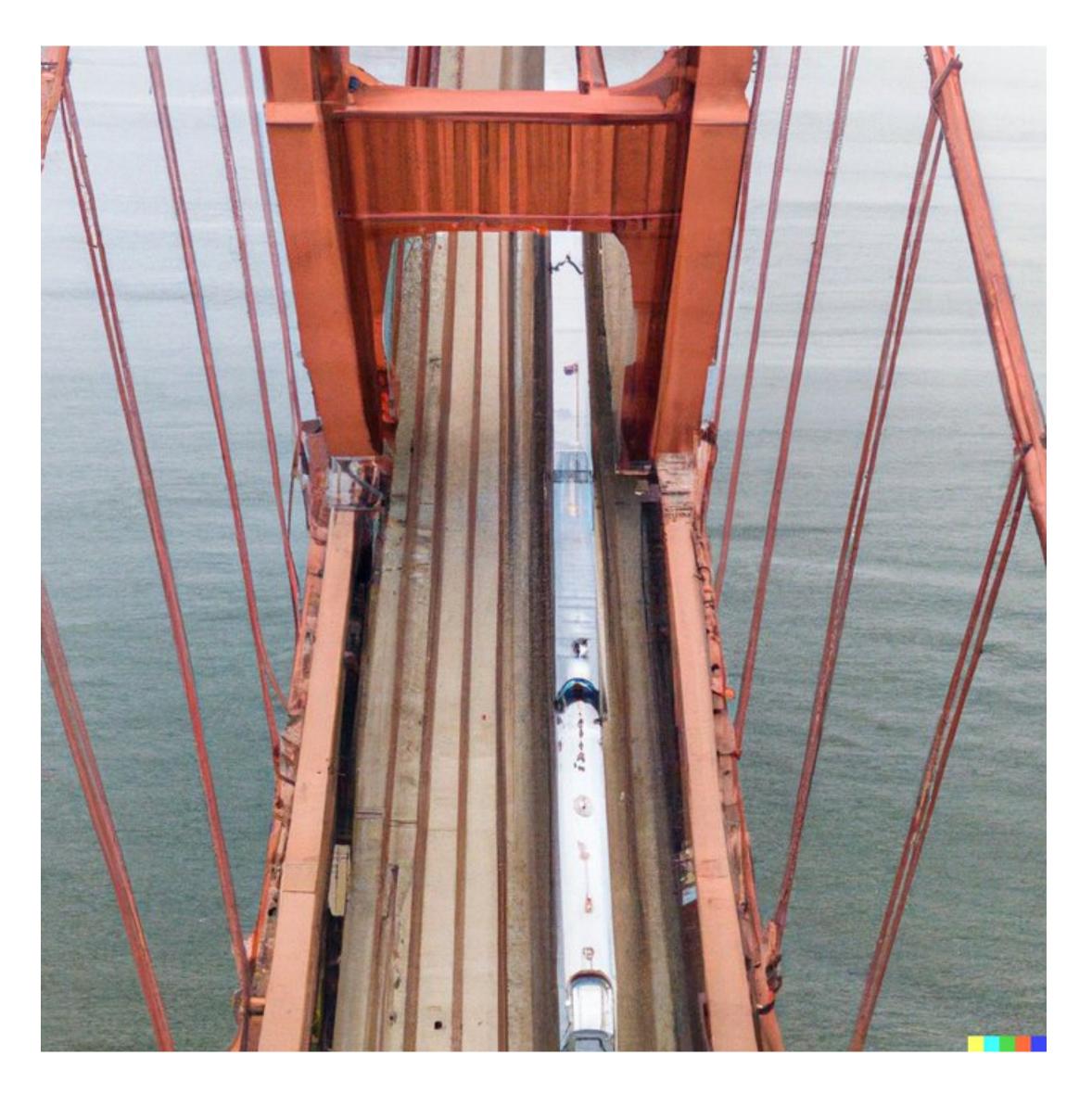
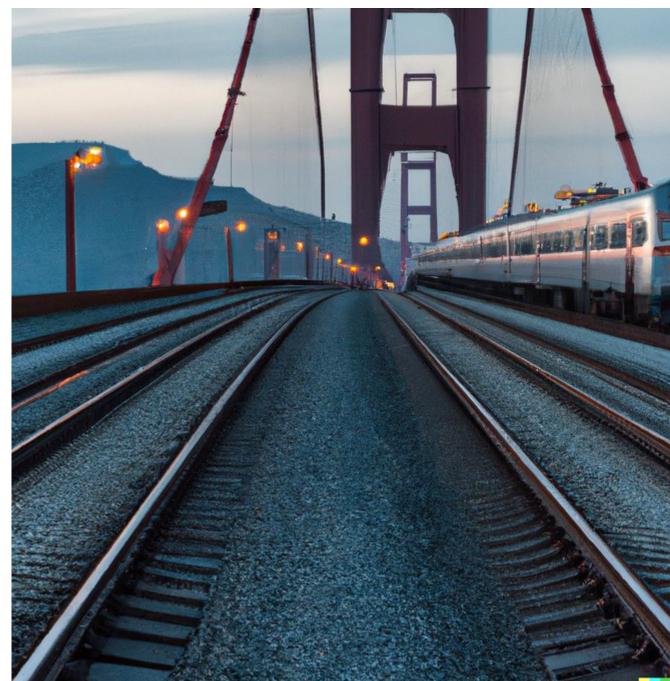
Flow Matching (Diffusion Models)

CS 180 Fall 2025 Angjoo Kanazawa and Alexei Efros

An astronaut riding a horse in a photorealistic style (Dall-E 2) slide from Steve Seitz's video

Impressive compositionality:





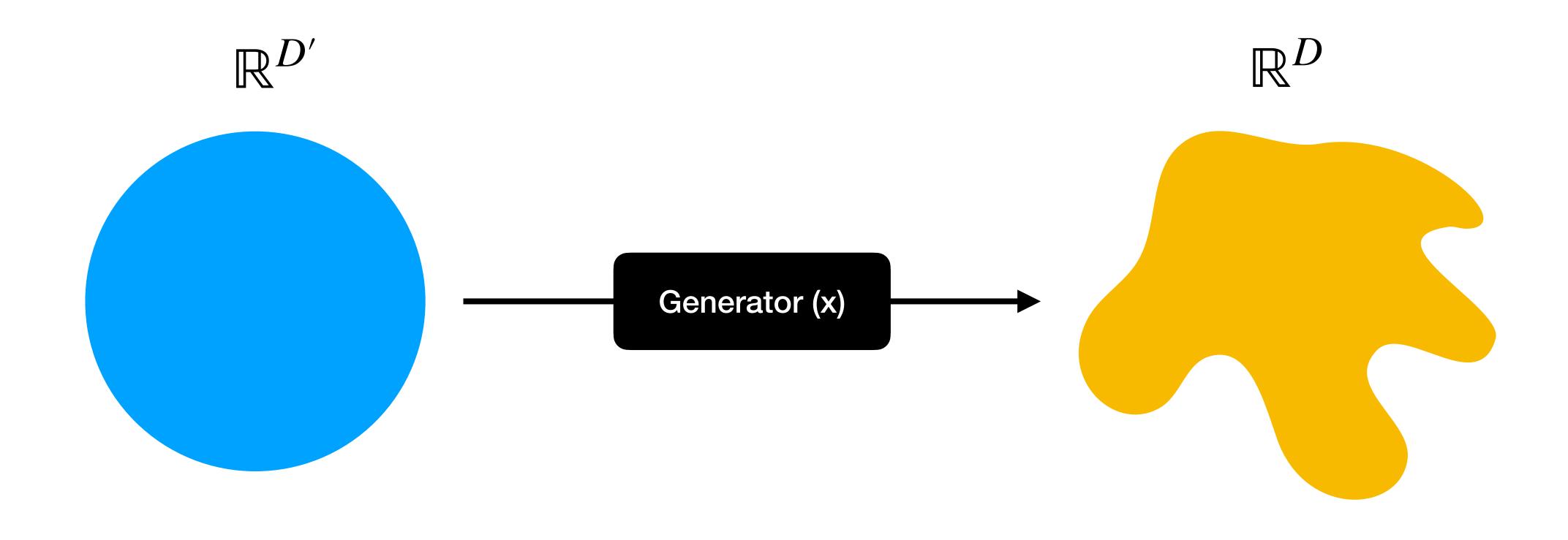
DALL-E + Danielle Baskin

Generative Models

Goal: Modeling the space of Natural Images

- Want to estimate P(x) the probability distribution of natural images
- Why? Many reasons

The generative story



 p_{target}

 p_{source} "Latent Space"

The generative story: Ex. PCA

- A Generative Model has the process of sampling (generating) an image
- •For ex, here's the generative story for PCA in its probabilistic interpretation:

Generative Story

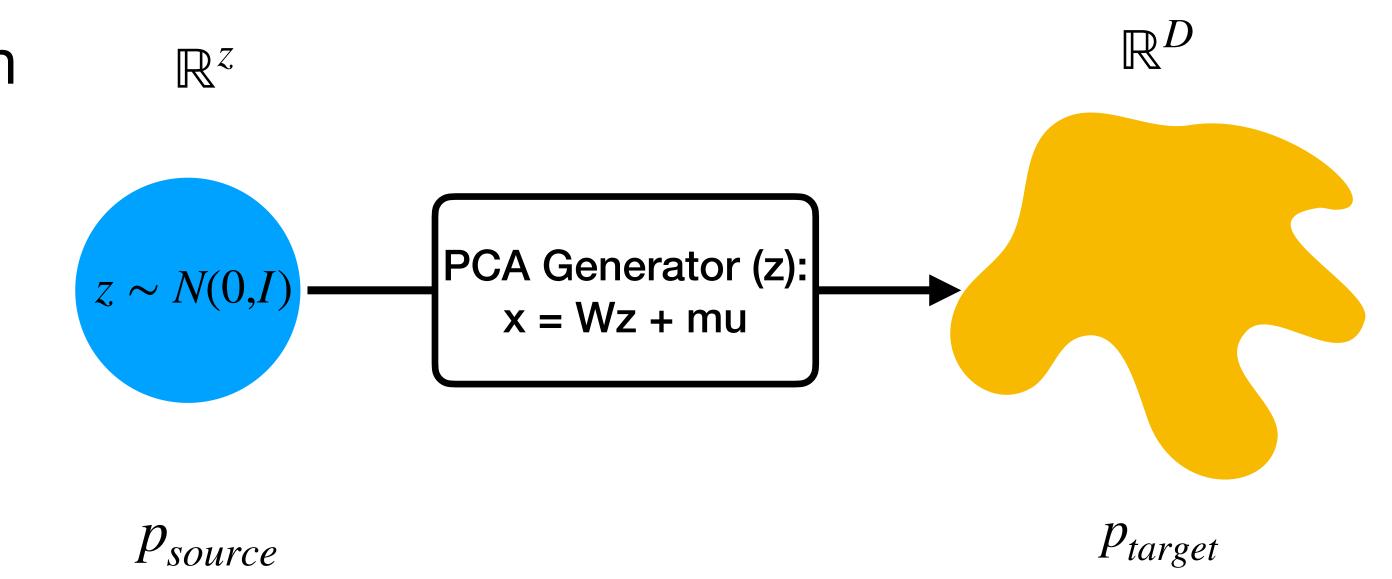
- Any Generative Model has a process of sampling an image
- For ex, here's the generative story for PCA in its probabilistic interpretation:

1. Sample from a Gaussian Distribution

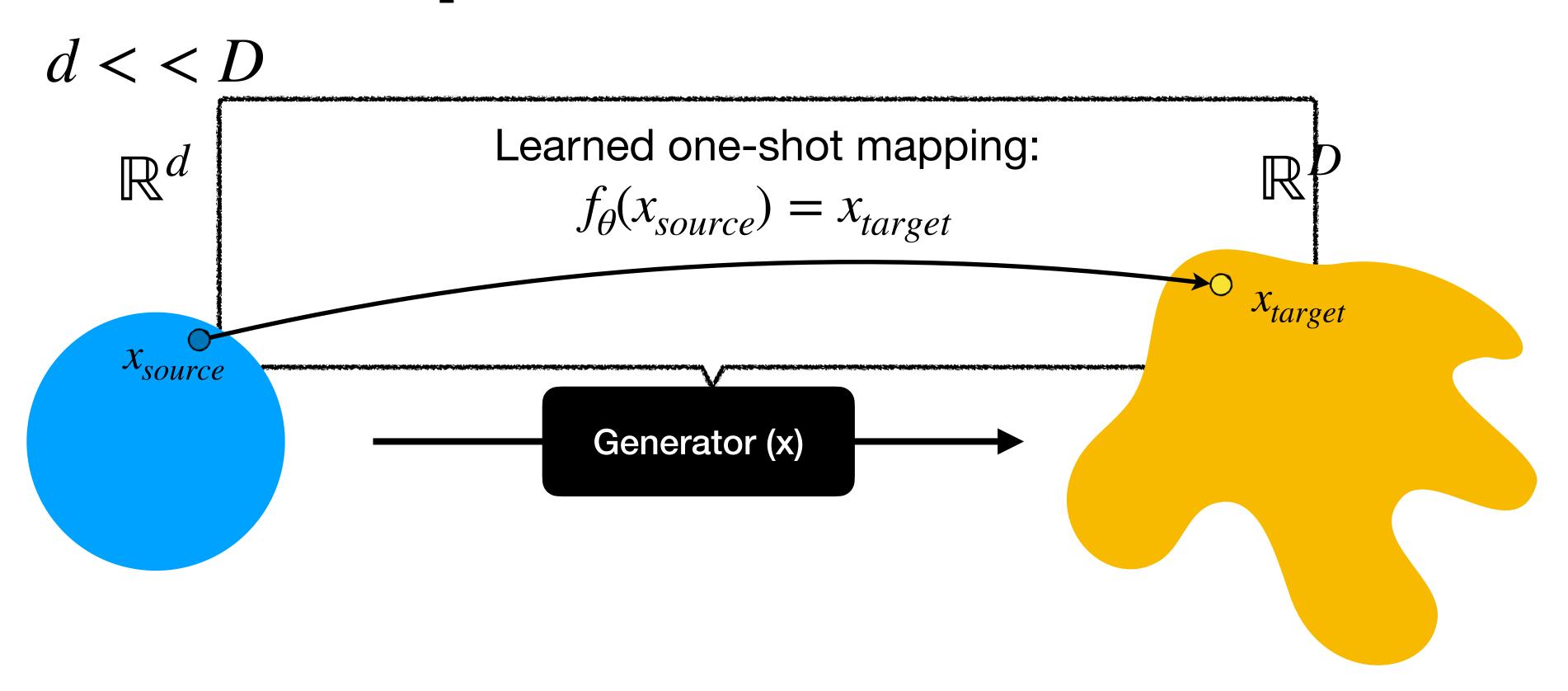
$$z \sim N(0,I)$$

2. Project to Images (W = Eigenvectors, Mu = avg datapoint)

$$x = Wz + \mu$$



Example: GANs / VAEs



P_{source}

 p_{target}

"No More GANs" Movement

- GANs really opened up the possibility of image generation
- But people didn't like it for many reasons
 - Severe mode collapse
 - Unstable training mechanics
- Flow/Diffusion is a reactionary movement against GANs, next natural evolution

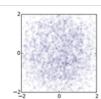
History

GAN, Goodfellow 2014 DCGAN 2015..

