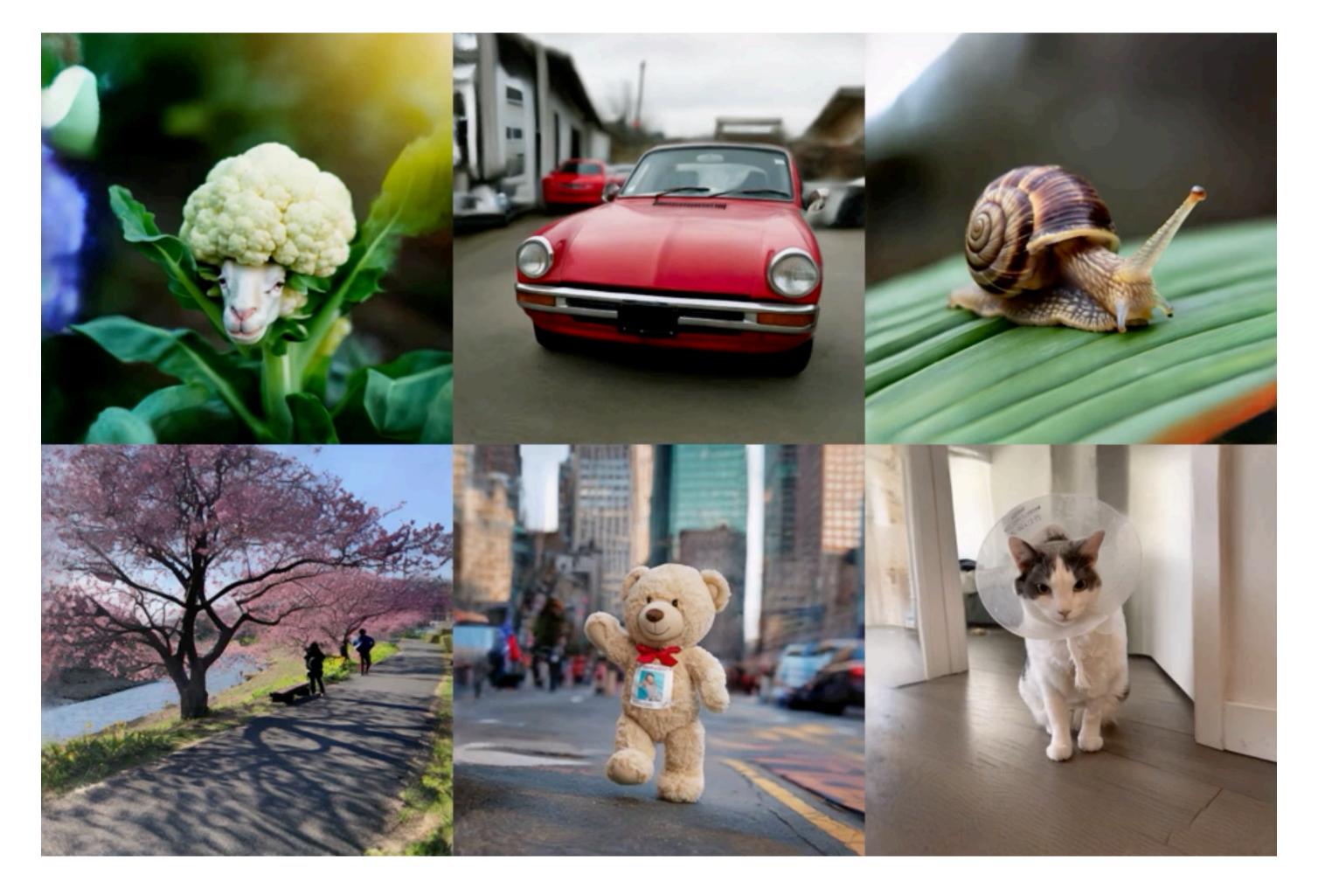


Conditioning

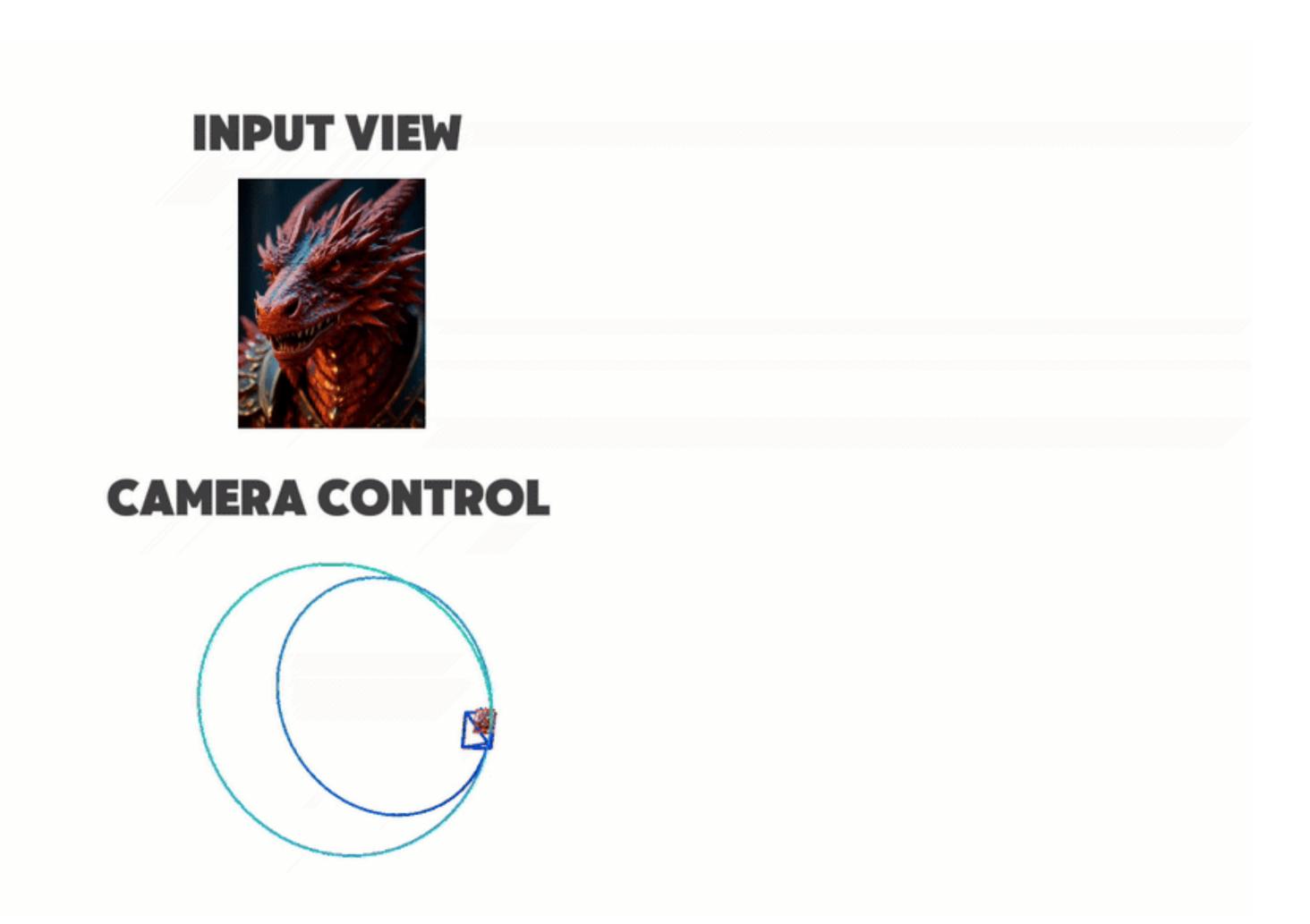


Samples

