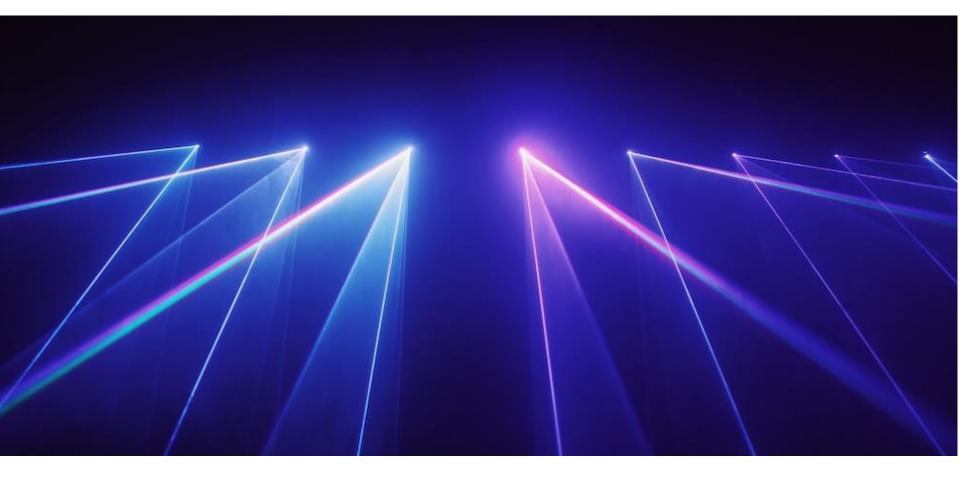
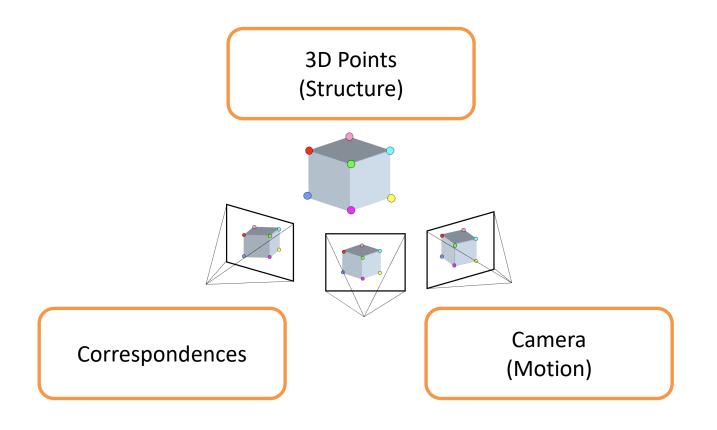
Epipolar Geometry + Calibration



A lot of slides from Noah Snavely + Shree Nayar's YT series: First principals of Computer Vision

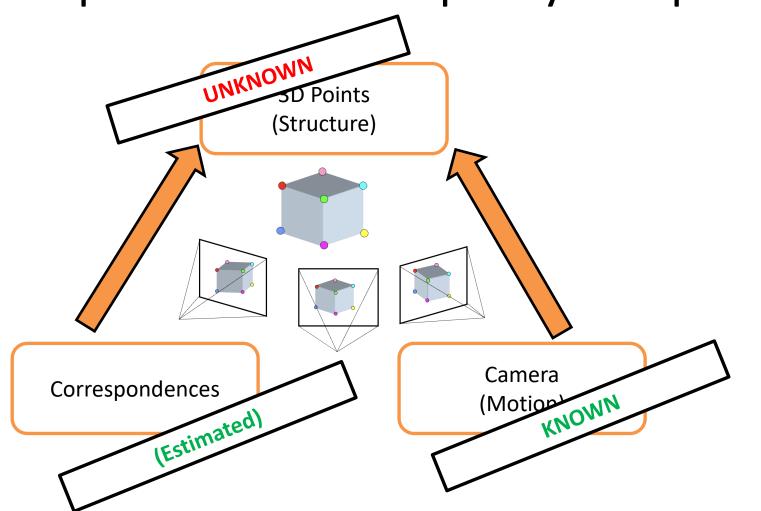
CS180: Intro to Computer Vision and Comp. Photo Angjoo Kanazawa & Alexei Efros, UC Berkeley, Fall 2025

Many problems in 3D



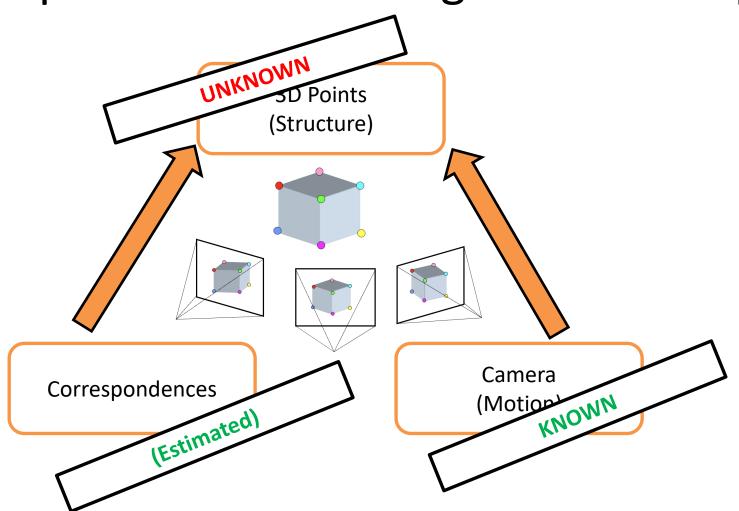
Simple Stereo;

Corresp + Camera = Disparity = depth⁻¹

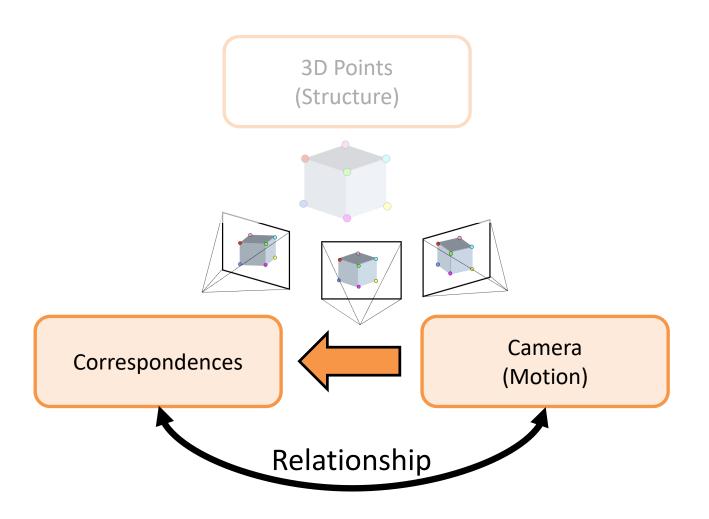


Today: Arbitrary Stereo;

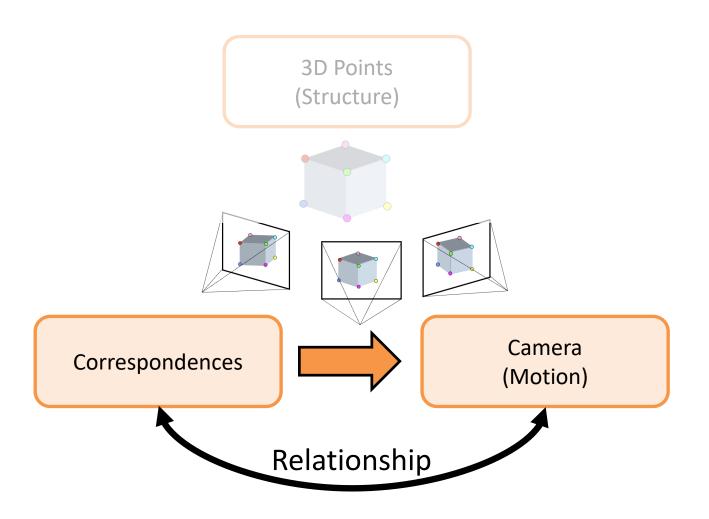
Corresp + Camera – Triangulation = depth