StyleGAN 2018

DALL-E1 Open AI 2020

DALL-E2 Open AI 2023 StableDiffusion, Stability 2023



Sohl-Dickstein et al. 2015
Deep unsupervised learning using non
equilibrium thermodynamics

Song et al. Score-based Generative Models, DDIM

DDPM, Ho et al. 2020

2021

Rectified Flow, Liu et al. 2022

NICE Dinh et al. Normalizing Flows 2015 RealNVP, Dinh et al. 2017 Glow, Kingma & Dhaliwal 2018

Neural ODE Chen et al. 2018...

Flow Matching Tutorial NeurIPS 2024

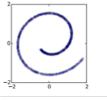
MovieGen late 2024~

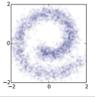
History

Diffusion Arc

DALL-E1 Open AI 2020

DALL-E2 Open AI 2023 StableDiffusion, Stability 2023





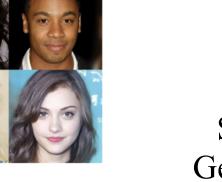
Sohl-Dickstein et al. 2015 Deep insupervised learning using non equilibrium thermodynamics

NICE Dinh et al. Normalizing Flows 2015



UIUW Kingma & Dhaliwal 2018

Neural ODE Chen et al. 2018...



Song et al. Score-based Generative Models, DDIM

DDPM, Ho et al. 2020

2021

Rectified Flow, Liu et al. 2022

Flow Matching, Lipman et al. 2022

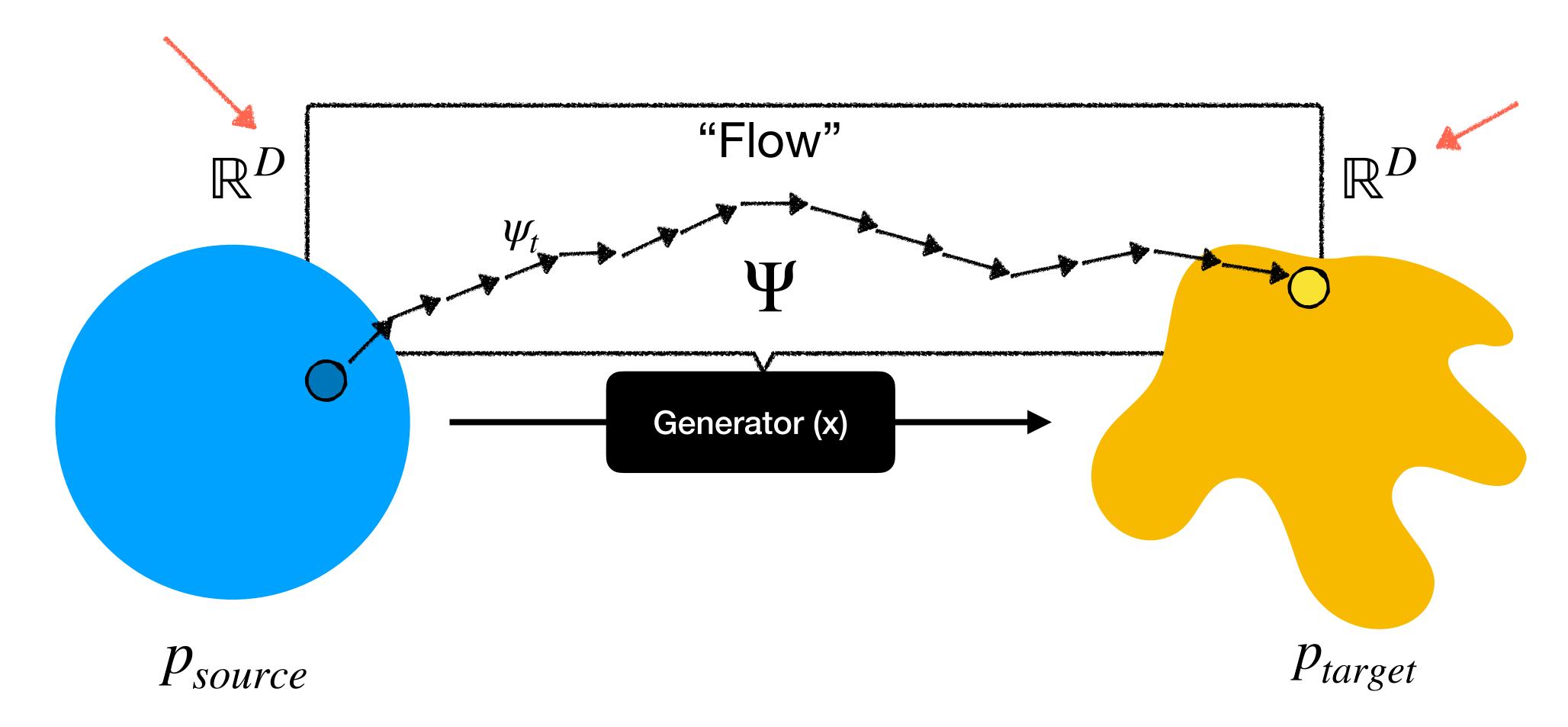
Unification / Simplification

Flow Matching Tutorial NeurIPS 2024

> MovieGen late 2024~

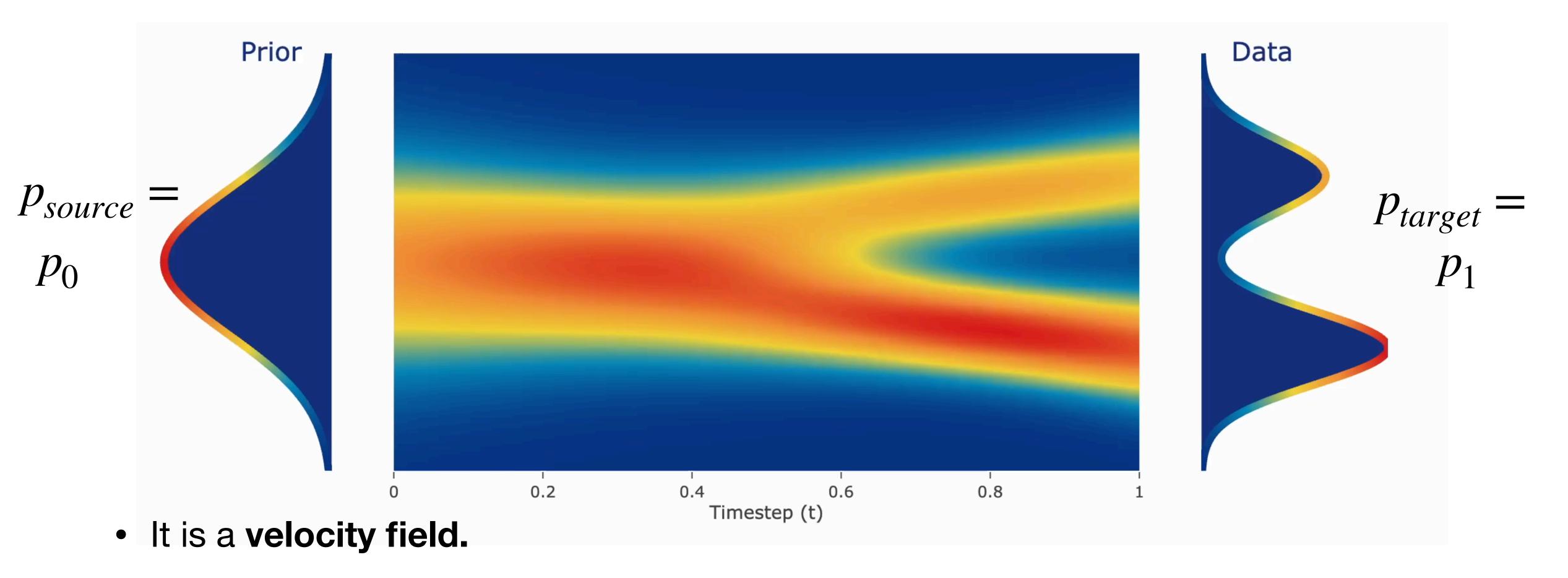
Normalizing Flow Arc

Flow based Generative Models



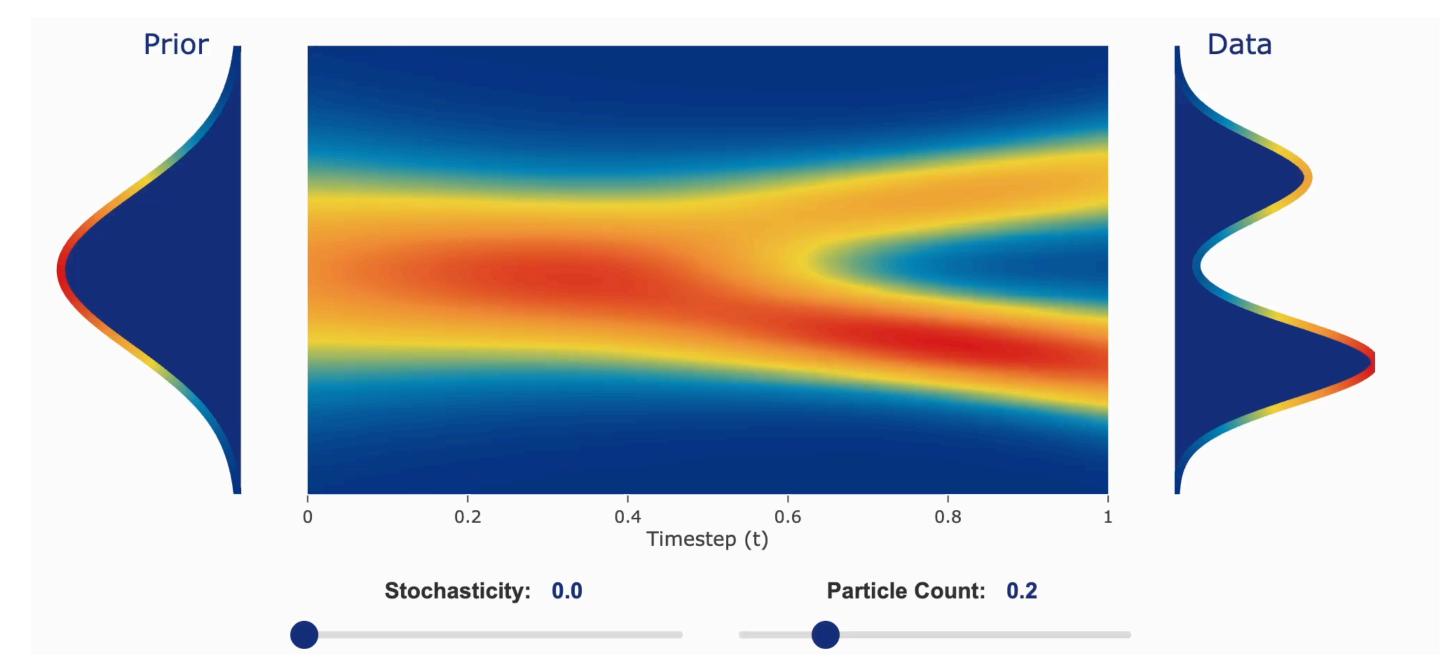
- 1. Latent space dim is same as the target!
- 2. Takes T steps to go from src to tgt

What is Flow?



