
Flow Matching
(Diffusion Models)

CS 180 Fall 2025 
Angjoo Kanazawa and Alexei Efros

Thanks to Yaron Limpan & Steve Seitz for amazing slides, Songwei Ge, and David
McAllister for discussion

Sora, Open AI February 15, 2024

An astronaut riding a horse in a photorealistic style (Dall-E 2)
slide from Steve Seitz’s video

https://youtu.be/lyodbLwb2lY

Impressive
compositionality:

DALL-E + Danielle Baskin

Generative Models

• Want to estimate P(x) the probability distribution of natural images

• Why? Many reasons

Goal: Modeling the space of Natural Images

The generative story

Generator (x)

psource ptarget

ℝD′￼ ℝD

“Latent Space”

The generative story: Ex. PCA
•A Generative Model has the process of sampling (generating) an image

•For ex, here’s the generative story for PCA in its probabilistic interpretation:

Generative Story
• Any Generative Model has a process of sampling an image

• For ex, here’s the generative story for PCA in its probabilistic interpretation:

z ∼ N(0,I)

x = Wz + μ

1. Sample from a Gaussian Distribution

2. Project to Images (W =
Eigenvectors, Mu = avg datapoint)

PCA Generator (z):
x = Wz + mu

psource ptarget

ℝz ℝD

z ∼ N(0,I)

Example: GANs / VAEs

Generator (x)

psource ptarget

ℝd ℝD

d < < D
Learned one-shot mapping:  

 fθ(xsource) = xtarget

xsource

xtarget

“No More GANs” Movement

• GANs really opened up the possibility of image generation

• But people didn’t like it for many reasons

• Severe mode collapse

• Unstable training mechanics

• Flow/Diffusion is a reactionary movement against GANs,  
next natural evolution

History

Sohl-Dickstein et al. 2015 
Deep unsupervised learning using non

equilibrium thermodynamics
DDPM, Ho et al. 2020

NICE Dinh et al.
Normalizing Flows 2015

RealNVP,
Dinh et al.

2017

Glow,
Kingma &
Dhaliwal

2018

Neural ODE
Chen et al.

2018…

Song et al. Score-based
Generative Models, DDIM

2021

Flow Matching,
Lipman et al. 2022

Rectified Flow, Liu et al. 2022

DALL-E1 Open AI 2020
DALL-E2 Open AI 2023

StableDiffusion, Stability 2023

Flow Matching Tutorial
NeurIPS 2024

MovieGen late
2024~

StyleGAN 2018

GAN, Goodfellow 2014
DCGAN 2015..

History

Sohl-Dickstein et al. 2015 
Deep unsupervised learning using non

equilibrium thermodynamics
DDPM, Ho et al. 2020

NICE Dinh et al.
Normalizing Flows 2015

RealNVP,
Dinh et al.

2017

Glow,
Kingma &
Dhaliwal

2018

Neural ODE
Chen et al.

2018…

Song et al. Score-based
Generative Models, DDIM

2021

Flow Matching,
Lipman et al. 2022

Rectified Flow, Liu et al. 2022

DALL-E1 Open AI 2020
DALL-E2 Open AI 2023

StableDiffusion, Stability 2023

Flow Matching Tutorial
NeurIPS 2024

MovieGen late
2024~Normalizing Flow Arc

Diffusion Arc

Unification / Simplification

Flow based Generative Models

Generator (x)

psource ptarget

ℝD ℝD

 Ψ

1. Latent space dim is same as the target!

2. Takes T steps to go from src to tgt

 ψt

“Flow”

What is Flow?

• It is a velocity field.

• It’s like a river with some currents, every point defines how fast you move (velocity)

• You ride this river to go from one distribution to next

p1

ptarget =
p0

psource =

Riding the river = Integration

• Riding this rive means you add little bits of velocity defined at each location

• This is called “Integration”, also called solving the Ordinary Differential Equation (ODE)  

with initial state , through some differential parametrized by a network:

• You can add stochasticity when riding it, then it becomes SDE (more next lecture)

x0
dx
dt

= vθ(x, t)

Simplest “Euler Integration”: 
xt+Δt = xt + vθ(xt, t)Δt

How can we learn this flow?

In 2D

 xt = Ψt(x0)

 x0

 xt ∼ pt

 x0 ∼ p

[Chen et al. 2018]

 ·xt = vt(xt)
Flow ODE

 vt(x)

Slides from Yaron Lipman

What do we have to train this?

 xt = Ψt(x0)

 x0

 xt ∼ pt

 x0 ∼ p

[Chen et al. 2018]

 ·xt = vt(xt)
Flow ODE

 vt(x)

Slides from Yaron Lipman

 q(x)
Samples of p1

Important Caveat: Continuity Eq

 xt = Ψt(x0)

 x0

 xt ∼ pt

 x0 ∼ p

[Chen et al. 2018]

 ·xt = vt(xt)
Flow ODE

 vt(x)

Slides from Yaron Lipman

Continuity Equation PDE (fixed)x

 ·pt = − div(ptvt)

•Need to conserve probability mass

• In the river, analogy you cannot add or remove water

• It has to come from somewhere and go somewhere

The flow can be though about learning a warping
function

Xt = ψt(X0)
Warping

X0

Source X0 ∼ p

, t ∈ [0,1]

Slides from Yaron Lipman

Initial approach trained flow with Maximum Likelihood

Xt = ψt(X0)
Warping

X0

Source X0 ∼ p

, t ∈ [0,1]

• Normalizing Flow, Continuous Normalizing Flow

• Chaining needs to satisfy the continuity equation!!!!!