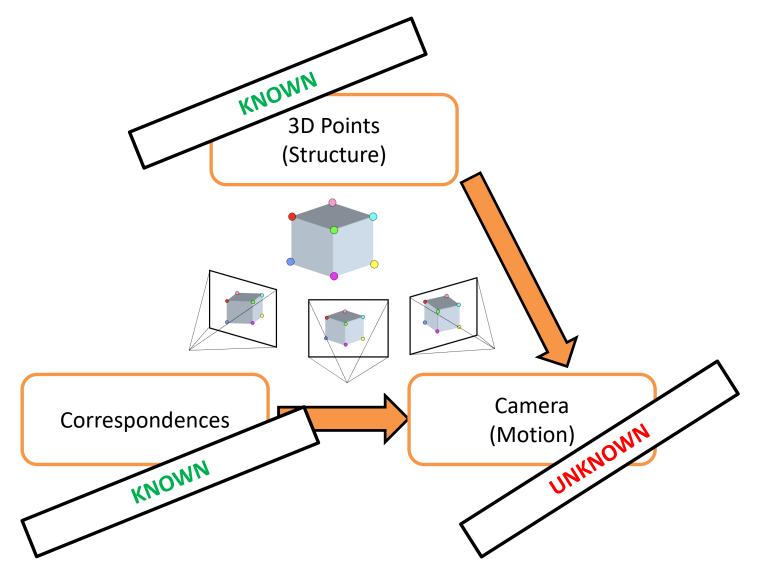
Camera helps Correspondence: **Epipolar Geometry**



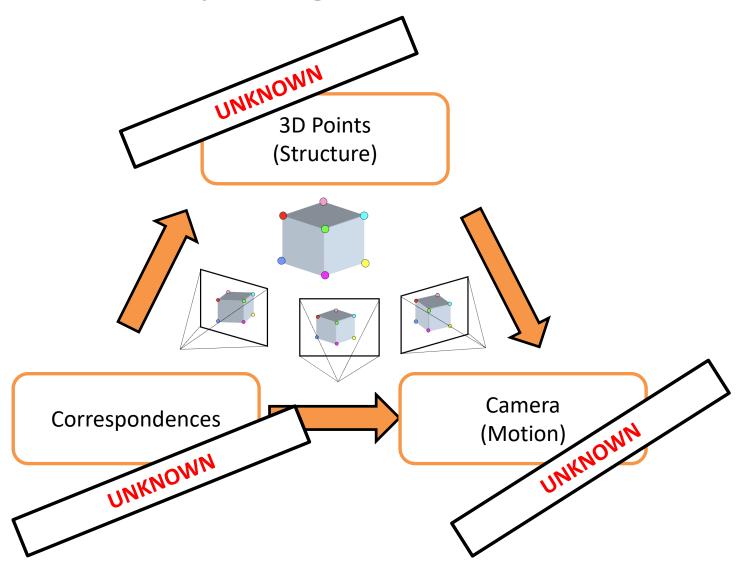
Correspondence gives camera: **Epipolar Geometry**



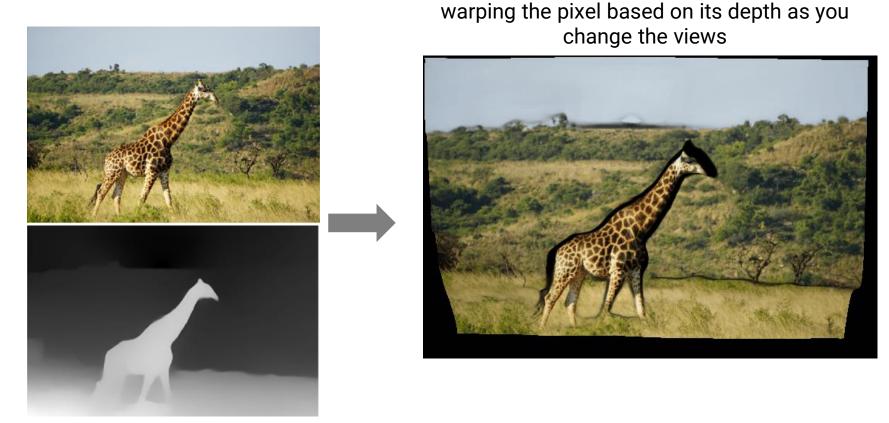
Next: Camera Calibration



After that: Structure-from-Motion Everything* Unknown



What Depth Map provides



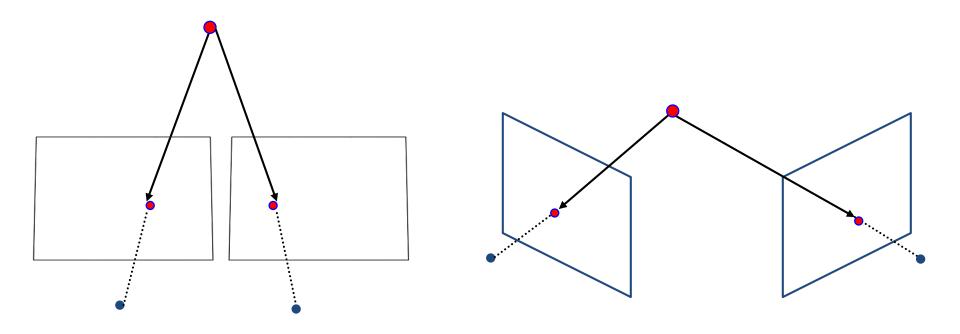
Monocular Depth Prediction [Ranftl et al. PAMI'20]

More cool things with Depth

3D photo AR

Next: General case

- The two cameras need not have parallel optical axes.
- Assume camera intrinsics are calibrated



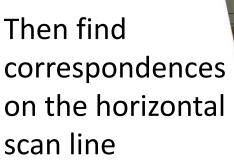
Same hammer:

Find the correspondences, then solve for structure

Option 1: Rectify via homography



Original stereo pair



General case, known camera, find depth: Option 2

- 1. Find correspondences
- 2. Triangulate

General case, known camera, find depth: Option 2

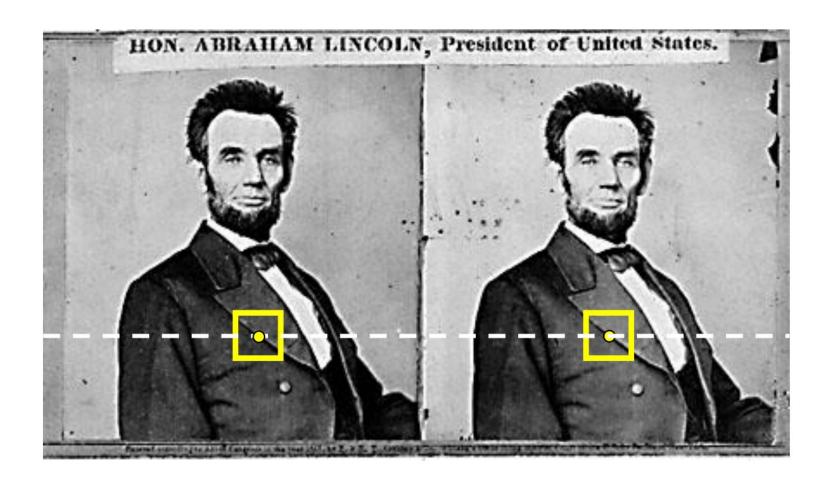
1. Find correspondences

2. Triangulate

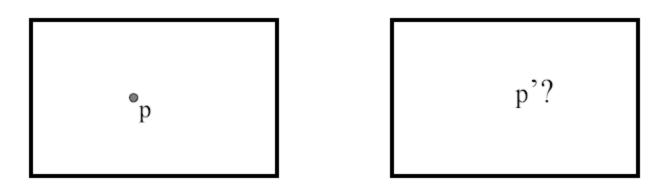
Can we restrict the search space again to 1D?

What is the relationship between the camera + the corresponding points?

Where do epipolar lines come from?

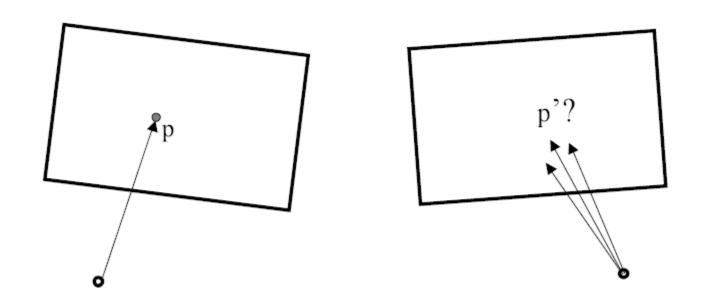


Stereo correspondence constraints



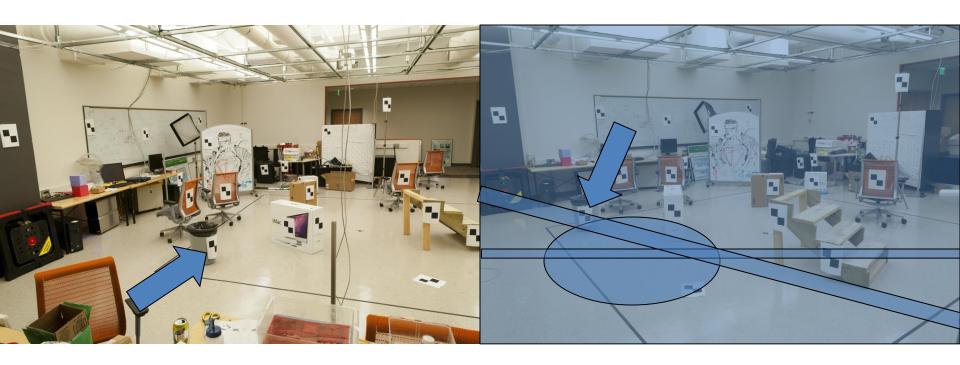
 Given p in left image, where can corresponding point p' be?