- It's like a river with some currents, every point defines how fast you move (velocity)
- You ride this river to go from one distribution to next

Riding the river = Integration

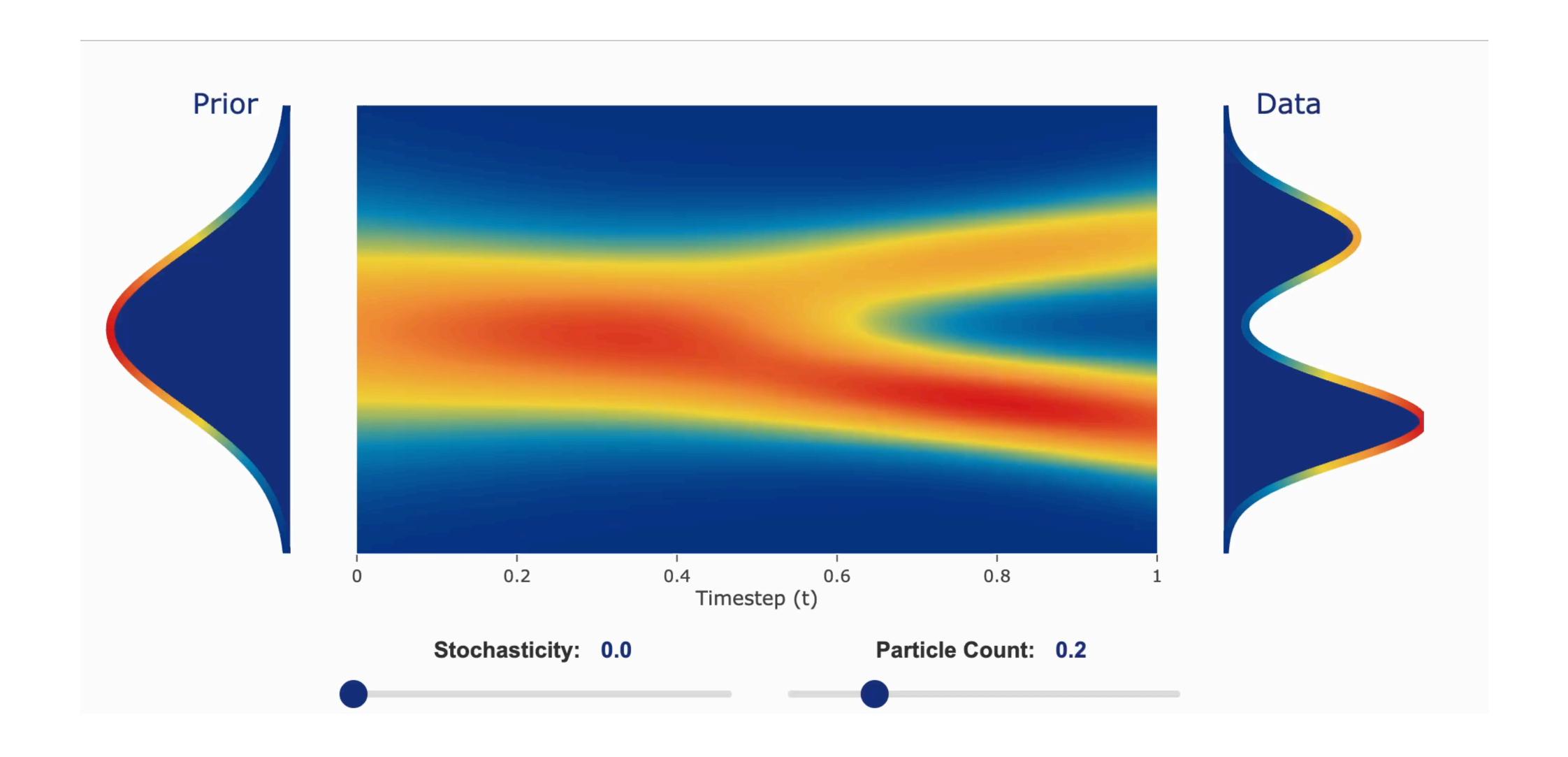


Simplest "Euler Integration":

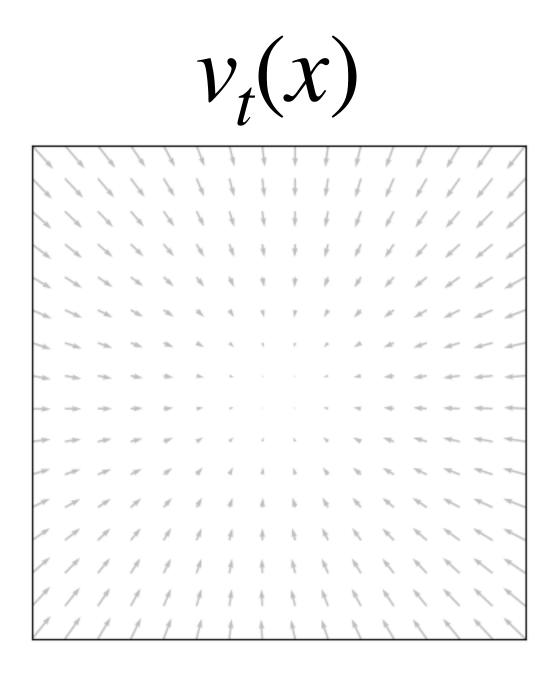
$$x_{t+\Delta t} = x_t + v_{\theta}(x_t, t) \Delta t$$

- Riding this rive means you add little bits of velocity defined at each location
- This is called "Integration", also called solving the Ordinary Differential Equation (ODE) with initial state x_0 , through some differential parametrized by a network: $\frac{dx}{dt} = v_{\theta}(x, t)$
- You can add stochasticity when riding it, then it becomes SDE (more next lecture)

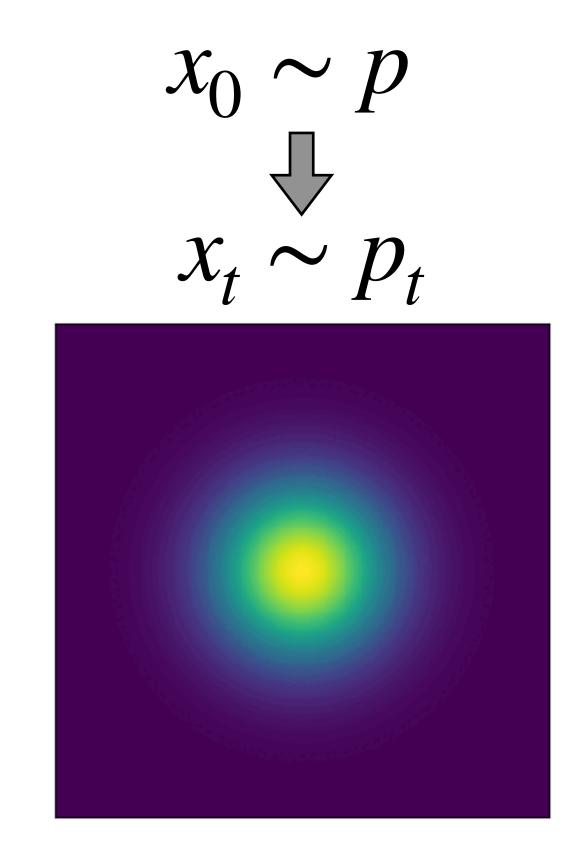
How can we learn this flow?



In 2D

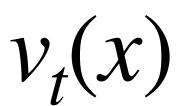


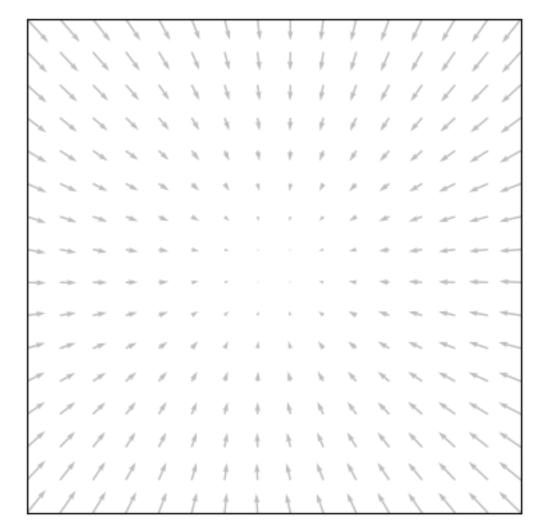
$$x_t = \Psi_t(x_0)$$



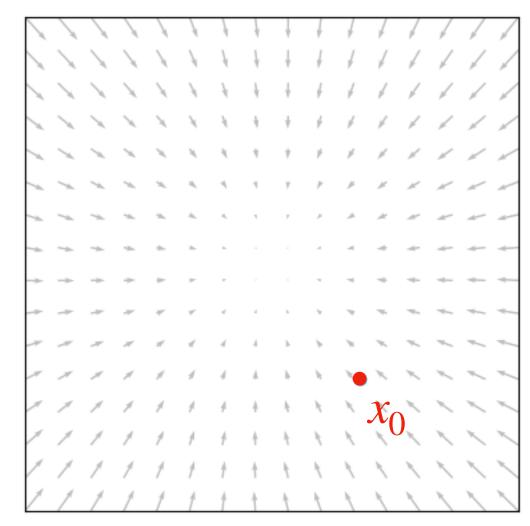
Flow ODE
$$\dot{x}_t = v_t(x_t)$$

What do we have to train this?

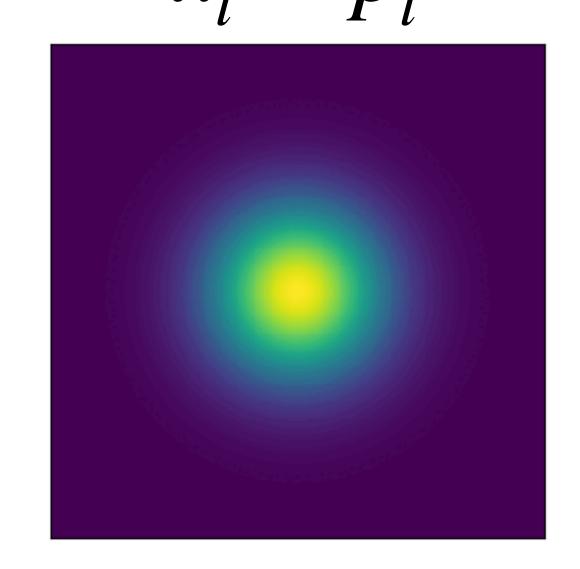




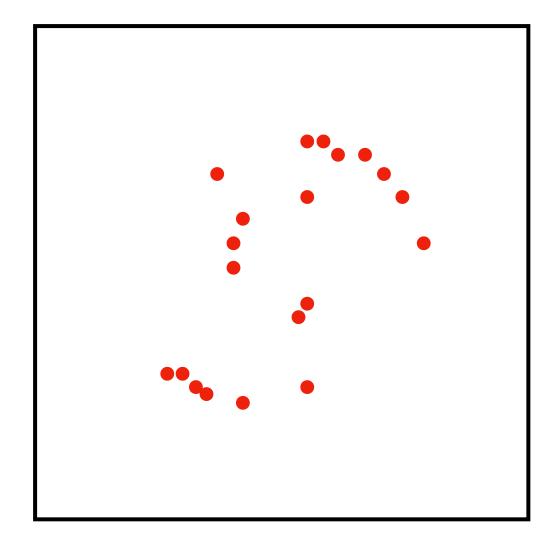
$$x_t = \Psi_t(x_0)$$



 $x_0 \sim p$ $x_t \sim p_t$



Samples of p_1



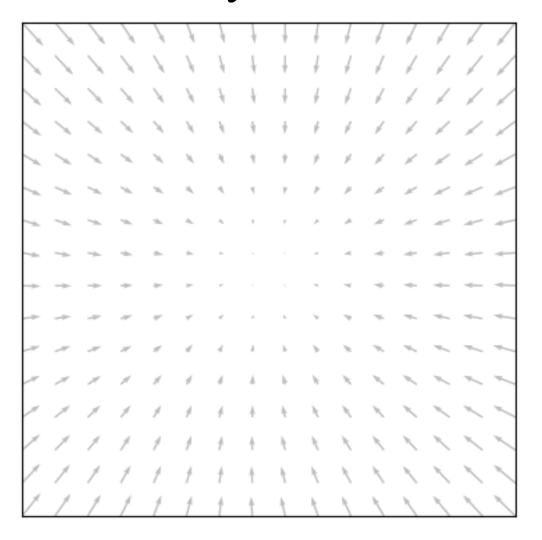
Flow ODE

$$\dot{x}_t = v_t(x_t)$$

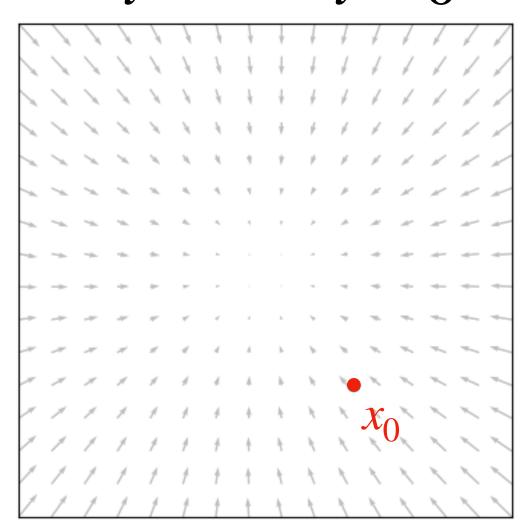
Slides from Yaron Lipman [Chen et al. 2018]