• This requires ODE integration DURING training with invertible neural networks

ψt

DKL(q ∥ p1) = − 𝔼x∼q log p1(x)+c

 log p1(x) = ?

Slide adapted from Yaron Lipman

Previous Normalizing Flow works

• Tries to directly deal with this continuity equation constraint

• Very slow to train (need to integrate while training)

• Other constraints like invertibility of

• Nice idea with promising results but limited capability + not practical to train

ψt

Instead, model Flow with Velocity

ut(x)

ψt(x)

Solve ODE

•Pros: velocities are linear

•Cons: simulate to sampleVelocity

Flow

Differentiate

d
dt

ψt(x) = ut(ψt(x))

Slides from Yaron Lipman

Flow Matching [Lipman et al. ’22]

• Directly learn the velocity field!

• Don’t have to worry bout the continuity equation because velocity fields
can’t add / subtract mass. You only re-distribute

• Continuity equation satisfied by construction.

• Basically just learn velocity fields for each data sample (conditional
velocity field), all will be fine!

Diffusion: Physics Interpretation
Heat Diffusion

Diffusion: Physics Interpretation

Idea in Song et al. Score-Based Generative Modeling through Stochastic Differential Equations 2021

Reversing the process

Diffusion vs Flow matching

• They both end up learning flow, but diffusion poses the problem as
learning a specific noising process and learning to denoise it.

• Diffusion: spread out like heat diffusion, learn how to undo it

• Flow matching: More general, just directly learn a velocity field from one to
another

Ok so how to train the flow??

raspberry
images

Flow based
Generative

model
(neural

network)

random
images

slide from Steve Seitz’s video

Quick Recap:

https://youtu.be/lyodbLwb2lY

raspberry
images

random
images

Figure from Steve Seitz’s video

1. Take real data, corrupt it to left the distribution somehow

Training

https://youtu.be/lyodbLwb2lY

raspberry
images

random
images

Figure from Steve Seitz’s video

Training
1. Take real data, corrupt it to left distribution somehow

2. Learn to undo the process!

https://youtu.be/lyodbLwb2lY

Denoising with a neural network

Denoising
neural

network

This network can be a U-Net or other
suitable image-to-image network

Slide source: Steve Seitz

raspberry
images

random
images

Figure from Steve Seitz’s video

How to generate this Green path?

$$$ question, how to pick the intermediate path?

https://youtu.be/lyodbLwb2lY

What is the path?
• How to add noise? What kind of noise?? What schedule to add them???

• This is complicated in the diffusion literature (lots of math).

• Can we keep it simple?

Flow matching basically says, you can add noise however you like!

Flow Matching [Lipman et al. 2022] !

Bc it has to follow physical diffusion
process.. Every time step some
gaussian has to be added. But in
the end you want it to be a N(0,1)
etc..

How to construct xt
TLDR: Sample noise, add it, then reconstruct the data

Flow matching says you can pick any combination, as long as it
starts from a sample in the source (e.g. gaussian) and ends with a
sample in the target distribution (image)

x0 ∼ p0(x) x1 ∼ p1(x)

xt = αtx0+σtx1

Flow training

• For each data

• Sample some noise

• Combine it however you want to get

• Now learn to predict the velocity at

• What is the velocity? Depends on how you got

x1

x0

xt

xt

xt

x0

x1

xt

vt

A Very Simple Way
Linear interpolation!

xt = αtx0+σtx1 X0

X1

Xt = (1 − t)X0 + tX1

xt = (1 − t)x0 + tx1

What is the velocity supervision?

xt = (1 − t)x0 + tx1

xt = αtx0+σtx1

X0

X1

Xt = (1 − t)X0 + tX1

dxt

dt
= − x0 + x1

= x1 − x0

*Conditioned on a single sample

𝔼t,X0,X1
uθ

t (Xt) − (X1 − X0) 2

Inside a Training Loop

x = next(dataset)

t = torch.rand(1) # Sample timestep (0,1)

noise = torch.randn_like(x) # Sample noise

x_t = (1-t) * noise + (t) * x # Get noisy x_t

flow_pred = model(x_t, t) # Predict noise in x_t

flow_gt = x - noise # ground truth flow (w/ linear sched)

loss = F.mse_loss(flow_pred, flow_gt) # Update model

loss.backward()

optimizer.step()