Stereo correspondence constraints

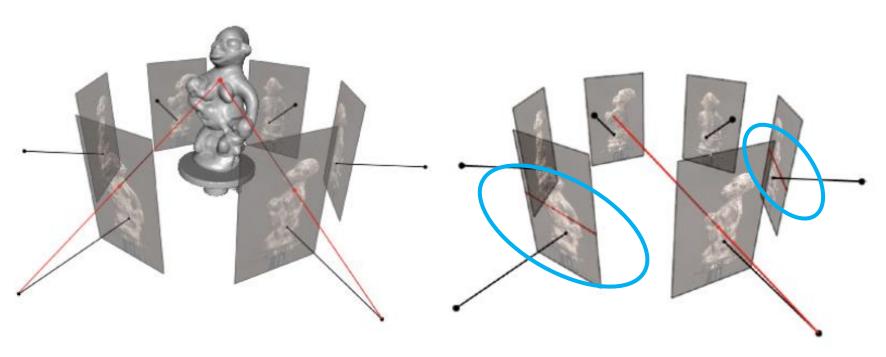


 Given p in left image, where can corresponding point p' be?

Where do we need to search?



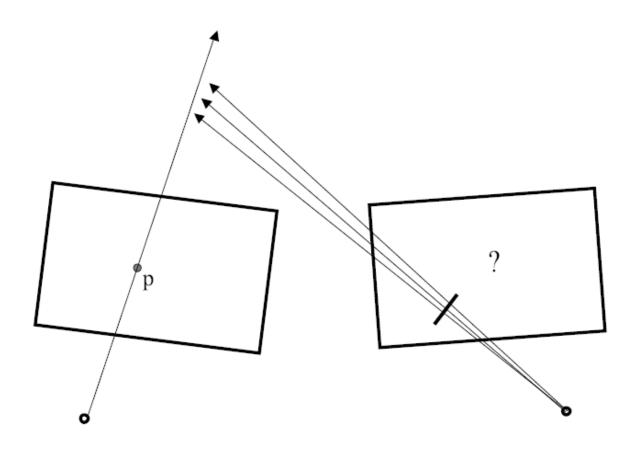
Epipolar Geometry



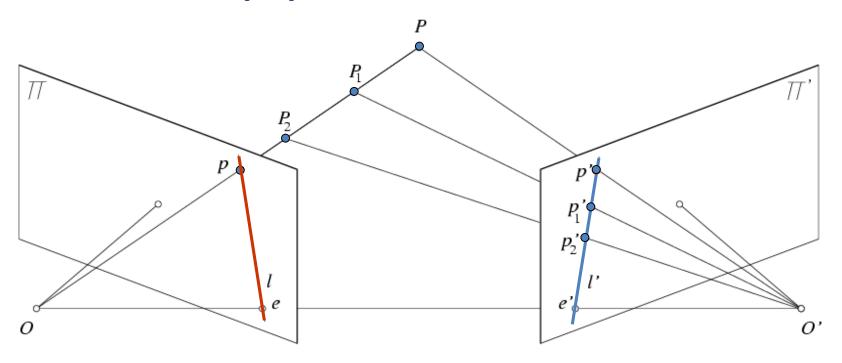
Figures by Carlos Hernandez

If you get confused with the following math, look at this picture again, it just describes this.

Stereo correspondence constraints



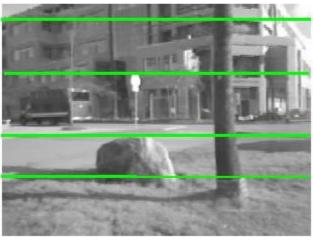
Epipolar constraint



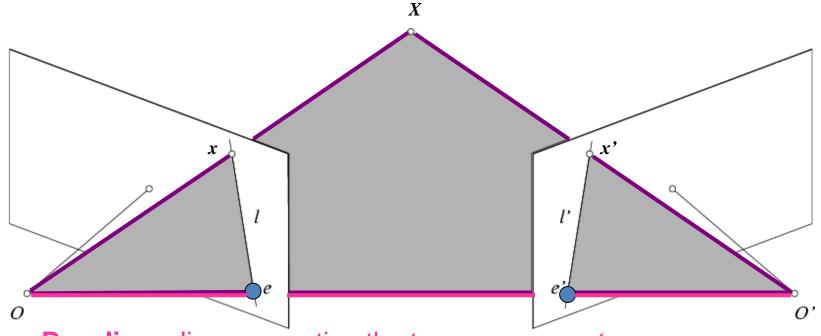
- Potential matches for p have to lie on the corresponding epipolar line l'.
- Potential matches for p' have to lie on the corresponding epipolar line l.

Source: M. Pollefeys

Example



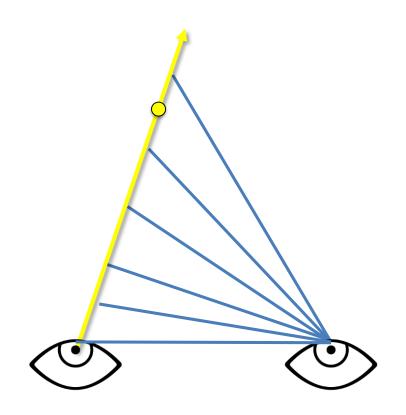
Parts of Epipolar geometry



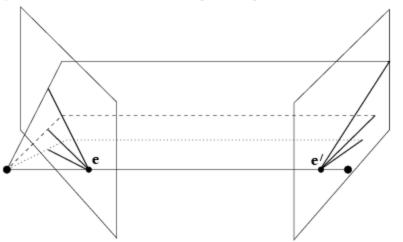
- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- = vanishing points of the baseline

The Epipole

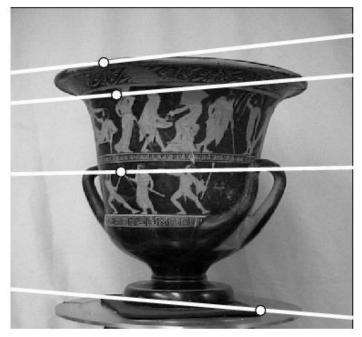
The epipolar line has to go through the epipole



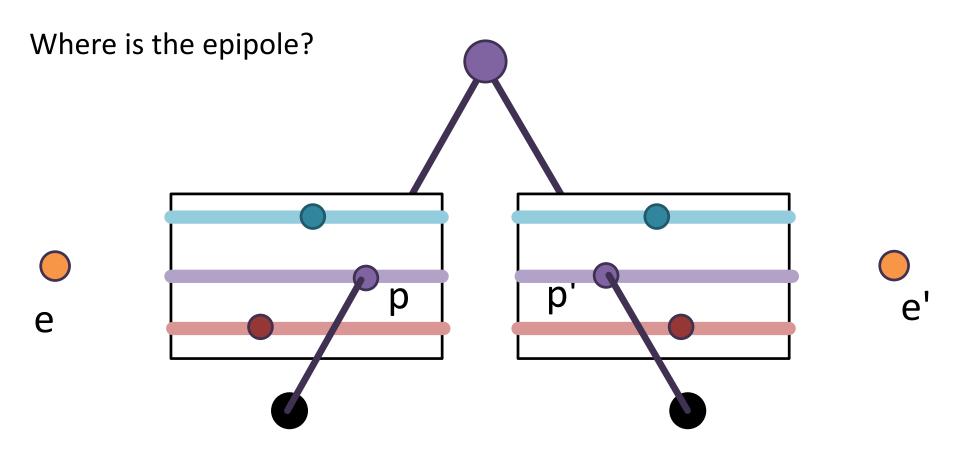
Example: converging cameras



As position of 3d point varies, epipolar lines "rotate" about the baseline

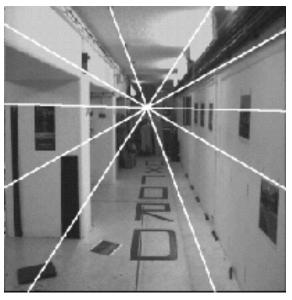


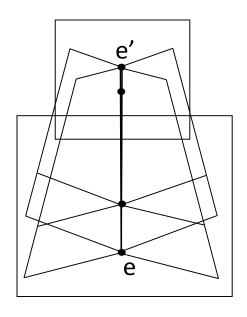
Example: Parallel to Image Plane



Epipoles infinitely far away, epipolar lines parallel

Example: forward motion





Epipole has same coordinates in both images.