Important Caveat: Continuity Eq

$$v_t(x)$$

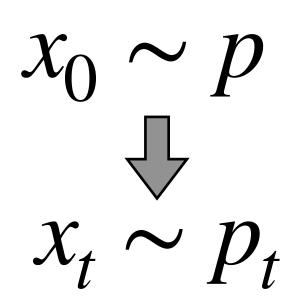


$$x_t = \Psi_t(x_0)$$



Flow ODE

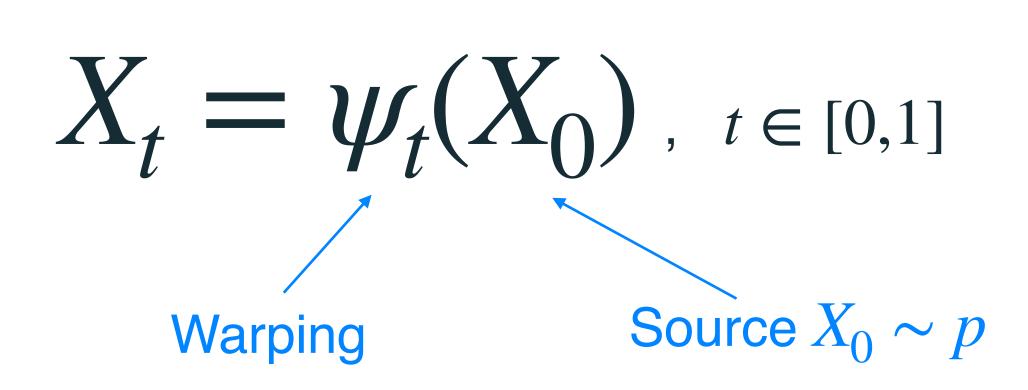
$$\dot{x}_t = v_t(x_t)$$

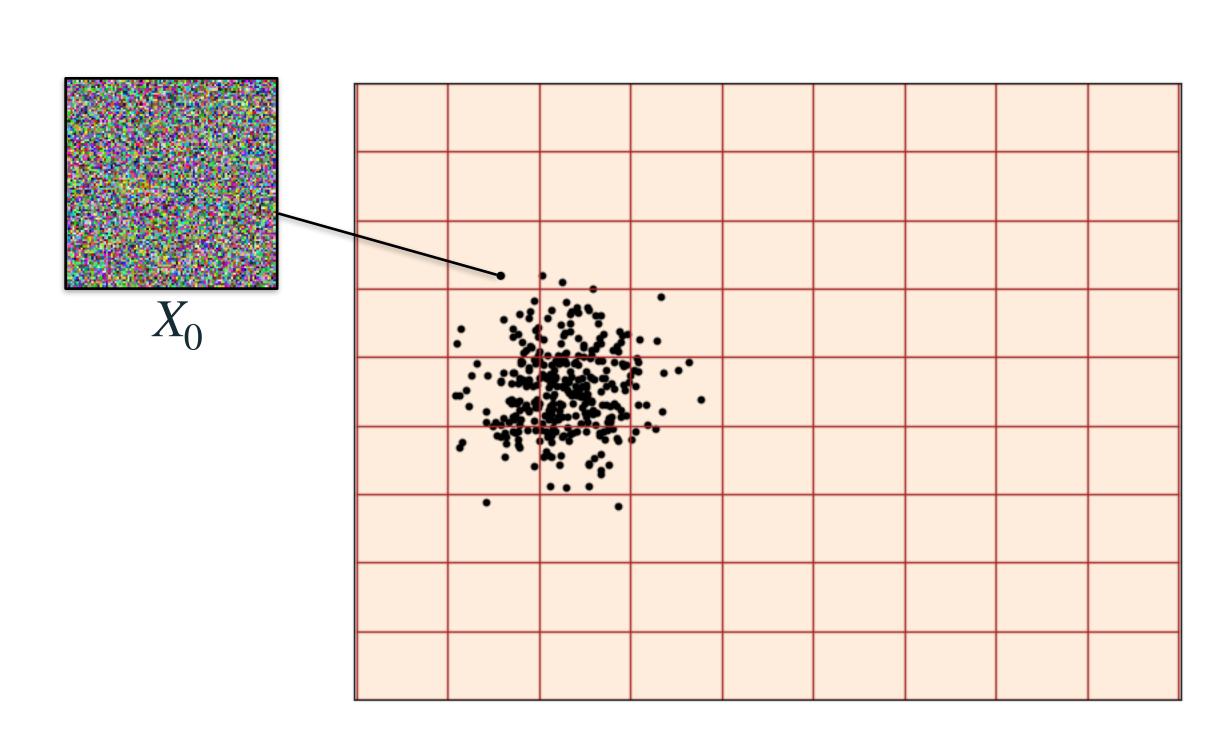


Continuity Equation PDE (fixed x) $\dot{p}_t = -\operatorname{div}(p_t v_t)$

- Need to conserve probability mass
- In the river, analogy you cannot add or remove water
- It has to come from somewhere and go somewhere

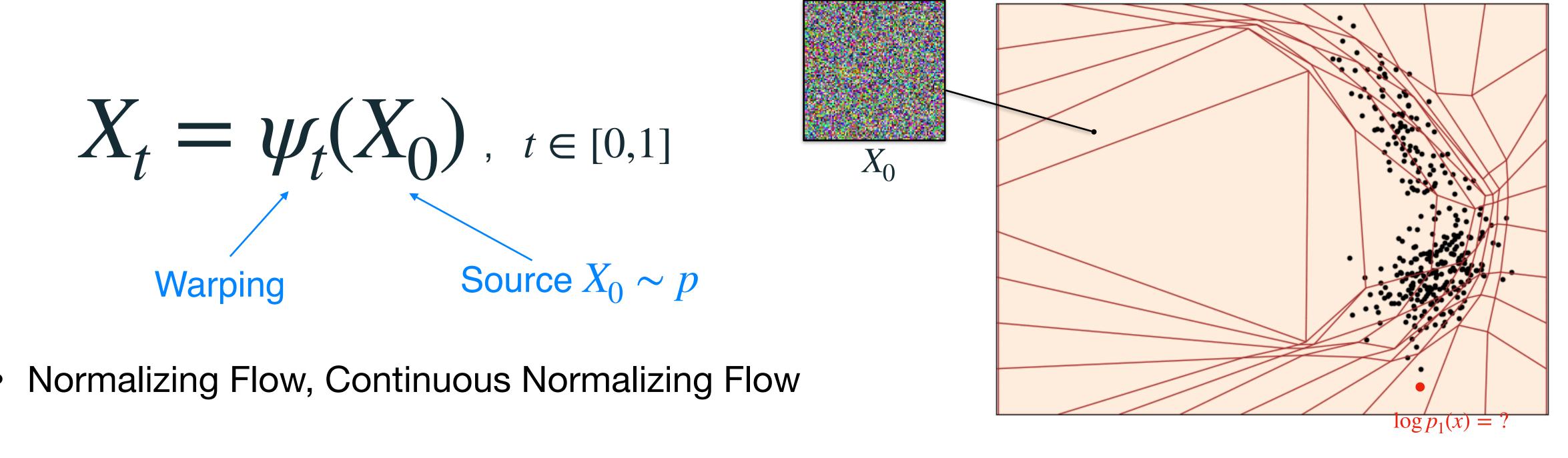
The flow can be though about learning a warping function





Initial approach trained flow with Maximum Likelihood

$$D_{\text{KL}}(q || p_1) = -\mathbb{E}_{x \sim q} \log p_1(x) + c$$



- Chaining ψ_t needs to satisfy the continuity equation!!!!
- This requires ODE integration DURING training with invertible neural networks

Previous Normalizing Flow works

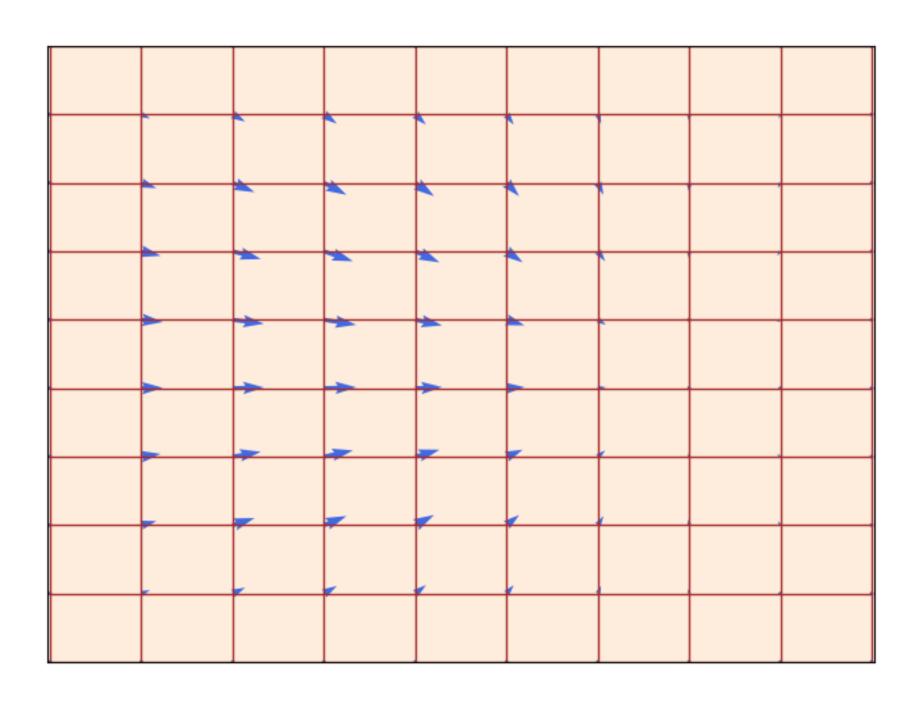
- Tries to directly deal with this continuity equation constraint
- Very slow to train (need to integrate while training)
- Other constraints like invertibility of ψ_t
- Nice idea with promising results but limited capability + not practical to train

Instead, model Flow with Velocity

Solve ODE
$$u_t(x)$$

$$u_t(x)$$
Velocity

$$\frac{\mathrm{d}}{\mathrm{d}t}\psi_t(x) = u_t(\psi_t(x))$$



Pros: velocities are *linear*

Cons: simulate to sample

Flow Matching [Lipman et al. '22]

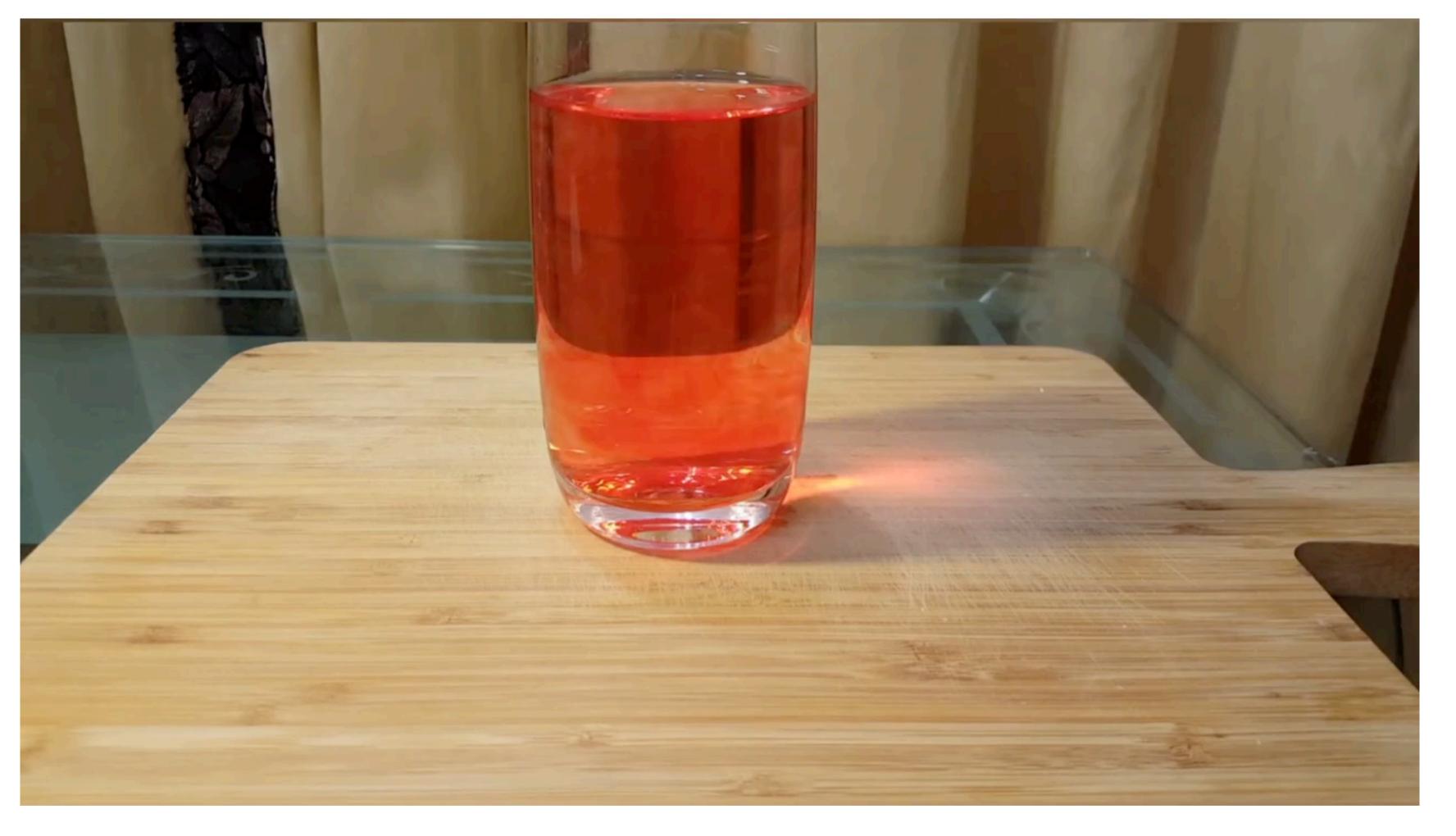
- Directly learn the velocity field!
- Don't have to worry bout the continuity equation because velocity fields can't add / subtract mass. You only re-distribute
- Continuity equation satisfied by construction.
- Basically just learn velocity fields for each data sample (conditional velocity field), all will be fine!