Flow Matching

Test-time sampling

• Just take a small step in the velocity

• Use any ODE Solver, i.e. integration you
like, like Euler integration:

Sample
from X0 ∼ p

uθ
t

Inside Sampling Loop

velocity = model(x_t, t) # Predict noise in x_t

x_t = x_t + dt * velocity # Step in velocity

Model Parametrization

• Simplest — Just make your NN predict the velocity, which with the simple
linear interpolation is always just x1 - x0

• Other options: Make it output the noise added or the clean image.
Possible with some arithmetics

• But will have some 1/t or 1/(1-t) terms, which is annoying at the edges

• You can make your network output undo the noise in many different ways,
predicting x, v, noise, or flow

• These are all equivalent because of the linear relationship with . You can
derive all of these as long as you know one of them

• For example

xt

Training: Model parameterization

𝔼[(x̂0 − x0)2] = 𝔼 [(xt − σ(t) ̂ε
α(t)

−
xt − σ(t)ε

α(t))
2

] = 𝔼 [σ(t)2

α(t)2 (̂ε − ε)2] .

xt = αtx0+σtx1

vt = αtx1−σtx0
ut = x1 − x0 = ϵ − x0
ut = xt − x0

Slides from Yaron Lipman

Other options lead to prior works
• Other choices:

• Preserve variance (VP-ODE) - DDPM

• Exploding variance (VE-ODE) - Score Matching/DDIM

• Linear interpolation (Flow Matching, Rectified Flow)

xt = αtx0+σtx1

Training: Flow Matching vs. Diffusion

 closed-form from of SDE

• Variance Exploding:

• Variance Preserving:

 is Gaussian

pt(xt |x1) dxt = ftdt + gtdw
pt(x |x1) = 𝒩(x |x1, σ2

1−tI)
pt(x |x1) = 𝒩(x |α1−tx1, (1 − α2

1−t)I)
αt = e− 1

2 T(t)

p(x0)
p0(⋅ |x1) ≈ p

 general

 is general

pt(xt |x1)
p(x0)

Why does Flow Matching work?
FM —> predict the velocity conditioned on a single sample

Recap
• What we want is the flow (velocity field) that takes samples from to

when integrated (called Marginal Flow)

• But what we did was to train flow for each sample (Conditional Flow)

p0 p1

Marginal Flow (what we want) Conditional Flow (what we trained)

Turns out Gradient is the same!
• Flow Matching loss:

• Conditional Flow Matching loss:

ℒFM(θ) = 𝔼t,Xt
uθ

t (Xt) − ut(Xt) 2ut(Xt)

ℒCFM(θ) = 𝔼t,X1,Xt
uθ

t (Xt) − ut(Xt |X1) 2ut(Xt |X1)

We can’t do this bc we don’t know
what ground truth flow is

Theorem: Gradient of the losses are equivalent (!!!),

∇θℒFM(θ) = ∇θℒCFM(θ)

x1

Generate a single target point

ut(x) = 𝔼[ut(Xt |X1) Xt = x]ut(Xt |X1)

pt(x) = 𝔼X1
pt|1(x |X1)pt|1(x |X1)

Build flow from conditional (per-sample) flows

Xt = ψt(X0 |x1) = (1 − t)X0 + tx1

ut(x |x1)

pt|1(x |x1) conditional probability

conditional velocity
average

Why does this work?
• High level: You can average conditional flow (marginalization)

ut(x) = 𝔼[ut(Xt |X1) | Xt = x]
Marginal flow 

(what we want)
Conditional flow 

(easy to obtain from each sample)

ut(x) = ∫ ut(x |x1)
pt(x |x1)q(x1)

pt(x)
dx1

= ∫ ut(x |x1)p(x1 |Xt = x)dx1

Bayes rule with
notation:

p(x1) = q(x1)

It’s all just weighted average

Weight of sample x0 = 1

Just a weighted average of the flow to each data sample!!!!!  
You can actually do this non-parametrically.

See interactive visualization at https://decentralizeddiffusion.github.io/

ut(x) = ∫ ut(x |x1)
pt(x |x1)q(x1)

pt(x)
dx1

ut(xt) = ∑ ut(xt |x1)
pt(xt |x1)

pt(x)
q(x1)

Path weight
Path from to x1 xtMarginal flow

https://decentralizeddiffusion.github.io/

Efros & Leung ICCV’99

• Non-parametric patch-based NN sampling to fill in missing details & generate textures

• Non-parametric patch-based NN approach to fill in missing details with lots of Data!

Key message
• One can minimize the diffusion objective (marginal flow) non-

parametrically and perfectly minimize the loss.

• But there is no learning! No ability to generate new images!

• i.e. Exactly minimizing this objective does not guarantee interpolation/
compositionally, learning of the image manifold!

• Parametrizing it with neural networks results in magic smoothing to generate
new images and interpolate between them. Exactly what makes this possible
still active area of research

