Automatic Image Alignment, Part 2
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Feature Detectors
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Feature Decriptors

Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, Tuytelaars & Van Gool
2000, Mikolajczyk & Schmid 2001, Brown & Lowe 2002, Matas et. al.

2002, Schaffalitzky & Zisserman 2002
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Invariant Local Features

Image content is transformed into local feature coordinates that are
invariant to translation, rotation, scale, and other imaging parameters

()

Features Descriptors



Applications

Feature points are used for:

« Image alignment (homography, fundamental
matrix)

« 3D reconstruction

« Motion tracking

* Object recognition

 Indexing and database retrieval
* Robot navigation

... other



Today'’s lecture

1 Feature detector
* scale invariant Harris corners

« 1 Feature descriptor
« patches, oriented patches

Reading:

Multi-image Matching using Multi-scale image
patches, CVPR 2005



Feature Detector — Harris Corner



Harris corner detector

C.Harris, M.Stephens. “A Combined Corner and Edge
Detector”. 1988
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The Basic Idea

We should easily recognize the point by looking
through a small window

Shifting a window in any direction should give a large
change in intensity
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Harris Detector: Basic Idea
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Corner Detection: Mathematics

Change in appearance of window W for the shift [u,V]:

E(u,v)= > [1(x+u,y+Vv)—1(x,y)I’

(X,y)eW

1(X, y) )

E(u, v)




Corner Detection: Mathematics

Change in appearance of window W for the shift [u,V]:

E(u,v)= > [1(x+u,y+Vv)—1(x,y)I’

(X,y)eW
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Corner Detection: Mathematics

Change in appearance of window W for the shift [u,V]:
E(u,v)= > [1(x+u,y+Vv)—1(x,y)I’
(X,y)eW

We want to find out how this function behaves for
small shifts

E(u, v)




Corner Detection: Mathematics

* First-order Taylor approximation for small
motions [u, VJ:

[ (x+u,y+v)=1(x,y)+ 1 u+1 v+higher order terms
=~ (X, y)+1Lu+lVv

1y, L

* Let's plug this into
E(u,v)= > [1(x+u,y+Vv)—1(X,y)I’

(X,y)eW

V



Corner Detection: Mathematics

E(u,v)= D [I(x+u,y+v)—1(x, )]’

(X,y)ew
~ Y nexy)+r, 1]
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Corner Detection: Mathematics

The quadratic approximation simplifies to

E(u,v)=~[u v]Mm -

V

where M Is a second moment matrix computed from image
derivatives:
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Interpreting the second moment matrix

« The surface E(u,v) is locally approximated by a
quadratic form. Let’s try to understand its shape.

« Specifically, in which directions E(u, v)
does it have the smallest/greatest ’
change?

E(u,v) = [u v] M -

V

11
M = X X"y
2 I, 12




Interpreting the second moment matrix

First, consider the axis-aligned case
(gradients are either horizontal or vertical)

.
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If either a or b Is close to 0, then this is not a corner,
so look for locations where both are large.



Interpreting the second moment matrix

u
:| = const

Consider a horizontal “slice” of E(u, v): [u v] M {v

This is the equation of an ellipse.
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Visualization of second moment matrices




Visualization of second moment matrices
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Interpreting the second moment matrix

u
:| = const

Consider a horizontal “slice” of E(u, v): [u v] M {v

This is the equation of an ellipse.
0
Diagonalization of M: M=R" & R
0 A4

The axis lengths of the ellipse are determined by the
eigenvalues and the orientation is determined by R

direction of the
fastest change

direction of the
slowest change



Interpreting the eigenvalues

Classification of image points using eigenvalues

of M:
Ay




Harris Detector: Mathematics

Measure of corner reSponse.