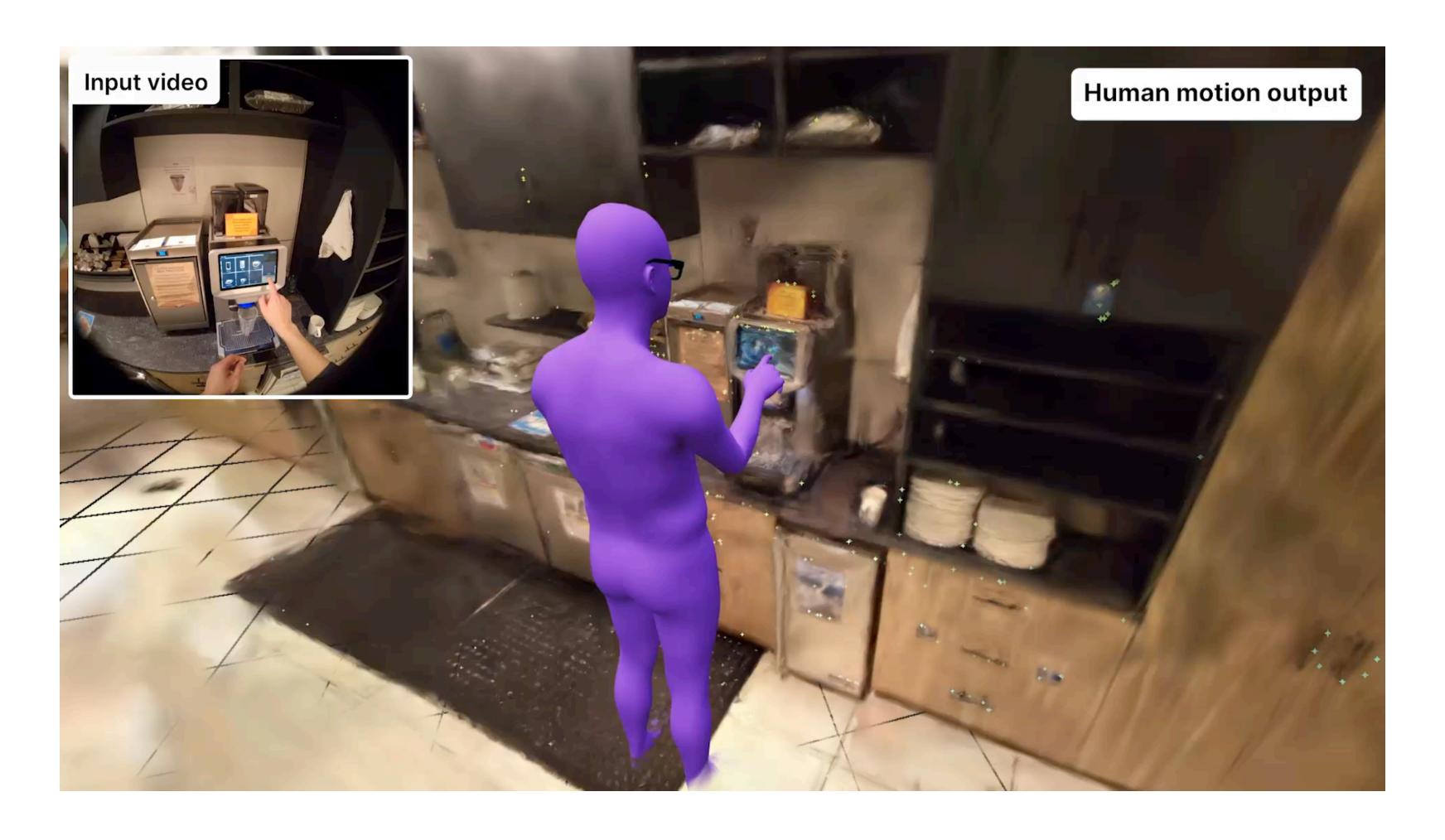
Condition on Start and End Frame, Generate Intermediate Frames



Condition on Image + Camera, Generate Novel Views



Condition on Image + Camera, Generate Novel Views



Condition on Ego View, Generate Human Poses