Points move along lines radiating from e: "Focus of expansion"

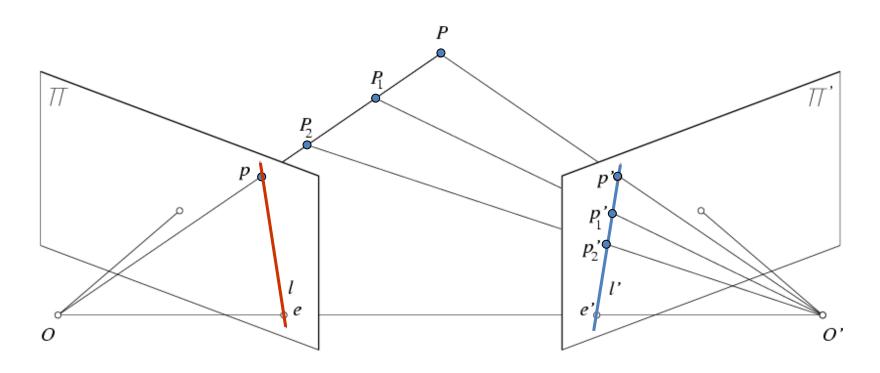
Motion perpendicular to image plane

http://vimeo.com/48425421

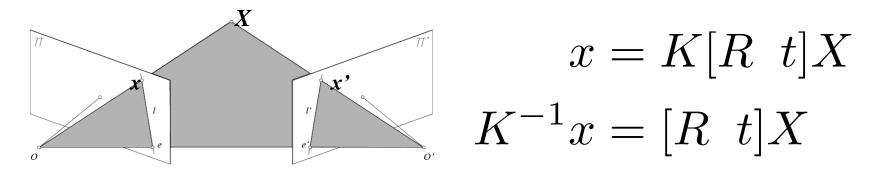
Ok so where were we?

- Setup: Calibrated Camera (both extrinsic & intrinsic)
- Goal: 3D reconstruction of corresponding points in the image
- We need to find correspondences!
- → 1D search along the epipolar line!
- → Need: Compute the epipolar line from camera

Ok so what exactly are I and I'?



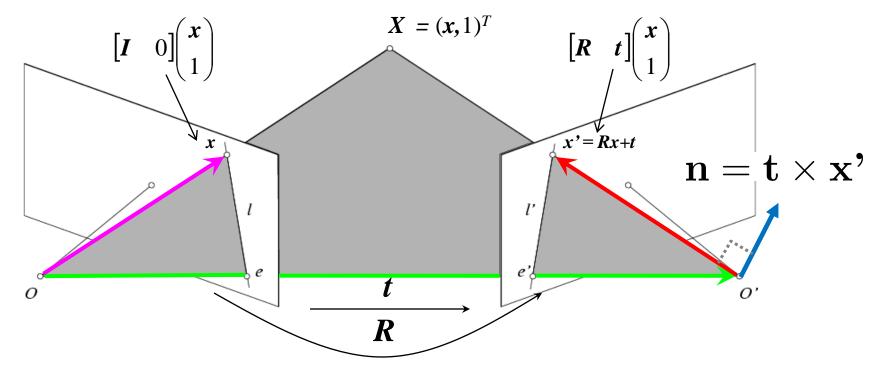
Step 0: Factor out intrinsics



- Let's factor out the effect of K (do everything in 3D)
- Make it into a ray with K⁻¹ and use depth = 1
- This is called the *normalized* image coordinates. It may be thought of as a set of points with identity K

$$x_{\text{norm}} = K^{-1}x_{\text{pixel}} = [I \ 0]X, \qquad x'_{\text{norm}} = K'^{-1}x'_{\text{pixel}} = [R \ t]X$$

Assume that the points are normalized from here on



The vectors x, t, and x' are coplanar

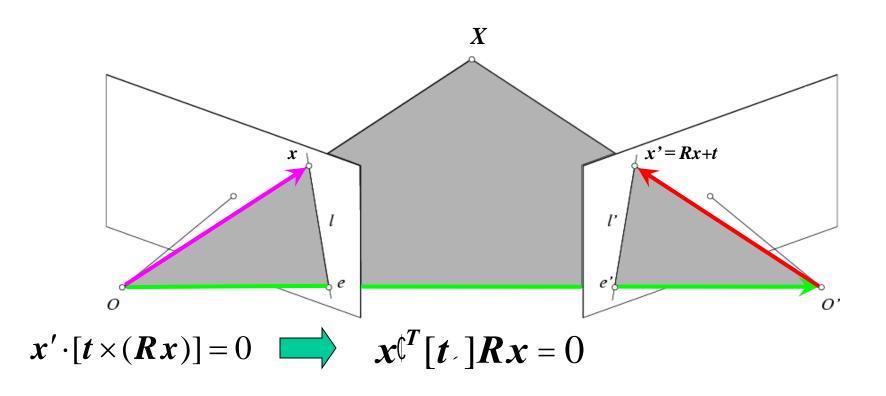
What can you say about their relationships, given $n = t \times x$?

$$\mathbf{x'} \cdot (\mathbf{t} \times \mathbf{x'}) = 0$$

$$\mathbf{x'} \cdot (\mathbf{t} \times (R\mathbf{x} + \mathbf{t})) = 0$$

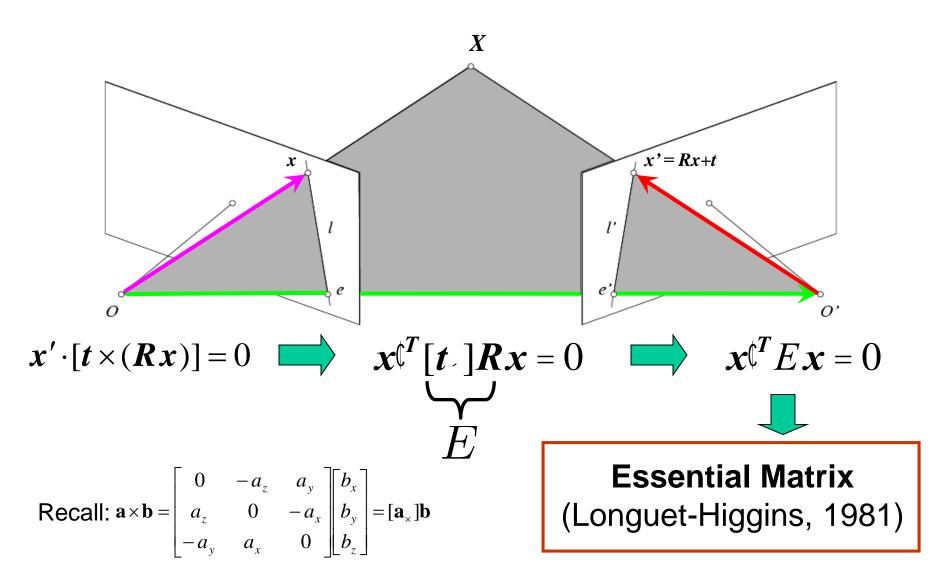
$$\mathbf{x'} \cdot (\mathbf{t} \times R\mathbf{x} + \mathbf{t} \times \mathbf{t})) = 0$$

$$\mathbf{x'} \cdot (\mathbf{t} \times R\mathbf{x}) = 0$$

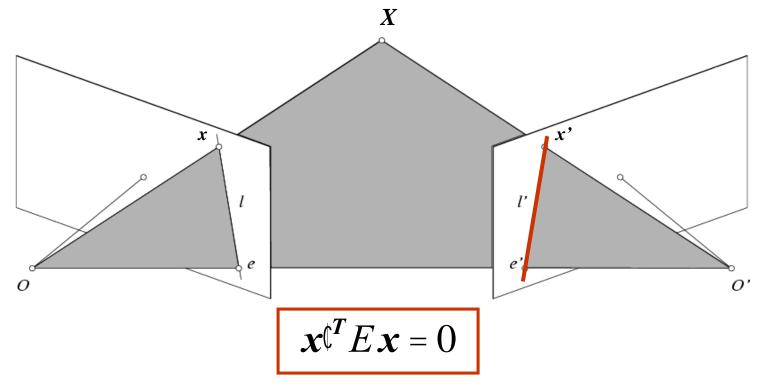


Recall:
$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a}_{\times}]\mathbf{b}$$