Diffusion: Physics Interpretation

Heat Diffusion

Diffusion: Physics Interpretation

Reversing the process

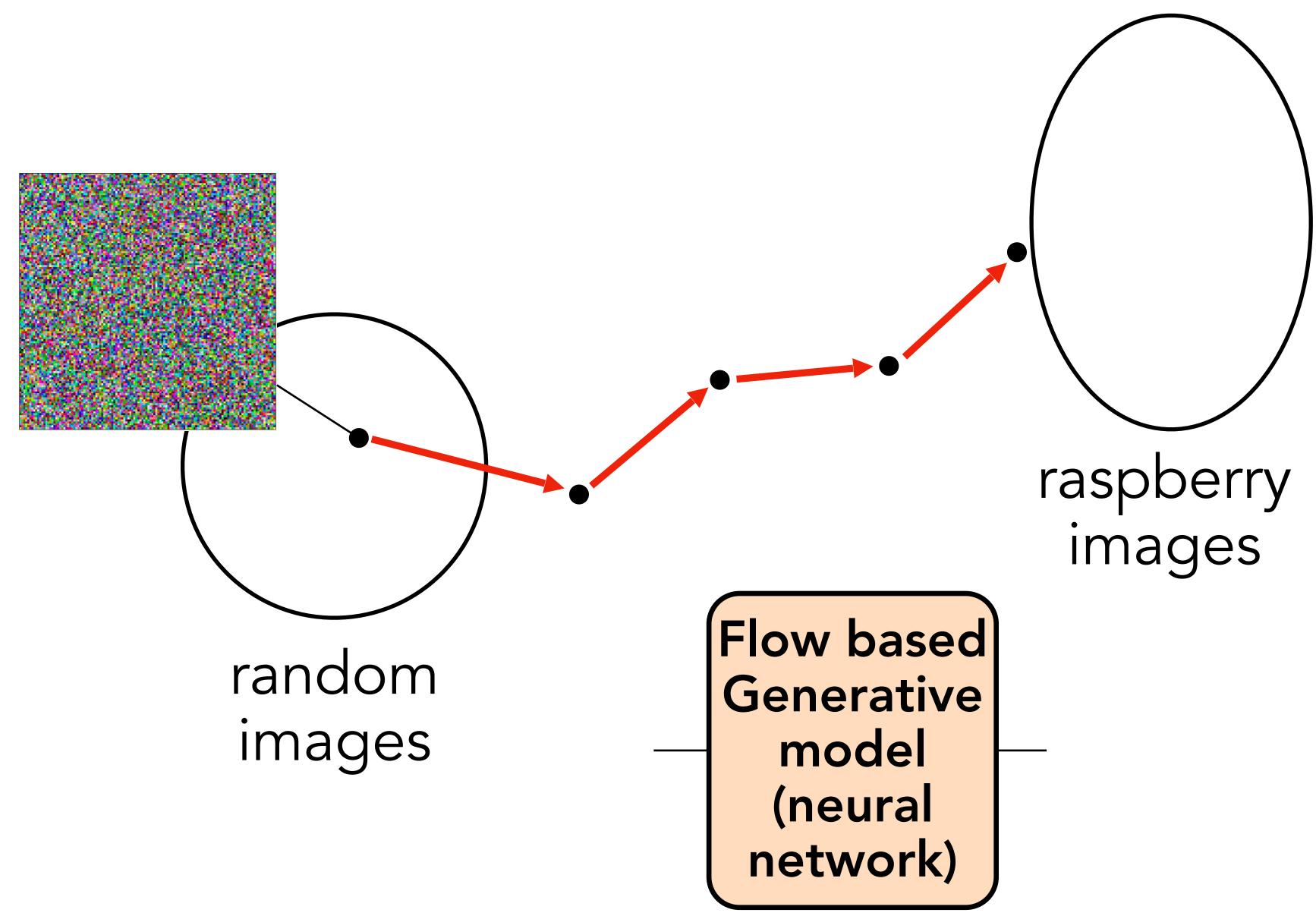


Diffusion vs Flow matching

- They both end up learning flow, but diffusion poses the problem as learning a specific noising process and learning to denoise it.
- Diffusion: spread out like heat diffusion, learn how to undo it
- Flow matching: More general, just directly learn a velocity field from one to another

Ok so how to train the flow??

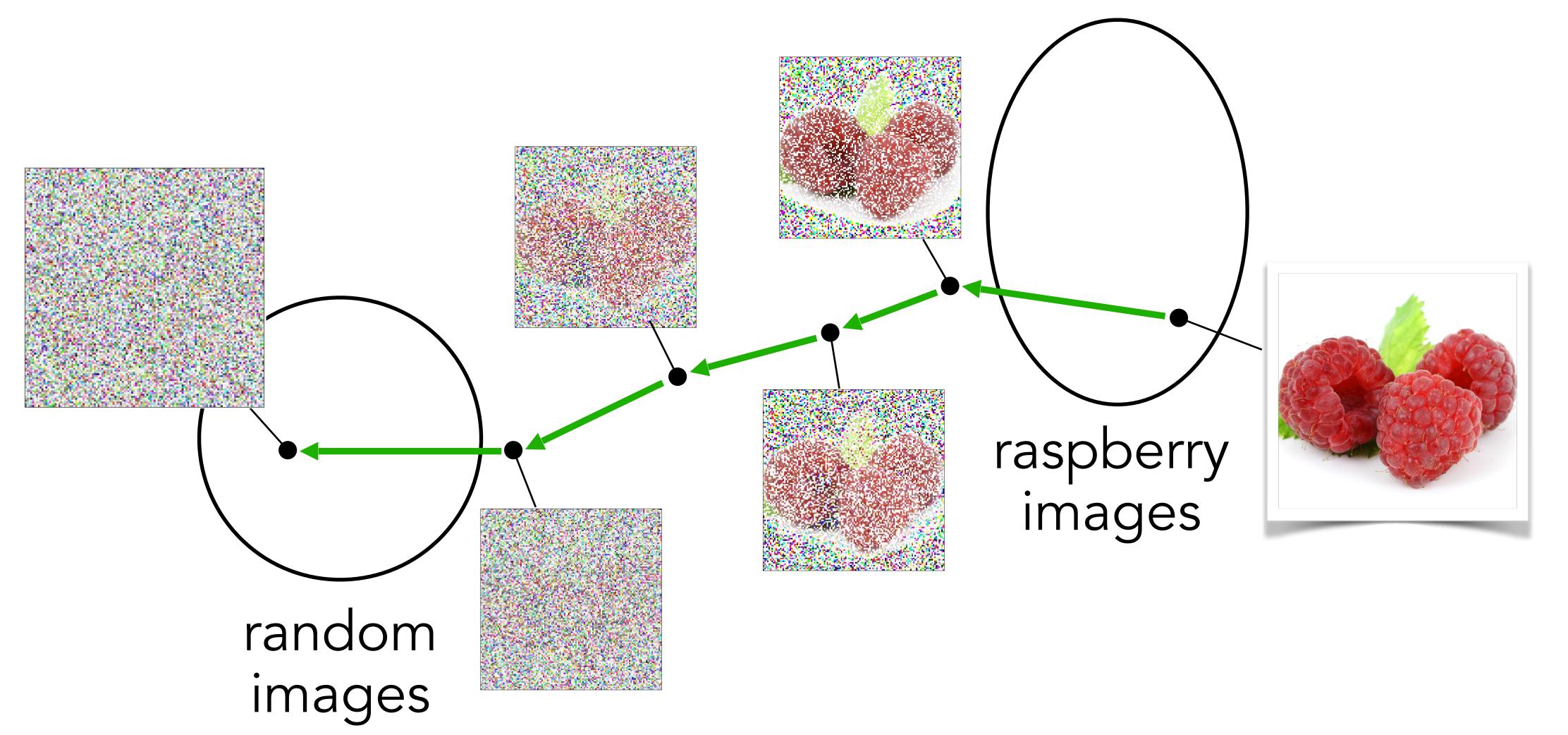
Quick Recap:



slide from Steve Seitz's video

Training

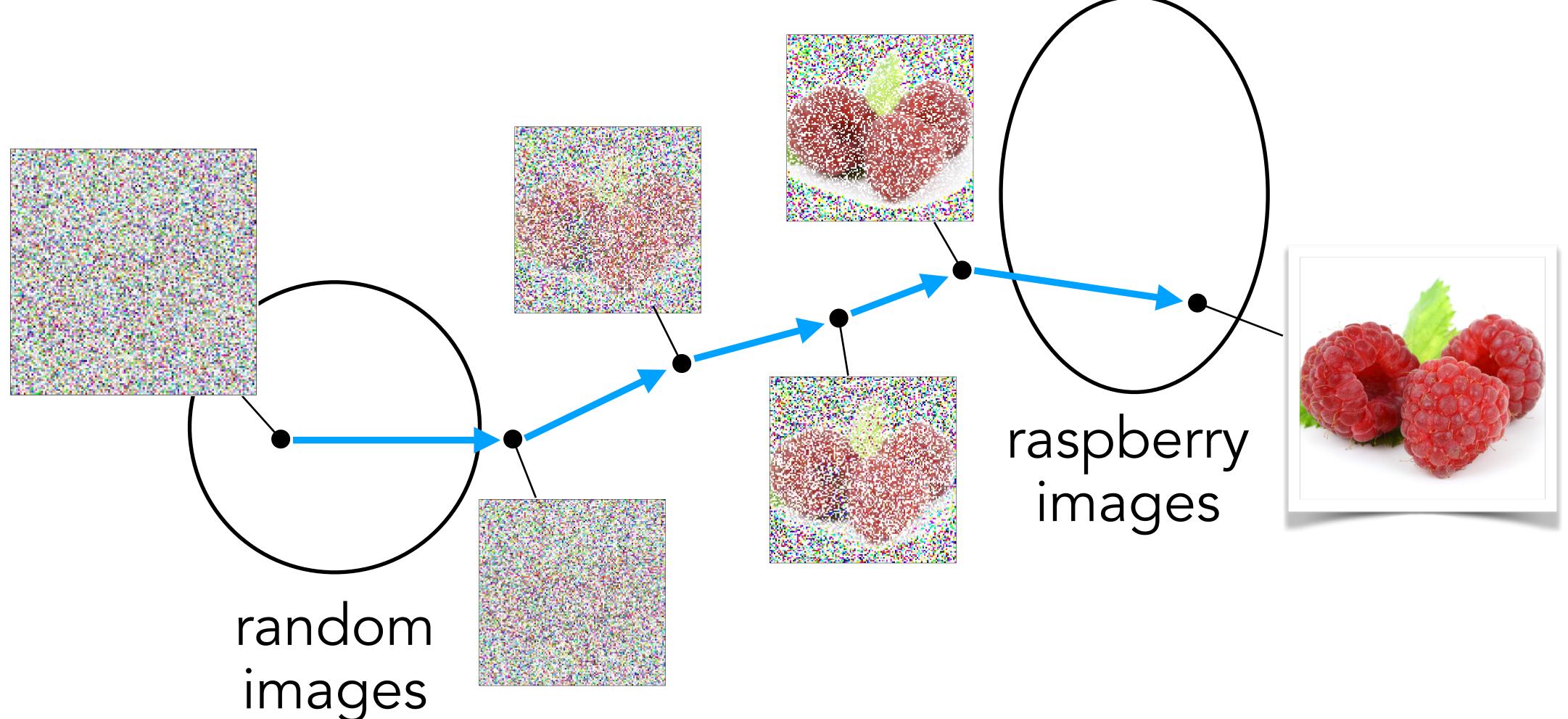
1. Take real data, corrupt it to left the distribution somehow



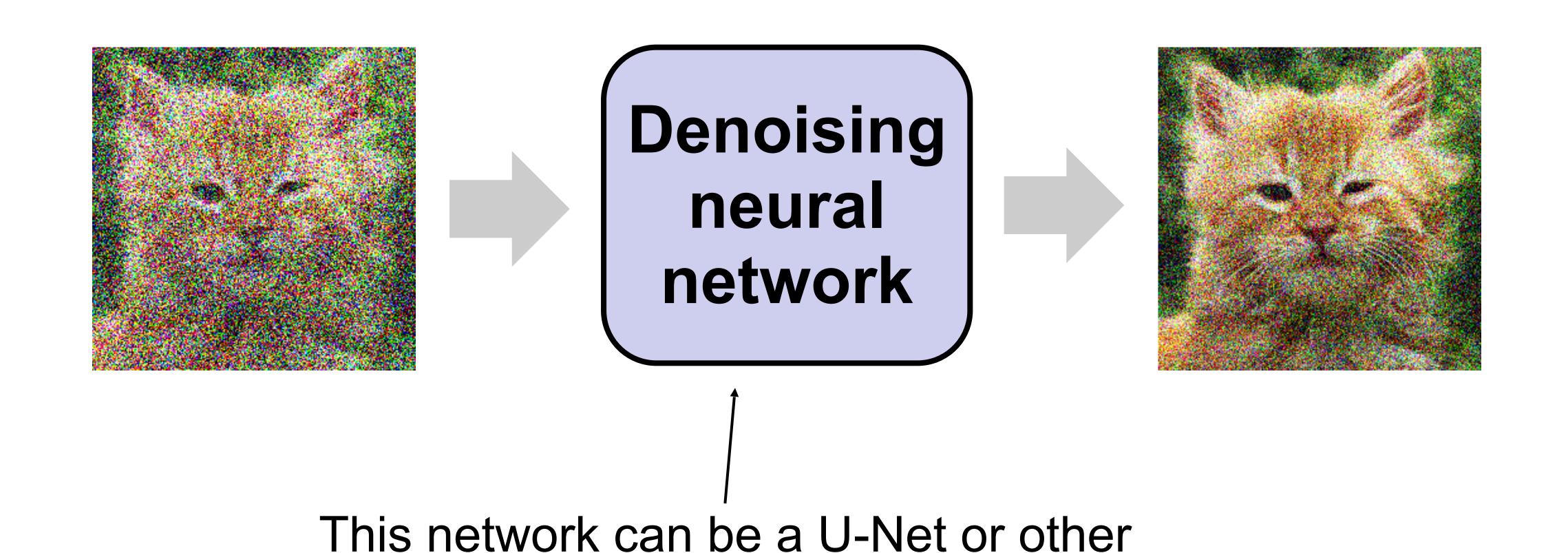
Training

1. Take real data, corrupt it to left distribution somehow

Learn to undo the process!