n det M
Trace M
detM = A 4,

traceM =4 + 4,



Harris detector: Steps

1. Compute Gaussian derivatives at each pixel

2. For each sliding window in image, compute second
moment matrix M in a Gaussian window around each

pixel
3. Compute corner response function R
4. Threshold R

5. Find local maxima of response function (nonmaximum
suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.



http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Detector: Workflow




Harris Detector: Workflow

Compute corner response R

i,




Harris Detector: Workflow

Find points with large corner response: R>threshold




Harris Detector: Workflow

Take only the points of local maxima of R




Harris Detector: Workflow




Harris Detector: Some Properties

Rotation invariance

™ \|‘ d
— S

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

Corner response R is invariant to image rotation




Harris Detector: Some Properties

Partial invariance to affine intensity change

v" Only derivatives are used => invariance
to intensity shiftl > 1 + b

v Intensity scale: | — a |
RM A\
~ N .

threshold / \WV w \/\/ \

X (image coordinate) X (image coordinate)




Harris Detector: Some Properties

But: non-invariant to image scale!
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All points will be Corner !
classified as edges



Scale Invariant Detection

Consider regions (e.g. circles) of different sizes around a point
Regions of corresponding sizes will look the same in both images
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Scale Invariant Detection

The problem: how do we choose corresponding circles
iIndependently in each image?

Choose the scale of the “best” corner




Feature selection

Distribute points evenly over the image




Adaptive Non-maximal Suppression

Desired: Fixed # of features per image
* Want evenly distributed spatially...

« Sort points by non-maximal suppression radius
[Brown, Szeliski, Winder, CVPR’05]

(c) ANMS 250, r = 24 (d) ANMS 500, » = 16



Feature descriptors

We know how to detect points

How to match them?

iIon

Next quest

2. Distinctive

Point descriptor should be
1. Invariant




Feature Descriptor — MOPS



Multi-Scale Oriented Patches

Interest points
« Multi-scale Harris corners
 Orientation from blurred gradient
« Geometrically invariant to rotation

Descriptor vector
« Bias/gain normalized sampling of local patch (8x8)
« Photometrically invariant to affine changes in intensity

[Brown, Szeliski, Winder, CVPR’2005]



Detect Features, setup Frame

Orientation = blurred gradient

Rotation Invariant Frame
« Scale-space position (X, y, S) + orientation (6)




Detections at multiple scales

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.



MOPS descriptor vector

8x8 oriented patch
« Sampled at 5 x scale

Bias/gain normalisation: I' = (I — pn)/o




Automatic Feature Matching
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Feature matching

* Pick best match!

* For every patch in image 1, find the most similar patch (e.g.
by L2 distance).

« Called “nearest neighbor” in machine learning

« Can do various speed ups:
« Hashing

— compute a short descriptor from each feature vector, or hash
longer descriptors (randomly)

« Fast Nearest neighbor techniques
— kd-trees and their variants

» Clustering / Vector quantization
— So called “visual words”
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Feature-space outlier rejection

Let’'s not match all features, but only these that have
“similar enough” matches?

How can we do it?
« SSD(patchl,patch2) < threshold
e How to set threshold?
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Feature-space outlier rejection: symmetry

Let’'s not match all features, but only these that have
“similar enough” matches?

How can we do it?
« Symmetry: x¥’s NN is y, and y’s NN is x



Feature-space outlier rejection: Lowe’s trick

A better way [Lowe, 1999].
* 1-NN: L2 of the closest match
« 2-NN: L2 of the second-closest match
* Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
e Thatis, is our best match so much better than the rest?

comect matches | ;
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Feature-space outliner rejection

WD

L

Can we now compute H from the blue points?
* No! Still too many outliers...
« What can we do?



Matching features
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What do we do about the “bad” matches?




RAndom SAmple Consensus

Select one match, count inliers




RAndom SAmple Consensus

Select one match, count inliers




Least squares fit
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Find “average” translation vector




RANSAC for estimating homography

RANSAC loop:

1.

o bk N

Select four feature pairs (at random)
Compute homography H (exact)
Compute inliers where dist(p;’, Hp;) <e¢
Keep largest set of inliers

Re-compute least-squares H estimate on all of the
inliers