The vectors x, t, and x' are coplanar



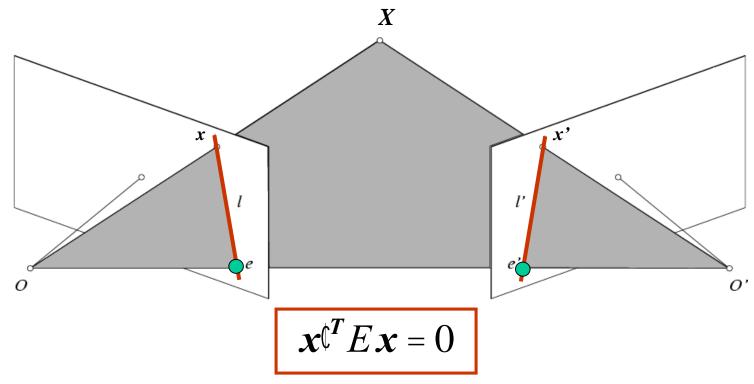
The vectors x, t, and x' are coplanar



- E x is the epipolar line associated with x (I' = E x)
 - Recall: a line is given by ax + by + c = 0 or

$$\mathbf{l}^T \mathbf{x} = 0$$
 where $\mathbf{l} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

Epipolar constraint: Calibrated case



- E x is the epipolar line associated with x (I' = E x)
- $E^T x'$ is the epipolar line associated with x' ($I = E^T x'$)
- E e = 0 and $E^T e' = 0$
- E is singular (rank two)
- E has five degrees of freedom

Why is the epipolar matrix rank 2?

Question: With known camera (i.e. essential matrix),

can you map a point on the left image to the right?

A: No! You don't know where exactly the point is, just that it will be on a line.

2D point → 1D line, lost a dimension

Why? Because camera does not give you depth. You need depth for precise point corresp

R, T ~ Essential Matrix

Recall, knowing the camera gives you the essential matrix (i.e. the plane per point)

So the DoF has to match up

Essential matrix: 3 x 3, 9 numbers, but rank2 means 2 columns fully define = 6 parameters -1 for scale = 5 DoF

Extrinsic Camera (R, T): 3 for rotation, 3 for translation, but -1 for scale = 5 DoF!

Epipolar constraint: Uncalibrated case

Recall that we normalized the coordinates

$$x=K^{-1}\hat{x}$$
 $x'=K'^{-1}\hat{x}'$ $\hat{x}=\begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$

where \hat{x} is the image coordinates

- But in the uncalibrated case, K and K' are unknown!
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$x'^{T}Ex = 0$$

$$(K'^{-1}\hat{x}')'^{T}E(K^{-1}\hat{x}) = 0$$

$$\hat{x}'^{T}K'^{-T}E(K^{-1}\hat{x}) = 0$$

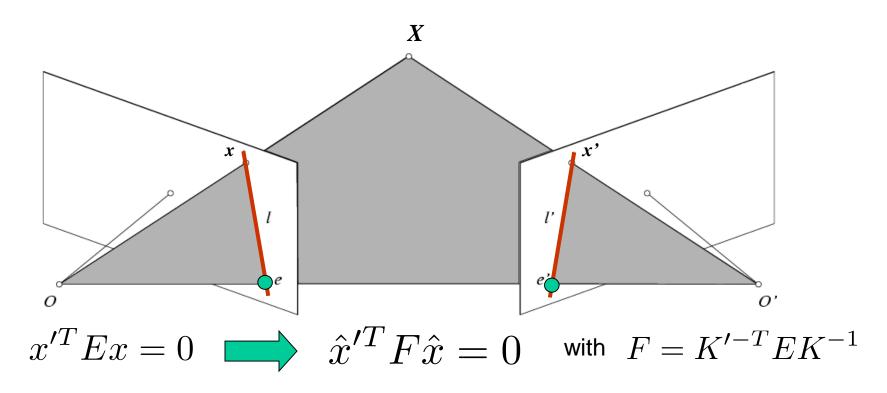
$$\hat{x}'^{T}F\hat{x} = 0$$

$$F = K'^{-T}EK^{-1}$$

Fundamental Matrix

(Faugeras and Luong, 1992)

Epipolar constraint: Uncalibrated case



- $F\widehat{x}$ is the epipolar line associated with \widehat{x} ($I' = F\widehat{x}$)
- $\mathbf{F}^T \widehat{\mathbf{x}}'$ is the epipolar line associated with $\widehat{\mathbf{x}}'$ ($\mathbf{I} = \mathbf{F}^T \widehat{\mathbf{x}}'$)
- Fe = 0 and $F^Te' = 0$
- **F** is singular (rank two)
- F has seven degrees of freedom

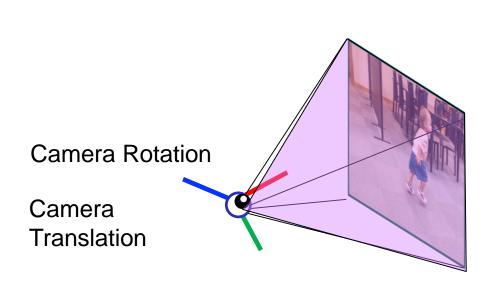
Why 7 DoF?

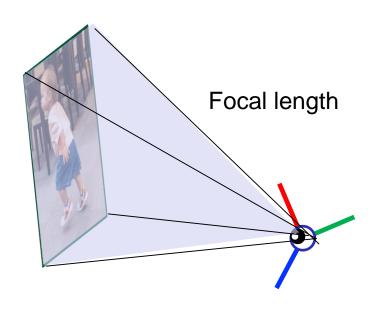
Think about the frustum, this is the unknown!

It's a scaling factor on the frustum, thus 1

unknown for each camera

5 of Essential matrix + 2 = 7.





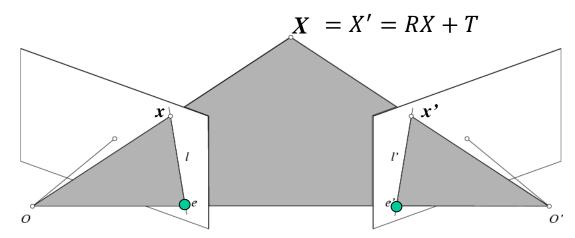
Where are we? (in the original setup)

We have two images with calibrated cameras, want the 3D points!

- Solve for correspondences using epipolar constraints from known camera (1D search)
 - Now we know the exact equation of this line
- 2. Triangulate to get depth!

Finally: computing depth by triangulation

We know about the camera, K₁, K₂ and [R t]:



and found the corresponding points: $x \leftrightarrow x'$

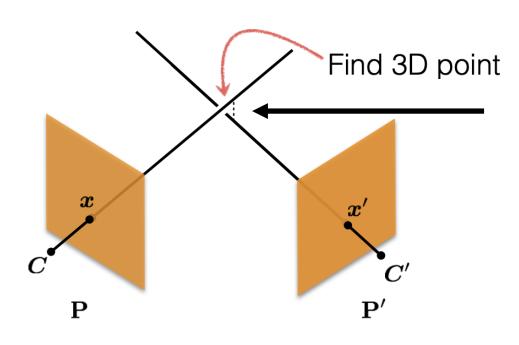
$$x = KX \qquad x' = K'X' \\ = K'(RX + T)$$

How many unknowns + how many equations do we have?

only unknowns!

Solve by formulating Ax=0, see H&Z ch.12

In practice the rays may not intersect!



Ray's don't always intersect because of noise!!!

X s.t.