Denoising with a neural network

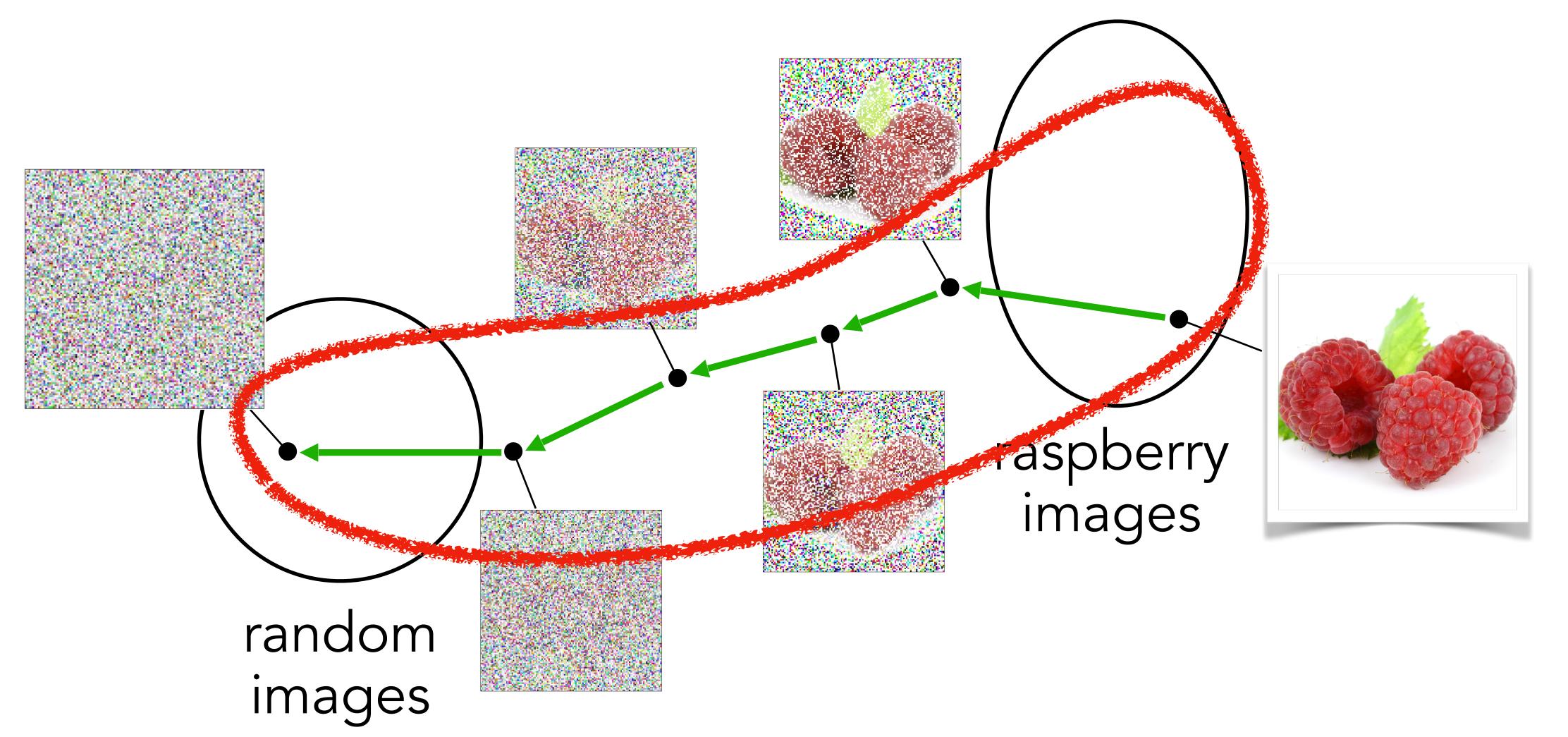


suitable image-to-image network

Slide source: Steve Seitz

\$\$\$ question, how to pick the intermediate path?

How to generate this Green path?



What is the path?

- How to add noise? What kind of noise?? What schedule to add them???
- This is complicated in the diffusion literature (lots of math).

Can we keep it simple?

Flow Matching [Lipman et al. 2022]!

Bc it has to follow physical diffusion process.. Every time step some gaussian has to be added. But in the end you want it to be a N(0,1) etc..

Flow matching basically says, you can add noise however you like!

How to construct x_t

TLDR: Sample noise, add it, then reconstruct the data

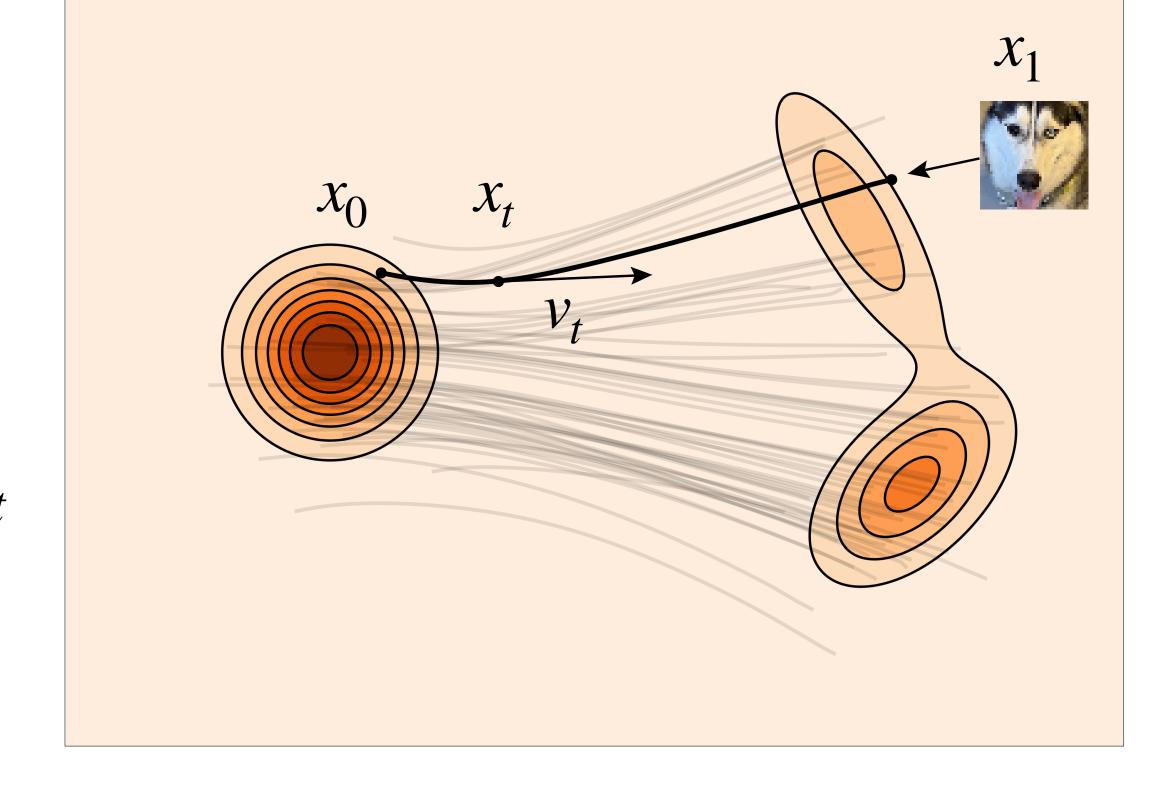
Flow matching says you can **pick any combination**, as long as it starts from a sample in the source (e.g. gaussian) and ends with a sample in the target distribution (image)

$$x_t = \alpha_t x_0 + \sigma_t x_1$$

$$x_0 \sim p_0(x) \qquad x_1 \sim p_1(x)$$

Flow training

- For each data x_1
 - Sample some noise x_0
 - Combine it however you want to get x_t
 - Now learn to predict the velocity at x_t



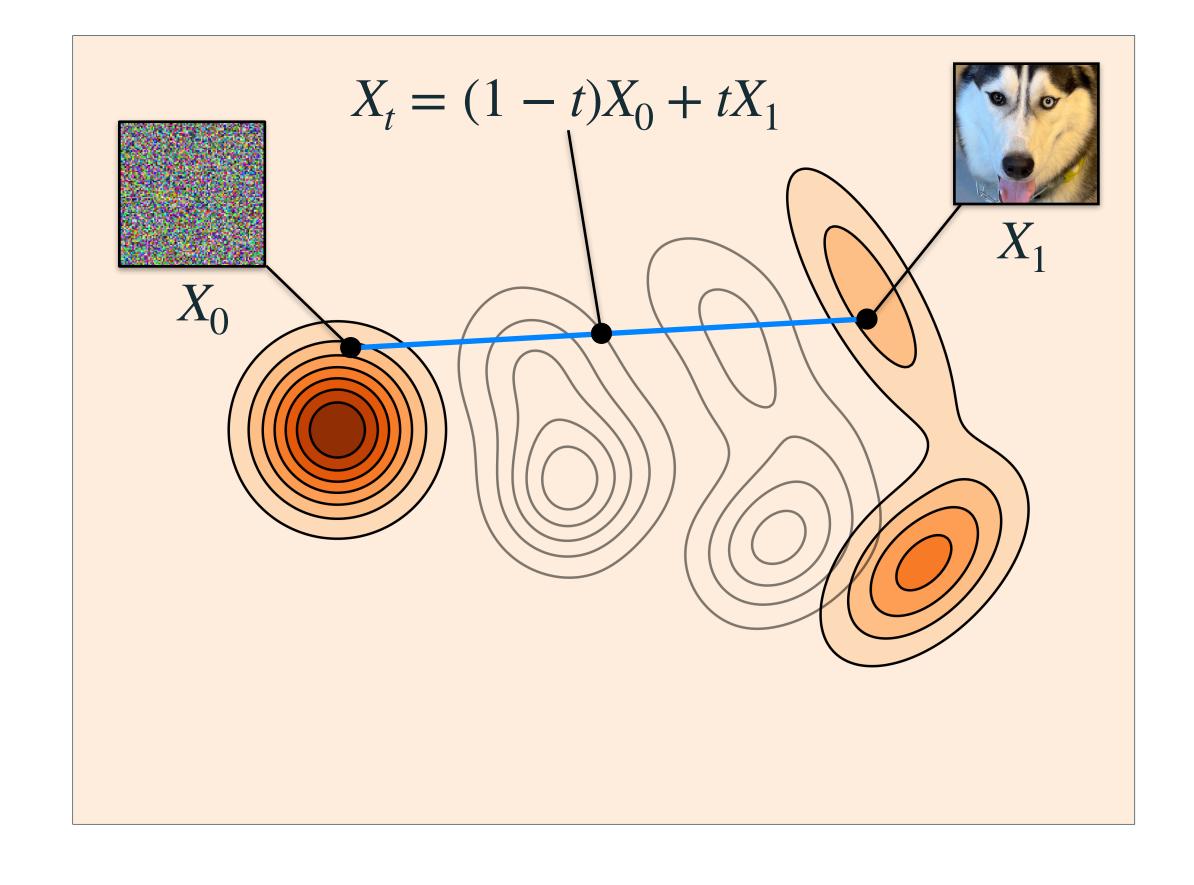
• What is the velocity? Depends on how you got x_t

A Very Simple Way

Linear interpolation!

$$x_t = \alpha_t x_0 + \sigma_t x_1$$

$$x_t = (1 - t)x_0 + tx_1$$



What is the velocity supervision?

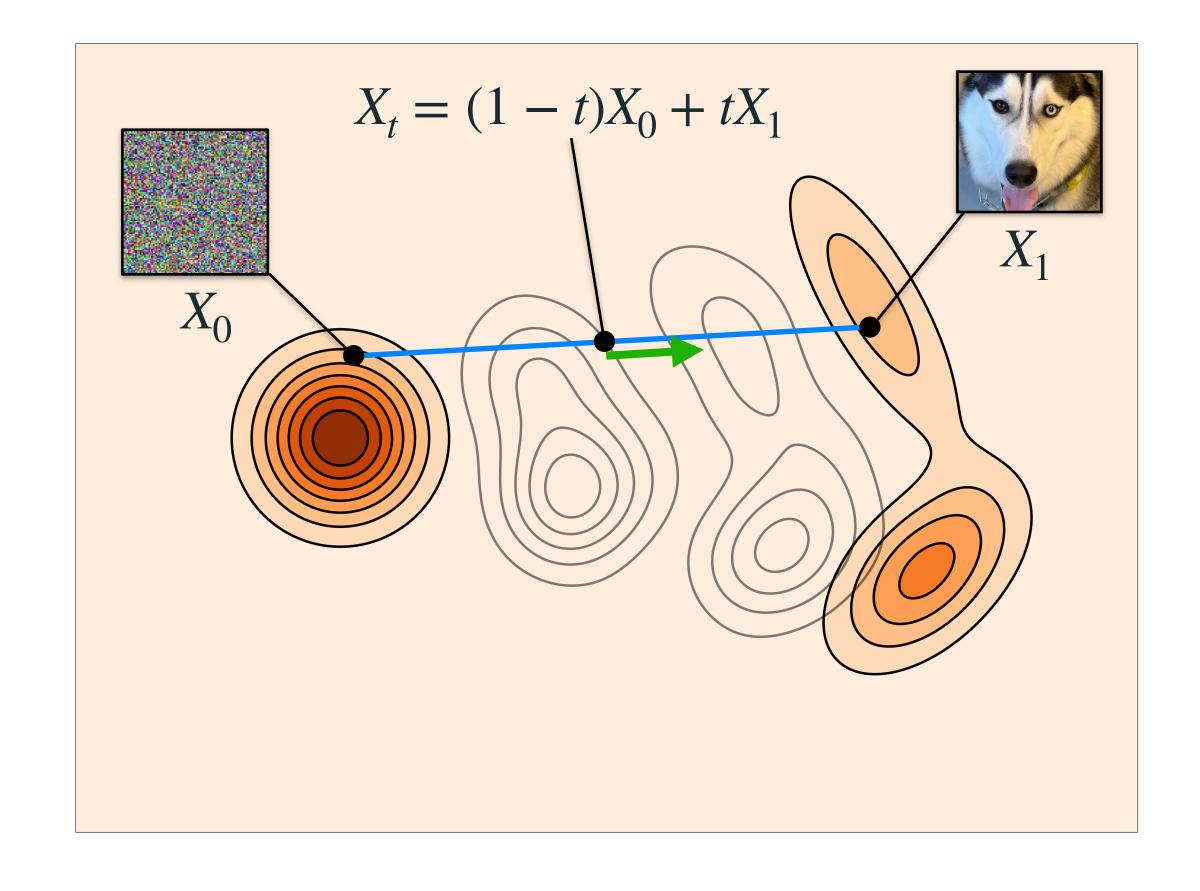
$$x_{t} = \alpha_{t}x_{0} + \sigma_{t}x_{1}$$

