Flow Matching
(Diffusion Models)

CS 180 Fall 2025
Angjoo Kanazawa and Alexei Efros

Thanks to Yaron Limpan & Steve Seitz for amazing slides, Songwei Ge, and David
McAllister for discussion



-~

Sora, Open Al February 15, 2024




An astronaut riding a horse in a photorealistic style (Dall-E
slide from Steve Seitz's vi



https://youtu.be/lyodbLwb2lY

Impressive
compositionality:

| IR W




Generative Models

Goal: Modeling the space of Natural Images

 \Want to estimate P(x) the probability distribution of natural images

 Why? Many reasons



The generative story

R RD

Psource Prarget

“Latent Space”



The generative story: Ex. PCA

A Generative Model has the process of sampling (generating) an image

‘For ex, here’s the generative story for PCA in its probabilistic interpretation:



Generative Story

 Any Generative Model has a process of sampling an image

* For ex, here’s the generative story for PCA in its probabillistic interpretation:

1. Sample from a Gaussian Distribution R? R”
z ~ N(O,I)
2. Project to Images (W = PCA Generator (2):
Eigenvectors, Mu = avg datapoint) X =Wz +mu
x=Wz+pu

p source P target



Example: GANs / VAEs

i<<b
| J ' Learned one-shot mapping: R
fé’(xsource) — xtarget ‘

o

Xtarget

Generator (x)

Psource Prarget



“No More GANs” Movement

GANSs really opened up the possibility of image generation
But people didn’t like it for many reasons

 Severe mode collapse

* Unstable training mechanics

Flow/Diffusion is a reactionary movement against GANS,
next natural evolution



History

GAN, Goodfellow 2014

DCGAN 2015..
StyleGAN 2018 DALL-E1 Open Al 2020
DALL-E2 Open Al 2023
StableDiffusion, Stability 2023

@/ - } Song et al. Score-based

" Sohkbicksteln ot al, 2015 ] Generative Models, DDIM
Deep unsupervised Iearnir.19 using non DDPM, HO ct al- 2020 2021 . .

equilibrium thermodynamics Rectitied FIOW, Liu et al. 2022

Glow,
NICE Dinh et al. RealNVP, oW

Normalizing Flows 2015 Dnh et al. e « FIOW MatChlng )
2017 Dhaliwal ]
2018 Lipman et al. 2022
Neural ODE
Chen et al.
2018...
Flow Matching Tutorial
NeurIPS 2024

MovieGen late
2024~




History

S

Diffusion Arc

s g

DALL-E2 Open Al 2023
StableDiffusion, Stability 2023

@| [ u Song et al. Score-based

i Sohl-Dickstein et al. 2015 Generative Models, DDIM

Dedly “asupervised learning using non DDPM, Ho et al. 2020 2021 J—
equliRmigmodynamics . e Rectified Flow, Liu et al. 2022

PV "< @ -
. e —
__posBA

RealNVP, O

Dinh etal Kingma & /" Flow Matching, ™
2017 Dhaliwa 1

2018 \_ Lipman et al. 2022 /

Neural ODE

Chen et al. - e
2018... Unification / Simplification

NICE"Dinh et al.
Nonmializing Flows 2015

-—

0

Flow Matching Tutorial
NeurIPS 2024

MovieGen late
Normalizing Flow Arc 2024~




FIo based Generative Models

“Flow” "

RD

Generator (x)

Psource Prarget

1. Latent space dim is same as the target!

2. Takes T steps to go from src to tgt



What is Flow?

Prior

pSOI/lI’C@

Po

| | | | l !
0 0.2 0.4 0.6 0.8 1

. . . Timestep (t)
e |tis a velocity field.
e |t’s like a river with some currents, every point defines how fast you move (velocity)

* You ride this river to go from one distribution to next



Riding the river = Integration

\‘
—

]
0

Simplest “Euler Integration”:
X nr = X, + vo(x, 1) At

|
0.2 0.4 0.6 0.8 1
Timestep (t)

Stochasticity: 0.0 Particle Count: 0.2

O ®
* Riding this rive means you add little bits of velocity defined at each location

* This is called “Integration”, also called solving the Ordinary Differential Equation (ODE)

dx

with initial state X, through some differential parametrized by a network: — = vy(x, ?)

dt

* You can add stochasticity when riding it, then it becomes SDE (more next lecture)



How can we learn this flow?

