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Feature Detectors



Feature Decriptors

Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, Tuytelaars & Van Gool 

2000, Mikolajczyk & Schmid 2001, Brown & Lowe 2002, Matas et. al. 

2002, Schaffalitzky & Zisserman 2002 



Invariant Local Features

Image content is transformed into local feature coordinates that are 

invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors



Applications  

Feature points are used for:

• Image alignment (homography, fundamental 

matrix)

• 3D reconstruction

• Motion tracking

• Object recognition

• Indexing and database retrieval

• Robot navigation

• … other



Today’s lecture

• 1 Feature detector

• scale invariant Harris corners

• 1 Feature descriptor

• patches, oriented patches

Reading:

Multi-image Matching using Multi-scale image 

patches, CVPR 2005



Feature Detector – Harris Corner



Harris corner detector

C.Harris, M.Stephens. “A Combined Corner and Edge 

Detector”. 1988



The Basic Idea

We should easily recognize the point by looking 
through a small window

Shifting a window in any direction should give a large 
change in intensity



Harris Detector: Basic Idea

“flat” region:

no change in 

all directions

“edge”:

no change along 

the edge direction

“corner”:

significant change 

in all directions



Corner Detection: Mathematics

Change in appearance of window W for the shift [u,v]:
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Corner Detection: Mathematics

I(x, y)
E(u, v)

E(0,0)

Change in appearance of window W for the shift [u,v]:
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Corner Detection: Mathematics

We want to find out how this function behaves for 

small shifts
E(u, v)

Change in appearance of window W for the shift [u,v]:
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Corner Detection: Mathematics

• First-order Taylor approximation for small 

motions [u, v]:

• Let’s plug this into 
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Corner Detection: Mathematics
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Corner Detection: Mathematics

The quadratic approximation simplifies to

where M is a second moment matrix computed from image 

derivatives:
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• The surface E(u,v) is locally approximated by a 

quadratic form. Let’s try to understand its shape.

• Specifically, in which directions 

does it have the smallest/greatest

change?

Interpreting the second moment matrix
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First, consider the axis-aligned case 

(gradients are either horizontal or vertical)

If either a or b is close to 0, then this is not a corner, 

so look for locations where both are large.

Interpreting the second moment matrix
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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Visualization of second moment matrices



Visualization of second moment matrices



Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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Diagonalization of M:



Interpreting the eigenvalues

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of image points using eigenvalues 

of M:



Harris Detector: Mathematics

Measure of corner response:
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Harris detector: Steps

1. Compute Gaussian derivatives at each pixel

2. For each sliding window in image, compute second 

moment matrix M in a Gaussian window around each 

pixel 

3. Compute corner response function R

4. Threshold R

5. Find local maxima of response function (nonmaximum 

suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Detector: Workflow



Harris Detector: Workflow

Compute corner response R



Harris Detector: Workflow

Find points with large corner response: R>threshold



Harris Detector: Workflow

Take only the points of local maxima of R



Harris Detector: Workflow



Harris Detector: Some Properties

Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) 

remains the same

Corner response R is invariant to image rotation



Harris Detector: Some Properties

Partial invariance to affine intensity change

 Only derivatives are used => invariance 

to intensity shift I  I + b

 Intensity scale: I  a I

R

x (image coordinate)

threshold

R

x (image coordinate)



Harris Detector: Some Properties

But: non-invariant to image scale!

All points will be 

classified as edges
Corner !



Scale Invariant Detection

Consider regions (e.g. circles) of different sizes around a point

Regions of corresponding sizes will look the same in both images



Scale Invariant Detection

The problem: how do we choose corresponding circles 

independently in each image?

Choose the scale of the “best” corner



Feature selection

Distribute points evenly over the image



Adaptive Non-maximal Suppression

Desired: Fixed # of features per image

• Want evenly distributed spatially…

• Sort points by non-maximal suppression radius

[Brown, Szeliski, Winder, CVPR’05]



Feature descriptors

We know how to detect points

Next question: How to match them?

?

Point descriptor should be:

1. Invariant 2.  Distinctive



Feature Descriptor – MOPS



Multi-Scale Oriented Patches

Interest points

• Multi-scale Harris corners

• Orientation from blurred gradient

• Geometrically invariant to rotation

Descriptor vector

• Bias/gain normalized sampling of local patch (8x8)

• Photometrically invariant to affine changes in intensity

[Brown, Szeliski, Winder, CVPR’2005]



Detect Features, setup Frame

Orientation = blurred gradient

Rotation Invariant Frame

• Scale-space position (x, y, s) + orientation ()



Detections at multiple scales



MOPS descriptor vector

8x8 oriented patch

• Sampled at 5 x scale

Bias/gain normalisation:  I’ = (I – )/

8 pixels



Automatic Feature Matching



Feature matching

?



Feature matching

• Pick best match!

• For every patch in image 1, find the most similar patch (e.g. 

by L2 distance). 

• Called “nearest neighbor” in machine learning

• Can do various speed ups:

• Hashing

– compute a short descriptor from each feature vector, or hash 

longer descriptors (randomly)

• Fast Nearest neighbor techniques

– kd-trees and their variants

• Clustering / Vector quantization

– So called “visual words”



What about outliers?

?



Feature-space outlier rejection

Let’s not match all features, but only these that have 

“similar enough” matches?

How can we do it? 

• SSD(patch1,patch2) < threshold

• How to set threshold?



Feature-space outlier rejection: symmetry

Let’s not match all features, but only these that have 

“similar enough” matches?

How can we do it? 

• Symmetry: x’s NN is y, and y’s NN is x



Feature-space outlier rejection: Lowe’s trick

A better way [Lowe, 1999]:

• 1-NN: L2 of the closest match

• 2-NN: L2 of the second-closest match

• Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN

• That is, is our best match so much better than the rest?



Feature-space outliner rejection

Can we now compute H from the blue points?

• No!  Still too many outliers… 

• What can we do?



Matching features

What do we do about the “bad” matches?



RAndom SAmple Consensus

Select one match, count inliers



RAndom SAmple Consensus

Select one match, count inliers



Least squares fit

Find “average” translation vector



RANSAC for estimating homography

RANSAC loop:

1. Select four feature pairs (at random)

2. Compute homography H (exact)

3. Compute inliers where  dist(pi’, H pi ) < ε

4. Keep largest set of inliers

5. Re-compute least-squares H estimate on all of the 

inliers



RANSAC