$$x_{t} = (1 - t)x_{0} + tx_{1}$$

$$\frac{dx_{t}}{dt} = -x_{0} + x_{1}$$

$$= x_{1} - x_{0}$$

$$\mathbb{E}_{t,X_0,X_1} \| u_t^{\theta}(X_t) - (X_1 - X_0) \|^2$$



^{*}Conditioned on a single sample

Inside a Training Loop

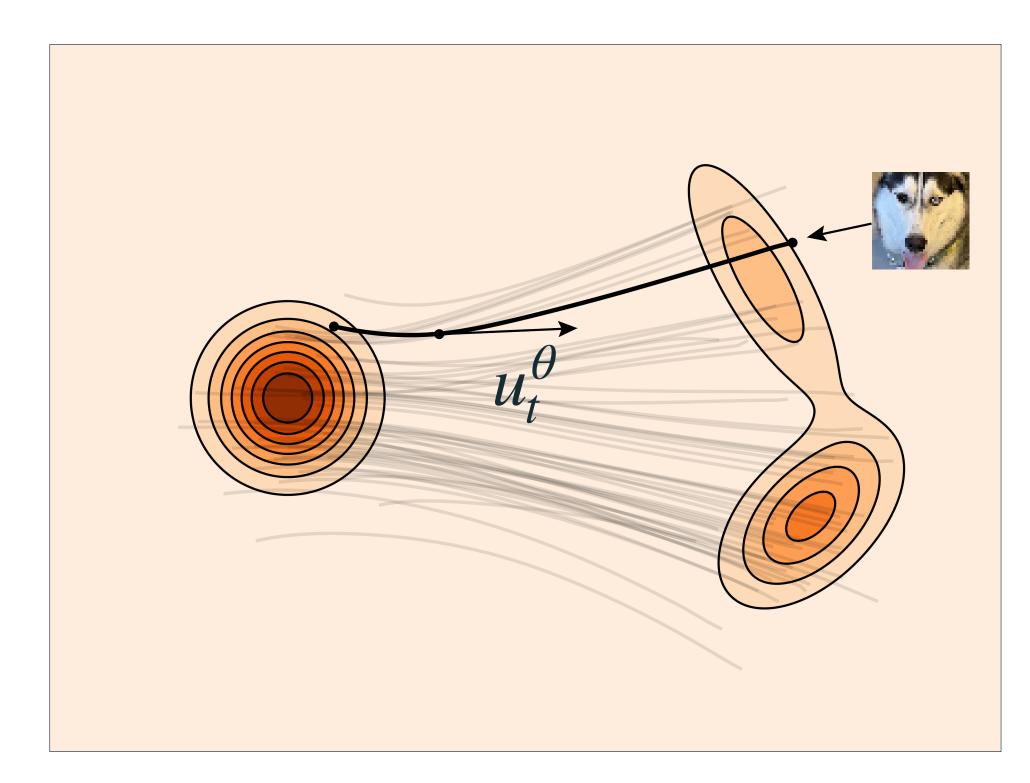
Flow Matching

```
x = next(dataset)
t = torch.rand(1) \# Sample timestep (0,1)
noise = torch.randn like(x) # Sample noise
x t = (1-t) * noise + (t) * x # Get noisy x t
flow pred = model(x t, t) # Predict noise in x t
flow gt = x - noise # ground truth flow (w/ linear sched)
loss = F.mse_loss(flow pred, flow gt) # Update model
loss.backward()
optimizer.step()
```

Test-time sampling

- Just take a small step in the velocity
- Use any ODE Solver, i.e. integration you like, like Euler integration:

$$x_{t+\Delta t} = x_t + \Delta t \cdot \left. rac{dx}{dt}
ight|_{x_t,t}$$



Sample from $X_0 \sim p$

Inside Sampling Loop

```
velocity = model(x_t, t) # Predict noise in x_t
x_t = x_t + dt * velocity # Step in velocity
```

Model Parametrization

- Simplest Just make your NN predict the velocity, which with the simple linear interpolation is always just x1 x0
- Other options: Make it output the noise added or the clean image.
 Possible with some arithmetics
- But will have some 1/t or 1/(1-t) terms, which is annoying at the edges

Training: Model parameterization

 You can make your network output undo the noise in many different ways, predicting x, v, noise, or flow

$$v_{t} = \alpha_{t} x_{1} - \sigma_{t} x_{0} \qquad u_{t} = x_{1} - x_{0} = \epsilon - x_{0}$$
$$u_{t} = x_{t} - x_{0}$$

• These are all equivalent because of the linear relationship with x_t . You can derive all of these as long as you know one of them

$$x_t = \alpha_t x_0 + \sigma_t x_1$$

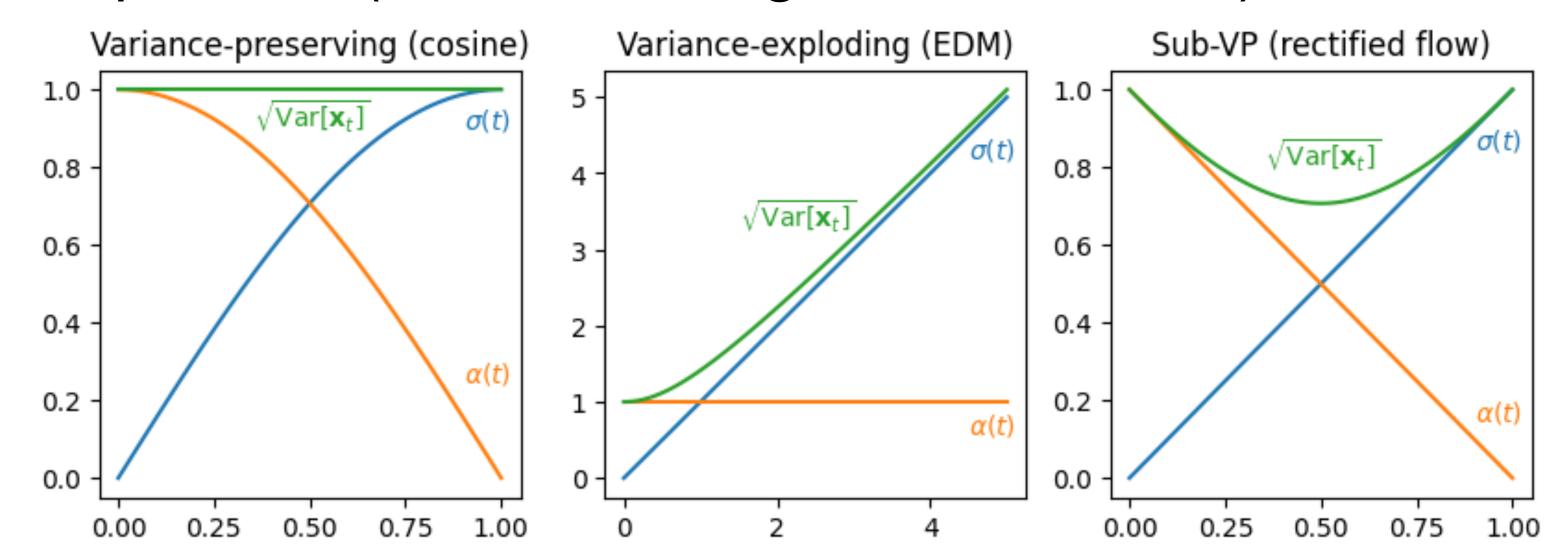
For example

$$\mathbb{E}[(\hat{\mathbf{x}}_0 - \mathbf{x}_0)^2] = \mathbb{E}\left[\left(\frac{\mathbf{x}_t - \sigma(t)\hat{\varepsilon}}{\alpha(t)} - \frac{\mathbf{x}_t - \sigma(t)\varepsilon}{\alpha(t)}\right)^2\right] = \mathbb{E}\left[\frac{\sigma(t)^2}{\alpha(t)^2}\left(\hat{\varepsilon} - \varepsilon\right)^2\right].$$

Other options lead to prior works

$$x_t = \alpha_t x_0 + \sigma_t x_1$$

- Other choices:
 - Preserve variance (VP-ODE) DDPM
 - Exploding variance (VE-ODE) Score Matching/DDIM
 - Linear interpolation (Flow Matching, Rectified Flow)



Training: Flow Matching vs. Diffusion

Algorithm 1: Flow Matching training. Input : dataset q, noise pInitialize v^{θ} while not converged do $t \sim \mathcal{U}([0,1])$ > sample time $x_1 \sim q(x_1)$ > sample data $x_0 \sim p(x_0)$ > sample noise $x_t = \Psi_t(x_0|x_1)$ > conditional flow Gradient step with $\nabla_{\theta} \|v_t^{\theta}(x_t) - \dot{x}_t\|^2$

```
Output: v^{\theta}
```

```
p_t(x_t | x_1) general
p(x_0) is general
```

```
Algorithm 2: Diffusion training.
 Input : dataset q, noise p
 Initialize s^{\theta}
 while not converged do
     t \sim \mathcal{U}([0,1]) \triangleright sample time
     x_1 \sim q(x_1) > sample data
     x_t = p_t(x_t|x_1) > sample conditional prob
     Gradient step with
      \nabla_{\theta} \|s_t^{\theta}(x_t) - \nabla_{x_t} \log p_t(x_t|x_1)\|^2
 Output: v^{\theta}
```

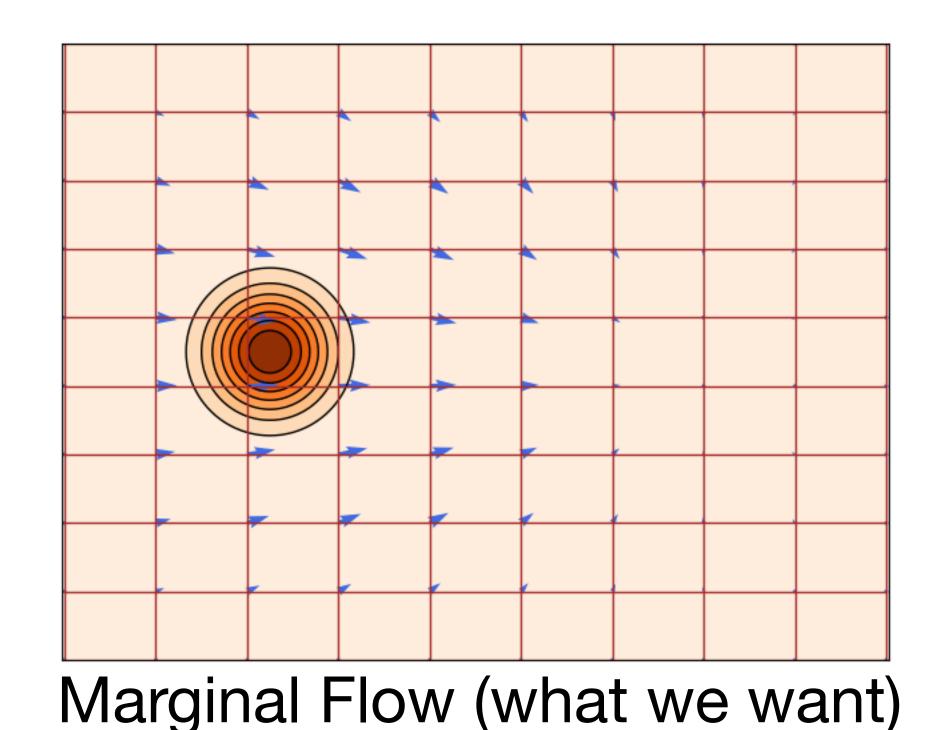
```
p_t(x_t | x_1) closed-form from of SDE dx_t = f_t dt + g_t dw
      • Variance Exploding: p_t(x \mid x_1) = \mathcal{N}(x \mid x_1, \sigma_{1-t}^2 I)
          Variance Preserving: p_t(x \mid x_1) = \mathcal{N}(x \mid \alpha_{1-t}x_1, (1 - \alpha_{1-t}^2)I)
                                                                        \alpha_t = e^{-\frac{1}{2}T(t)}
p(x_0) is Gaussian
p_0(\cdot | x_1) \approx p
```

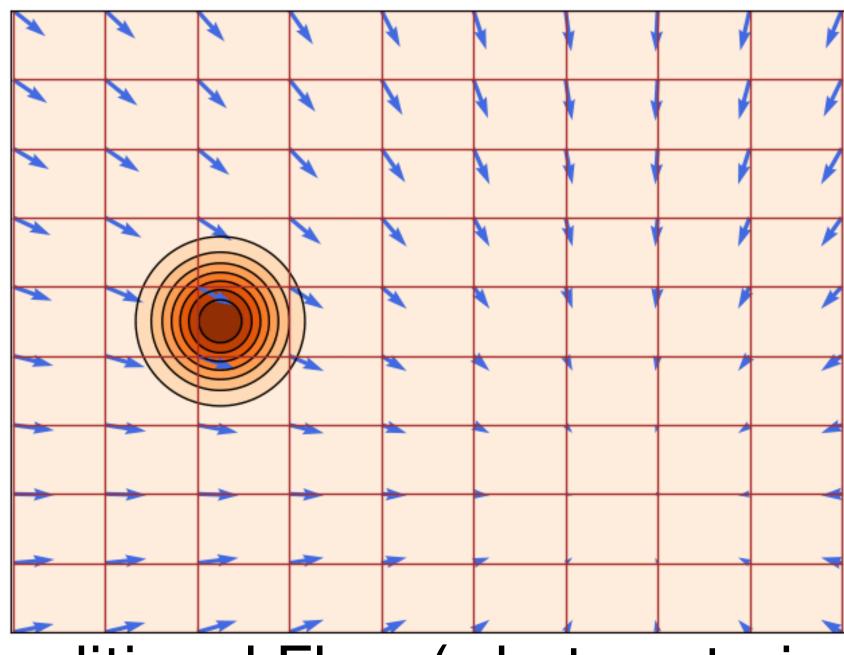
Why does Flow Matching work?