Stochasticity: 0.0 Particle Count: 0.2



In 2D
Xo ~ P

v(x) x, = W,(xp) Xy ~ Dy

Flow ODE

X, = V/(x,)

Slides from Yaron Lipman [Chen et al. 2018]



V,(X)

Slides from Yaron Lipman

x; = W (xp)
Flow ODE
X, = V(x,)

v

X ~ Py

What do we have to train this?

Samples of p,
q(x)

[Chen et al. 2018]



Important Caveat: Continuity Eqg

.XONp
v

v(x) x, = W,(xp) Ay ~ Py

X0 .*Need to conserve probability mass .

'+In the river, analogy you cannot add or remove water
Flow ODE "

X, = v(x,)

-+ It has to come from somewhere and go somewhere |

Slides from Yaron Lipman [Chen et al. 2018]



The flow can be though about learning a warping
function

Xt — l/jl‘(XO) , 1€ [0,1]

SN

Warping Source XO ~ D

Slides from Yaron Lipman



Initial approach trained flow with Maximum Likelihood

Dy (g llp) = — [Ex~q log pi(x)+c

Xt — l/jl‘(XO) , 1€ [0,1]
SN

Warping Source XO ~ D

+ Normalizing Flow, Continuous Normalizing Flow —

Iog p1(X) =7

* This requires ODE integration DURING training with invertible neural networks

Slide adapted from Yaron Lipman



Previous Normalizing Flow works

* Tries to directly deal with this continuity equation constraint

* \ery slow to train (need to integrate while training)
 Other constraints like invertibility of y,

* Nice idea with promising results but limited capability + not practical to train



Instead, model Flow with Velocity

d—tt/ft(X) = u,(y(x))

Flow

W, (X)

Solve ODE 1 l Differentiate - - b

t ( ) *Pros: velocities are linear

Velocity

- Cons: simulate to sample

Slides from Yaron Lipman



Flow Matching [Lipman et al. '22]

* Directly learn the velocity field!

 Don’t have to worry bout the continuity equation because velocity fields
can’t add / subtract mass. You only re-distribute

* Continuity equation satisfied by construction.

e Basically just learn velocity fields for each data sample (conditional
velocity field), all will be fine!



Diffusion: Physics Interpretation

Heat Diffusion




Diffusion: Physics Interpretation

Reversing the process

|ldea in Song et al. Score-Based Generative Modeling through Stochastic Differential Equations 2021



Diffusion vs Flow matching

 They both end up learning flow, but diffusion poses the problem as
learning a specific noising process and learning to denoise It.

* Diffusion: spread out like heat diffusion, learn how to undo it

 Flow matching: More general, just directly learn a velocity field from one to
another



Ok so how to train the flow??



Quick Recap:

v
. raspoerry
Images
d Flow based
rahaom Generative
Images model

(neural
network)

slide from Steve Seitz's video



https://youtu.be/lyodbLwb2lY

Training

1. Take real data, corrupt it to left the distribution somehow

L
e

ST ) LR R i S P T
O wl '.&E'_. 2y e
i S R LT -::'.:;:u:' i
b L e e T ey R e i L] i1
o ik B 'sfﬁ:.. . r.'}':a:!"':_.?{'l_’-\.':_-_'_"?.;ﬂ:";__ﬁ-.-'a.,_::i e AT
"!;I-'.'i':n:'::l"- ._:;_-:-'.":;'_:'L-.;l__'-r."" ’5':..;':}::'!:-“ ::_.._'._;-".'-:::-!;:- TR ;i '-"-'ﬁ:-:':'
T R S R L e T i P S T
P - e Py "o ) el e Ly O L gl b Tl et A
rth Sy e s
= ﬂ:: - - i T g i:J

e
e i '_l-_.-
1‘-'. L
SR
i
g
i o L
H: o
;r«'é-_f o
LAt I;p.
TR N
e gy &
|}&!_-l' o L
fag
=
e b
L N . §
B o -

A
A

o g
jrk

-
o
":‘3‘!
1
Ay
f!
.
I-h..
52
=
5T ;‘

R R

"
L]

ol

raspberry B
Images  .— —

i A R

L N
ﬁ_ﬂ__ ;_

random
Images

Figure from Steve Seitz’s video



https://youtu.be/lyodbLwb2lY

INing

Tra

1. Take real data, corrupt it to left d

tribution somehow

IS
Learn to undo the process

raspoerry

images

._.uu.,_._....nh.ﬂmu...r T
Al e

Figure from Steve Seitz’s video


https://youtu.be/lyodbLwb2lY

th a neural network

ISINg WI

Deno

ising

heural
hetwork

®,
C
o
-

|

This network can be a U-Net or other

suitable image-to-image network

Steve Seitz

Slide source



-
rd

dspberry
images

s
7

24

iIntermediate path?