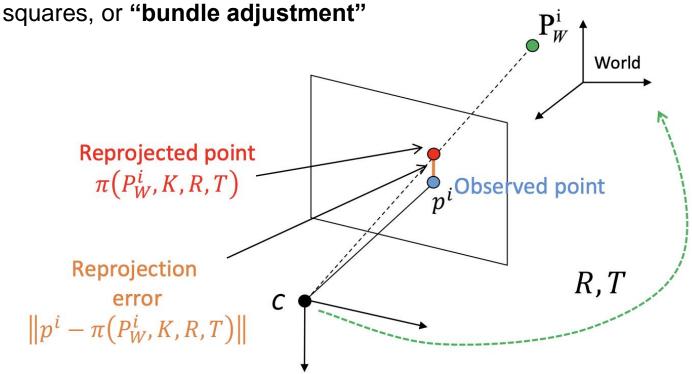
$$x = PX, x' = P'X$$

Slide credit: Shubham Tulsiani

Reprojection error

Even if you do everything right, you will still be off because of noise, this is called the Reprojection Error

In practice with noise, want to directly minimize this with non-linear least



Solve with non-linear least squares, iteratively

Summary: Two-view, known camera

 Assuming known camera intrinsics + extrinsics

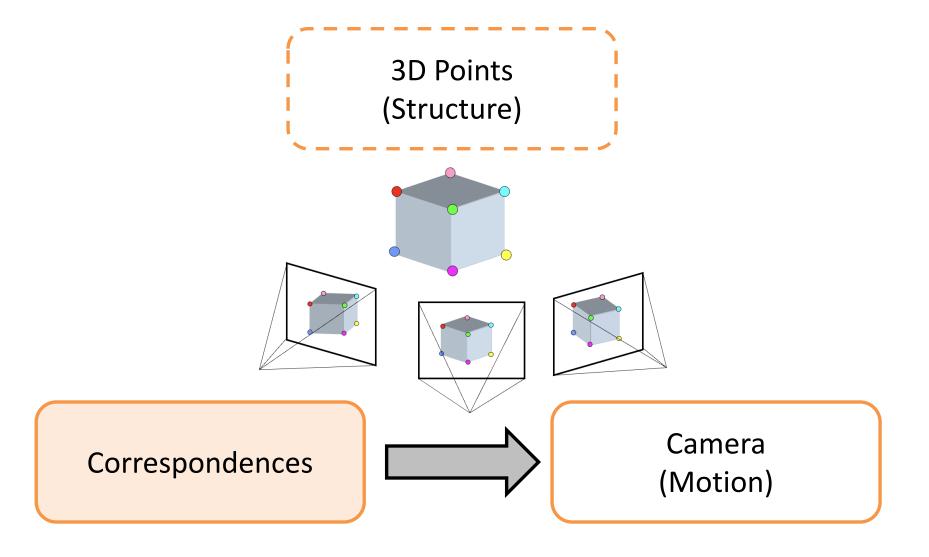
1. Find correspondences:

- Reduce this to 1D search with Epipolar Geometry!

2. Get depth:

- If simple stereo, disparity (difference of corresponding points) is inversely proportional to depth
- In the general case, triangulate.

What if we don't know the camera?



What if we don't know the camera?

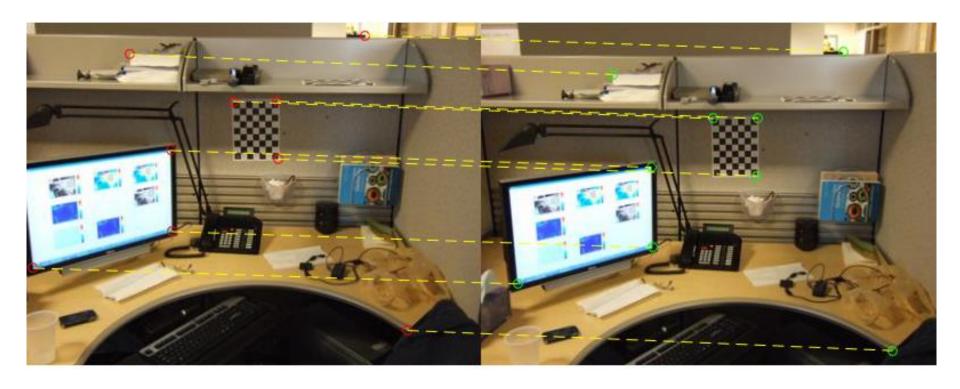
Assume we know the correspondences (\hat{x}', \hat{x}) : Solve for F s.t.

$$\hat{x}'^T F \hat{x} = 0 \qquad \hat{x} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} u' & v' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0$$

How many correspondences do we need?

Estimating the fundamental matrix



The eight-point algorithm

$$\mathbf{x} = (u, v, 1)^{T}, \quad \mathbf{x}' = (u', v', 1)$$

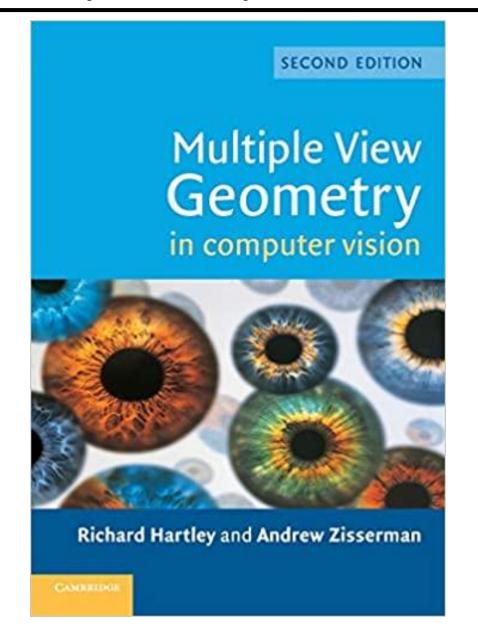
$$\begin{bmatrix} f_{11} \\ f_{12} \\ f_{21} \end{bmatrix} \begin{bmatrix} f_{13} \\ f_{21} \\ f_{31} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0 \quad \begin{bmatrix} u'u \quad u'v \quad u' \quad v'u \quad v'v \quad v' \quad u \quad v \quad 1 \end{bmatrix} \begin{bmatrix} f_{13} \\ f_{23} \\ f_{24} \\ f_{25} \\ f_{25}$$

Solve homogeneous linear system using eight or more matches

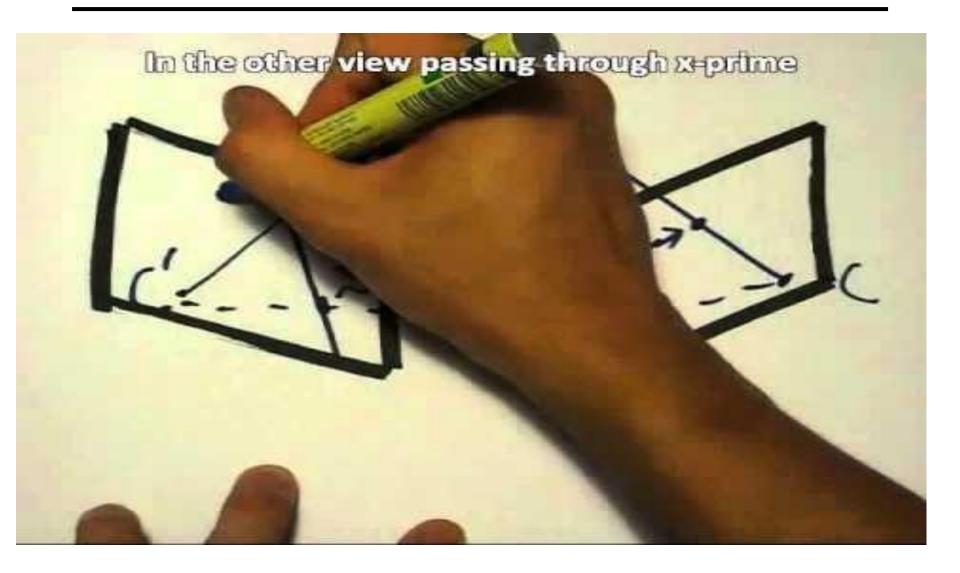
us $egin{bmatrix} f_{23} \ f_{31} \ f_{32} \ f_{33} \end{bmatrix}$

Enforce rank-2 constraint (take SVD of *F* and throw out the smallest singular value)

The Bible by Hartley & Zisserman



The Fundamental Matrix Song



http://danielwedge.com/fmatrix/ https://www.youtube.com/watch?time_continue=8&v=DgGV3l82NTk&feature=emb_title

Going from F -> E -> Camera

Get the essential matrix with K (or some estimates of K) ...

in practice you calibrate your cameras so you know K or have a very good estimate

$$E = K'^{\mathsf{T}} F K$$
.

Essential matrix can be decomposed

$$E = T_x R$$

If we know E, we can recover t and R

$$\begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Given that T_{\times} is a Skew-Symmetric matrix ($a_{ij} = -a_{ji}$) and R is an Orthonormal matrix, it is possible to "decouple" T_{\times} and R from their product using "Singular Value Decomposition".