FM —> predict the velocity conditioned on a single sample

Recap

- What we want is the flow (velocity field) that takes samples from p_0 to p_1 when integrated (called Marginal Flow)
- But what we did was to train flow for each sample (Conditional Flow)





Conditional Flow (what we trained)

Turns out Gradient is the same!

Flow Matching loss:

$$\mathcal{L}_{FM}(\theta) = \mathbb{E}_{t,X_t} \left\| u_t^{\theta}(X_t) - u_t(X_t) \right\|^2$$

We can't do this bc we don't know what ground truth flow is

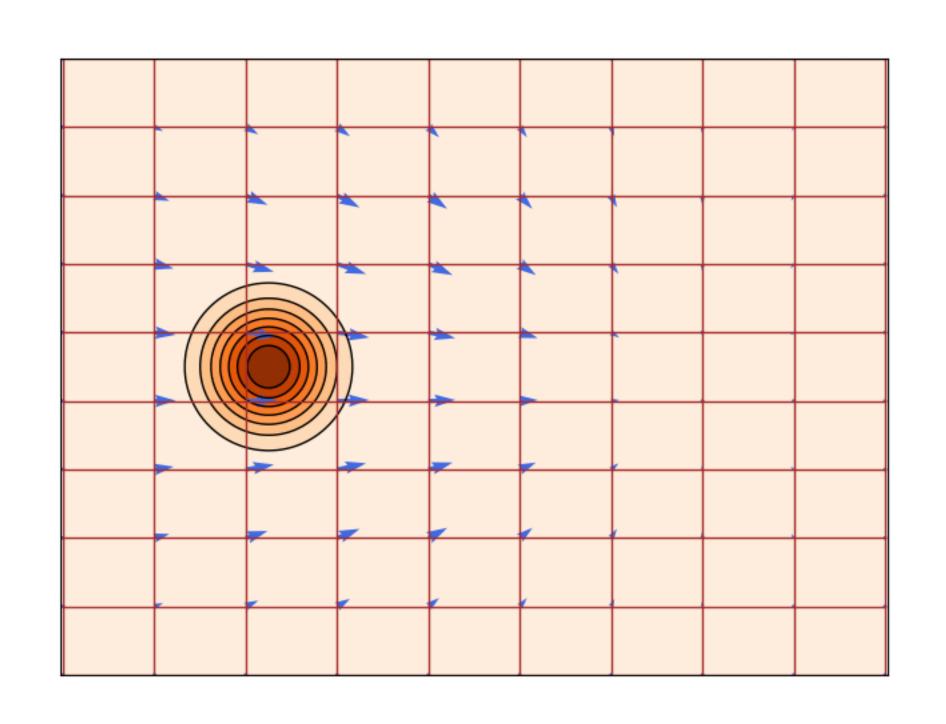
Conditional Flow Matching loss:

$$\mathcal{L}_{CFM}(\theta) = \mathbb{E}_{t,X_1,X_t} \left\| u_t^{\theta}(X_t) - u_t(X_t | X_1) \right\|^2$$

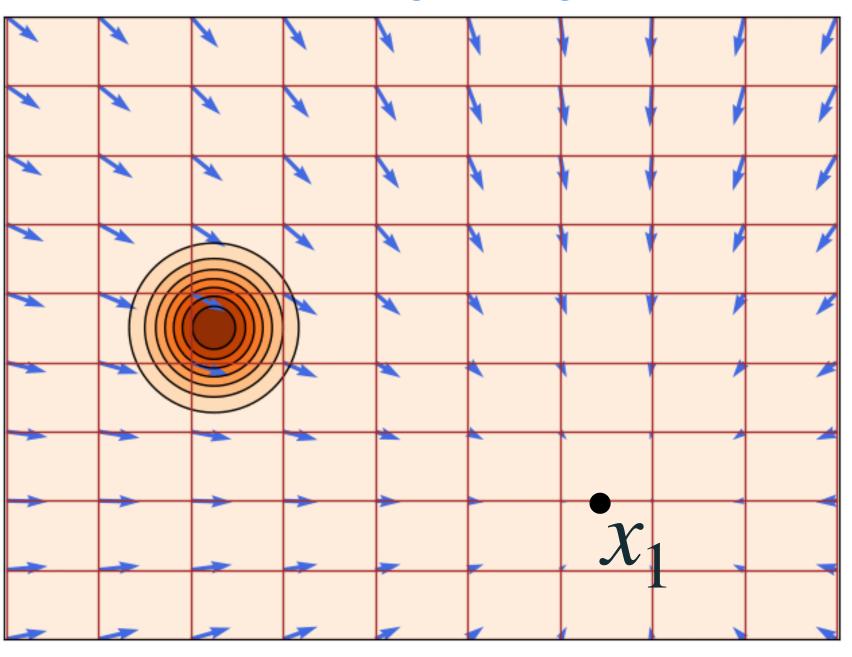
Theorem: Gradient of the losses are equivalent (!!!),

$$\nabla_{\theta} \mathcal{L}_{\text{FM}}(\theta) = \nabla_{\theta} \mathcal{L}_{\text{CFM}}(\theta)$$

Build flow from conditional (per-sample) flows



Generate a single target point



$$X_t = \psi_t(X_0 | x_1) = (1 - t)X_0 + tx_1$$

$$p_t(x) = \mathbb{E}_{X_1} p_{t|1}(x \mid X_1)$$
 average
$$u_t(x) = \mathbb{E}\left[u_t(X_t \mid X_1) \mid X_t = x\right]$$
 average
$$u_t(x \mid x_1)$$
 conditional velocity

Why does this work?

• High level: You can average conditional flow (marginalization)

$$u_t(x) = \mathbb{E}\left[u_t(X_t | X_1) \,|\, X_t = x\right]$$
 Marginal flow (what we want) Conditional flow (easy to obtain from each sample)

$$= \int u_t(x \,|\, x_1) p(x_1 \,|\, X_t = x) dx_1$$

$$u_t(x) = \int u_t(x \mid x_1) \frac{p_t(x \mid x_1)q(x_1)}{p_t(x)} dx_1$$

Bayes rule with notation:

$$p(x_1) = q(x_1)$$

It's all just weighted average

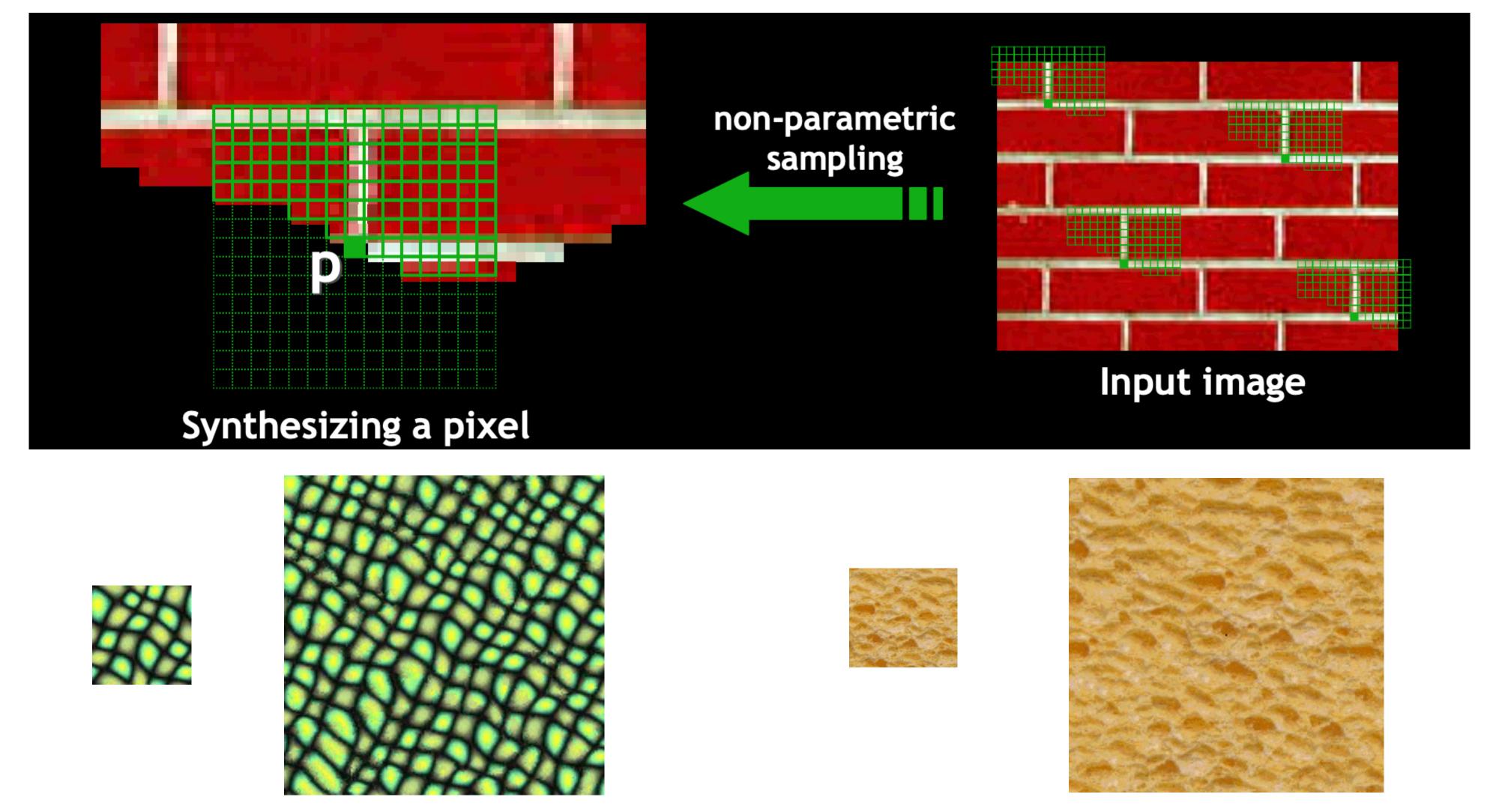
$$u_t(x) = \int u_t(x | x_1) \frac{p_t(x | x_1)q(x_1)}{p_t(x)} dx_1$$

$$u_t(x_t) = \sum_{\substack{t \in \mathcal{X}_t \mid x_t \text{ Path from } x_1 \text{ to } x_t \text{ Path weight}}} u_t(x_t \mid x_1) \frac{p_t(x_t \mid x_1)}{p_t(x)} q(x_1)$$

Just a weighted average of the flow to each data sample!!!!! You can actually do this non-parametrically.

See interactive visualization at https://decentralizeddiffusion.github.io/

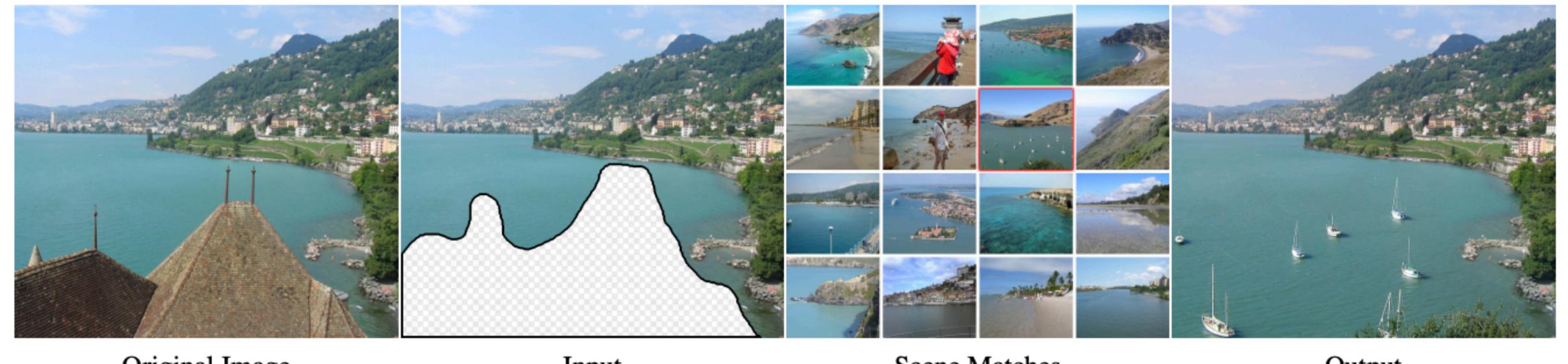
Efros & Leung ICCV'99



Non-parametric patch-based NN sampling to fill in missing details & generate textures

Scene Completion Using Millions of Photographs

James Hays Alexei A. Efros Carnegie Mellon University



Original Image Input Scene Matches Output

Figure 1: Given an input image with a missing region, we use matching scenes from a large collection of photographs to complete the image.

Non-parametric patch-based NN approach to fill in missing details with lots of Data!

Key message

- One can minimize the diffusion objective (marginal flow) nonparametrically and perfectly minimize the loss.
- But there is no learning! No ability to generate new images!
- i.e. Exactly minimizing this objective does not guarantee interpolation/ compositionally, learning of the image manifold!
- Parametrizing it with neural networks results in magic smoothing to generate new images and interpolate between them. Exactly what makes this possible still active area of research