. 04

K
f...
-
o

How to generate this Green path?

.E"
-
2]
ol o
ey
.
mg e 1
e
.:l;

=

X

I

=

"Ll

-

. "
L s "

o

e

<

$$$ question, how to pick the

Figure from Steve Seitz’s video


https://youtu.be/lyodbLwb2lY

What is the path?

e How to add noise? What kind of noise?? What schedule to add them???

S . _ _ _ _ Bc it has to follow physical diffusion
* This is complicated in the diffusion literature (lots of math). process.. Every time step some
gaussian has to be added. But in
the end you want it to be a N(0,1)

etc..

 Can we keep it simple?

Flow Matching [Lipman et al. 2022] !

Flow matching basically says, you can add noise however you like!



How to construct X,

TLDR: Sample noise, add it, then reconstruct the data

Flow matching says you can pick any combination, as long as it
starts from a sample in the source (e.g. gaussian) and ends with a
sample in the target distribution (image)

Xy ~ Po(X) X ~ pp(x)



Flow training

» For each data x;
e Sample some noise Xx;,

« Combine it however you want to get X,

» Now learn to predict the velocity at Xx,

« What is the velocity”? Depends on how you got X,



A Very Simple Way

Linear interpolation!

X = 0 XgT 0.X
— A A
Xt — (1 — t)xO + le




What is the velocity supervision?

#(x) - (X, - %)

~1,X0.X|

’Xl‘ —_ (1 — t)x() + txl
dx,

— — —XO+X1

dt

— X1 — Ag

*Conditioned on a single sample



Inside a ITraining Loop
Flow Matching

X = next(dataset)
t = torch.rand(1l) # Sample timestep (0,1)
noise = torch.randn like(x) # Sample noise

Xx t = (l1-t) * noise + (t) * X # Get noisy x t

flow pred = model(x t, t) # Predict noise in x t

flow gt = X - noise # ground truth flow (w/ linear sched)
loss = F.mse loss(flow pred, flow gt) # Update model
loss.backward()

optimizer.step()



Test-time sampling

* Just take a small step in the velocity

 Use any ODE Solver, i.e. integration you
like, like Euler integration:

dx

T =x; + At - —
t+At t dt | s




Inside Sampling Loop

velocity = model(x t, t) # Predict noise in x t

Xx t =x t + dt * velocity # Step in velocity



Model Parametrization

 Simplest — Just make your NN predict the velocity, which with the simple
linear interpolation is always just x1 - x0

 Other options: Make it output the noise added or the clean image.
Possible with some arithmetics

e But will have some 1/t or 1/(1-t) terms, which is annoying at the edges



Training: Model parameterization

* You can make your network output undo the noise in many different ways,
predicting X, v, noise, or flow

— _ U, =X —Xnp= €€ — X
vV, = 0,X1—0,X, 7 0 0
Uy = X = Ao
» These are all equivalent because of the linear relationship with x,. You can
derive all of these as long as you know one of them

Xy = A XoT0Xy
* For example

o | ((xmewE x,—oe\T| _ _|o@? .
om0 = K () () ) ] ) la(t)z (=)

Slides from Yaron Lipman




Other options lead to prior works
X, = .XyT0,Xq

e Other choices:
* Preserve variance (VP-ODE) - DDPM

 Exploding variance (VE-ODE) - Score Matching/DDIM

* Linear interpolation (Flow Matching, Rectified Flow)

Variance-preserving (cosine) Variance-exploding (EDM) Sub-VP (rectified flow)
1.0 - 5 - 1.0 -
o(t)
0.8 - 4 - | 0.8 -
0.6 - 3 - 0.6 -
0.4 - 2 - 0.4 -
0.2 - 1 - 0.2 -
0.0 - 0 - 0.0 -

0.00 0.25 050 0.75 1.00 0 2 = 0.00 025 050 0.75 1.00



Training: Flow Matching vs. Diffusion

Algorithm 1: Flow Matching training. Algorithm 2: Diffusion training.