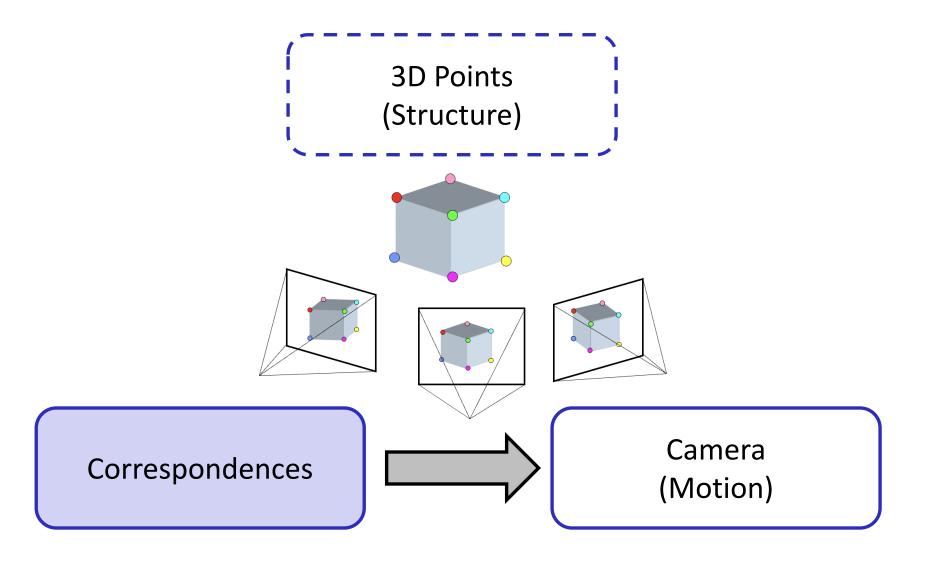
What about more than two views?

The geometry of three views is described by a 3 x 3 x 3 tensor called the *trifocal tensor*

The geometry of four views is described by a 3 x 3 x 3 x 3 tensor called the *quadrifocal* tensor

After this it starts to get complicated...

This completes: Corresp to Camera



How to estimate the camera?

1. Estimate the fundamental/essential matrix!

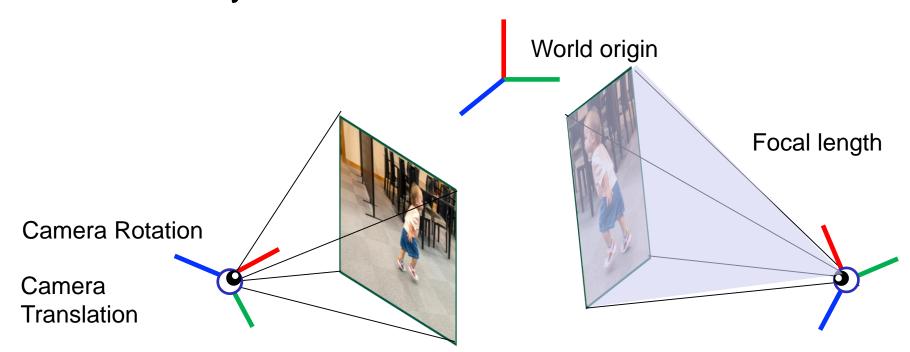
2. Another method: Calibration

Problem: Solve for the camera

What are the camerea parameters?

- Extrinsics (R, T)
- Intrinsics (K)

How am I situated in the world + what is the shape of the ray

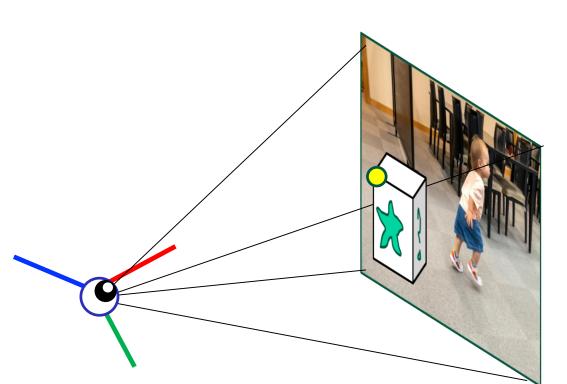


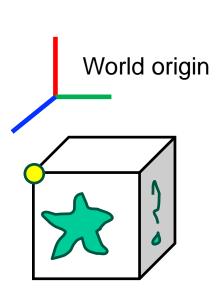
Calibration

Definition: Solve for camera using a known 3D structure + where it is in the image

Invasive / active

Can't be done on existing pictures





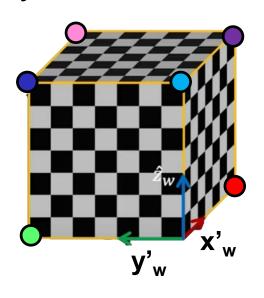
Only have to do it once if the cameras are static

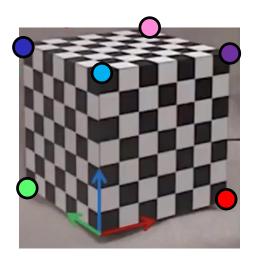
How to calibrate the camera?

If we know the points in 3D we can estimate the camera!!

Step 1: With a known 3D object

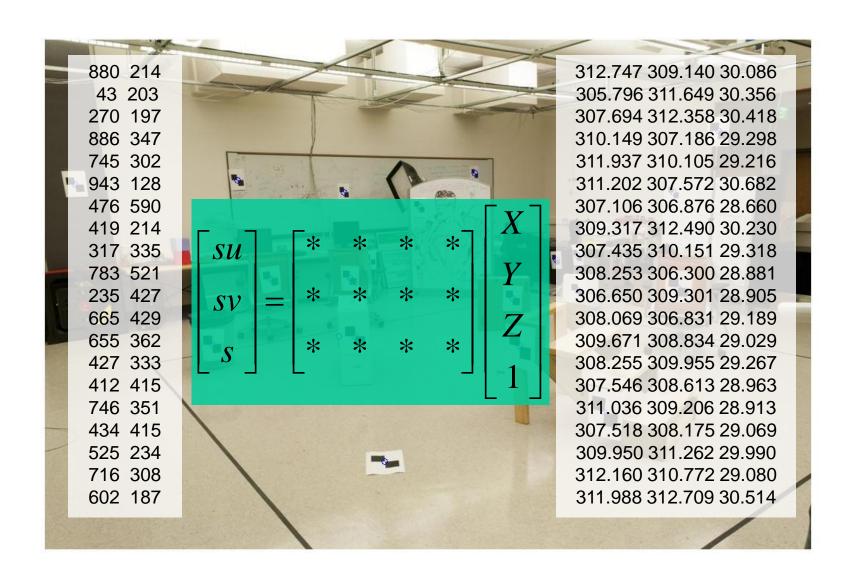
1. Take a picture of an object with known 3D geometry





2. Identify correspondences

How do we calibrate a camera?



Method: Set up a linear system

$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

 m_{34}

Solve for m's entries using linear least squares

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 & -v_1 \\ X_n & Y_n & Z_n & 1 & 0 & 0 & 0 & -u_nX_n & -u_nY_n & -u_nZ_n & -u_n \\ 0 & 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -v_nX_n & -v_nY_n & -v_nZ_n & -v_n \end{bmatrix} \begin{bmatrix} m_{11} \\ m_{12} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{34} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{33} \\ m_{34} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
Similar to Know solved for homograph

Similar to how you homography!

Can we factorize M back to K [R | T]?

Yes.

Why? because K and R have a very special form:

$$egin{bmatrix} f_x & s & o_x \ 0 & f_y & o_y \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

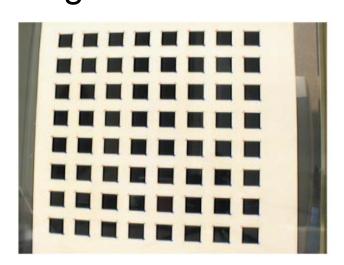
QR decomposition

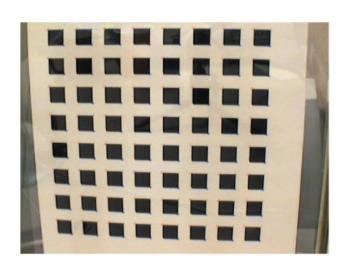
Practically, use camera calibration packages (there is a good one in OpenCV)

Inserting a 3D known object...

Also called "Tsai'scalibration" requires noncoplanar 3D points, is not very practical...

Modern day calibration uses a planar calibration target





Developed in 2000 by Zhang at Microsoft research

Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000

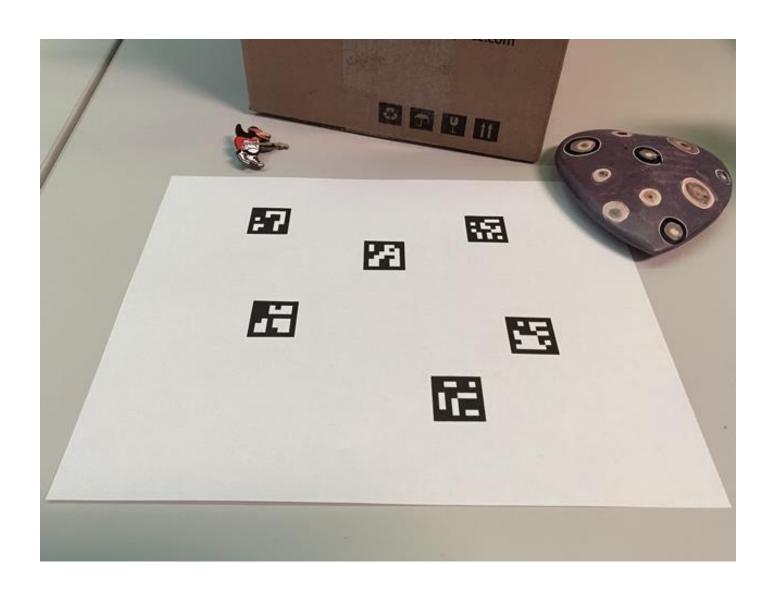
Doesn't plane give you homography?