Input : dataset q, noise p Input : dataset q, noise p

Initialize v? Initialize s?

while not converged do while not converged do
t ~U([0,1]) > sample time t ~U([0,1]) > sample time
1 ~ q(x1) > sample data 1 ~ q(x1) > sample data
‘2o ~ p(xo) > sample noise |zt = pe(z¢|T1) > sample conditional prob)
zy = Vi(xo|T1) > conditional flow Gradient step with
Gradient step with Vgl|[v? (z;) — 2¢||? Vol|s¢ (x:) — Vg, log pe(zi|z1)||?

Output: v’ Output: v?

p.x.| x;) closed-form from of SDE dx, = f,dt + g.dw

pAx;|x;) general o Variance Exploding: p(x|x;) = N (x| xy, Glz_tl )

p(xp) is general « Variance Preserving: p(x|x;) = N (x| a;_x;, (1 — 0512_9[ )

a, = e 770
p(xy) is Gaussian

pol - |x) =p



Why does Flow Matching work?

FM —> predict the velocity conditioned on a single sample



Recap

« What we want is the flow (velocity field) that takes samples from p, to p,
when integrated (called Marginal Flow)

 But what we did was to train flow for each sample (Conditional Flow)

N

\ !
K X N \ \
K 1) )
[ N
- z N
fm — ] =Y ) | Y 4 y 4
gJE

r’q
e
re

T
_—

——————————

. e 4 4 ————— — —
» 4 ¥ —— 4 }l

Marginal Flow (what we want) Conditional Flow (V\'/ha‘t we tr‘ained)




Turns out Gradient is the same!

* Flow Matching loss:

Z (0) =L

We can’t do this bc we don’t know
what ground truth flow is

u?(X) — u,(X)||*

» Conditional Flow Matching loss:

CFM(H) — [:tXl

(Xt) — u(X, |X1)H

Theorem: Gradient of the losses are equivalent (!!!),

VH‘SZ FM(H) — Vﬁg CFM(H)



Build flow from conditional (per-sample) flows

Generate a single target point

N N N N ]
N NN t ; ; /

o K X \ \ \ r * ,
r N B T

N 1 Y [

= ~
o8 e
.
..—\
_
L [T
=
— 2
- e
L b -

. T B e — o~ .

1

pAx)

14/(x)

Cx, Pij1(x | X1) <+———————————————— D, (X | X|) conditional probability

average

- [I/tt(Xt ‘ Xl)

Xt — x] -— ut(x\xl) conditional velocity



Why does this work?

 High level: You can average conditional flow (marginalization)

u(x) =L [ut(thXl) | X, = x]
7 A\

Marginal flow Conditional flow
(what we want)  (easy to obtain from each sample)

— I'u,;(x | x)p(x; | X, = x)dx,

P (X ‘ X )Q’(X ) Baygs rule with
l/tt(X) — I/tt(X‘Xl)t—lldxl notation:
PAX) plx) = qx,)



It’s all just weighted average

U(x) = Jut(x\ Y et G L
pix)
pt(xt | xl) Weight of sample x0 =
varginal flow Path from x, to x, p [ X
Path weight

You can actually do this non-parametrically.

See interactive visualization at https://decentralizeddiffusion.qgithub.io/



https://decentralizeddiffusion.github.io/

Efros & Leung ICCV’99

|

» -

Synthesizing a pixel

 Non-parametric patch-based NN sampling to fill in missing details & generate textures



| ’ SIGGRAPH?2007 Computer Graphics Proceedings, Annual Conference Series, 2007

L
Scene Completion Using Millions of Photographs

James Hays Alexe1 A. Efros
Carnegie Mellon University

Original Image Input Scene Matches Output
Figure 1: Given an input image with a missing region, we use matching scenes from a large collection of photographs to complete the image.

 Non-parametric patch-based NN approach to fill in missing details with lots of Data!



Key message

One can minimize the diffusion objective (marginal flow) non-
parametrically and perfectly minimize the loss.

But there is no learning! No ability to generate new images!

l.e. Exactly minimizing this objective does not guarantee interpolation/
compositionally, learning of the image manifold!

Parametrizing it with neural networks results in magic smoothing to generate
new images and interpolate between them. Exactly what makes this possible
still active area of research