Yes! If it's a plane, it's only a homography, so instead of recovering 3x4 matrix, you will recover 3x3 in Zhang's method

The 3x3 gives first two columns of R and T

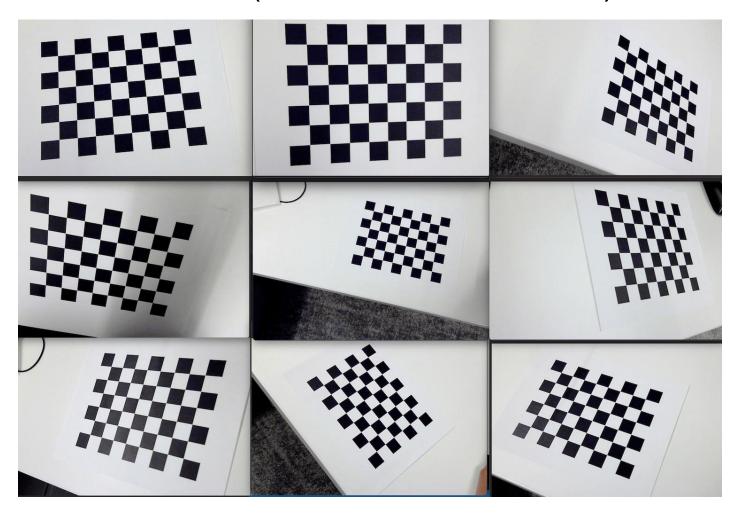
$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & t_1 \\ r_{21} & r_{22} & t_2 \\ r_{31} & r_{32} & t_3 \end{bmatrix}$$

You will use Aruco tags

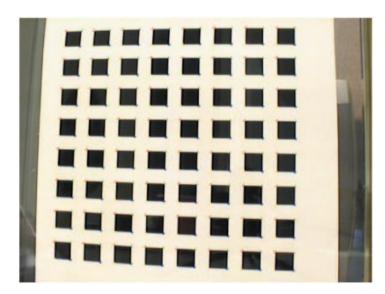


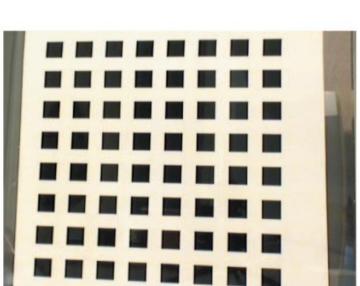
In practice: Step 0

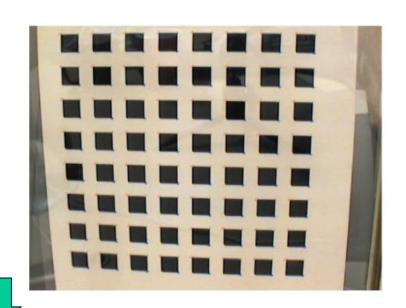
Calibrate your intrinsics first, also estimates lens distortion (cv2.calibrateCamera)

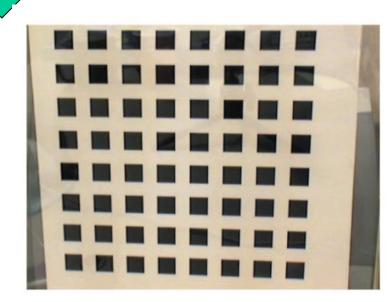


Step 1: Undistort your image









Step 2: Estimate camera with PnP

PnP – "Perspective-n-Point" problem:

Estimate extrinsic parameters given n correspondences

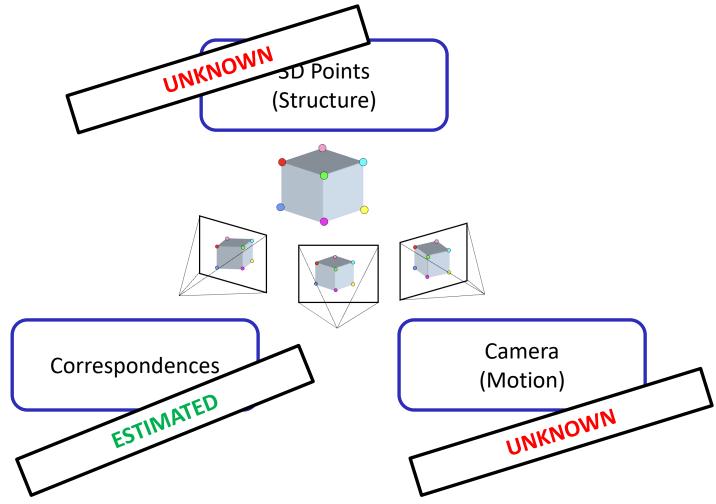
Minimize reprojection loss with non-linear least squares

$$\min_{R,T} \sum ||x_i - K[R T]X||^2$$

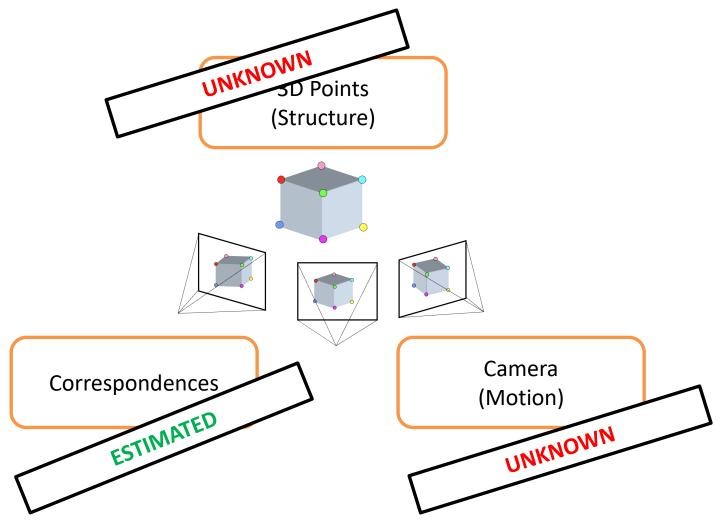
In general you do DLT first (Ax=0), then use that as initialization, or do other algorithms like Efficient PnP

Putting it all together

Structure-from-Motion: You know nothing! (except ok maybe intrinsics)

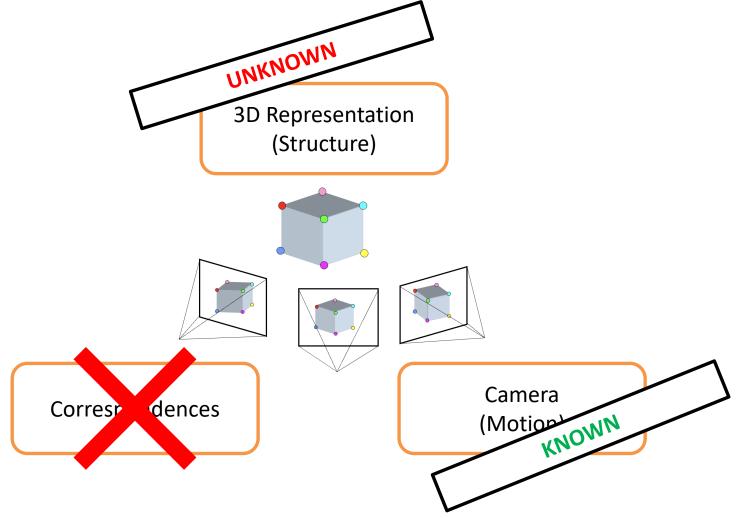


(Next lecture) Ultimate: Structure-from-Motion/SLAM



The starting point for all problems where you can't calibrate actively

(after that): Neural Rendering



A form of multi-view stereo, more on this in the NeRF lecture.

Next: Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).

Total reconstruction time: 23 hours

Number of cores: 352

Building Rome in a Day, Agarwal et al. ICCV 2009

Slide courtesy of Noah Snavely

Large-scale structure from motion

