# Neural Radiance Fields pt 2







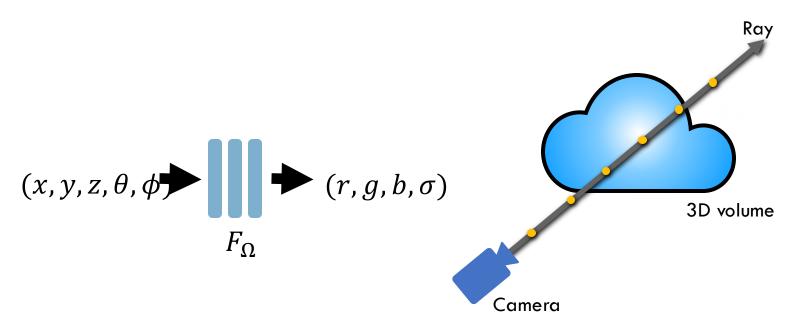
Video from the original ECCV'20 paper

CS180/280A: Intro to Computer Vision and Computational Photography

Angjoo Kanazawa and Alexei Efros

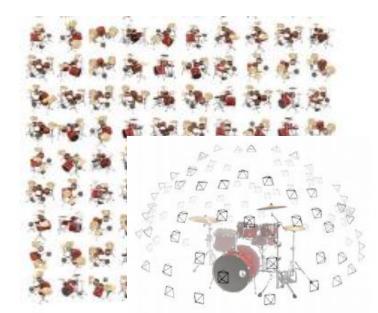
UC Berkeley Fall 2025

# Recap: 3 Key Components

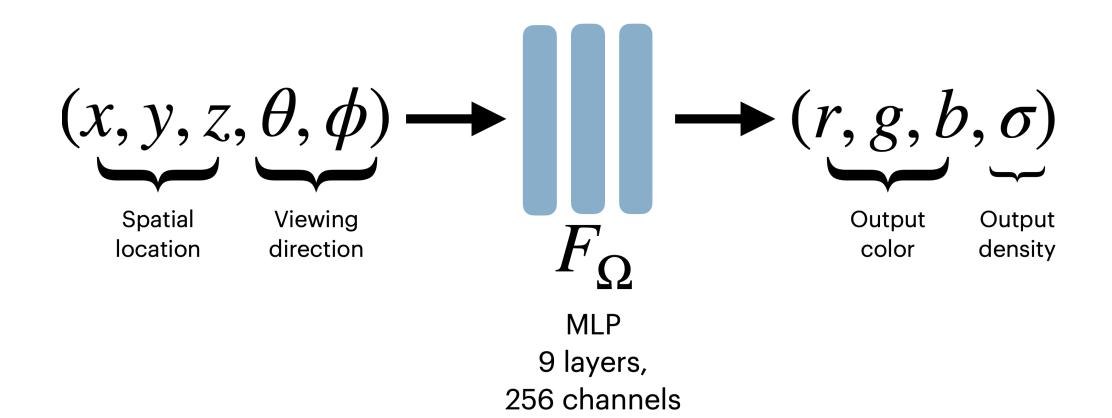


Neural Volumetric 3D Scene Representation Differentiable Volumetric Rendering Function

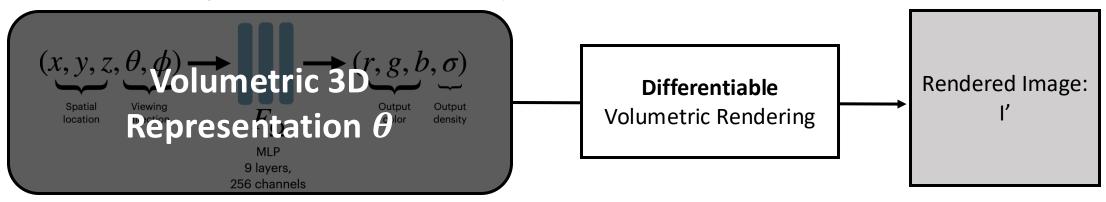
Objective: Synthesize all training views



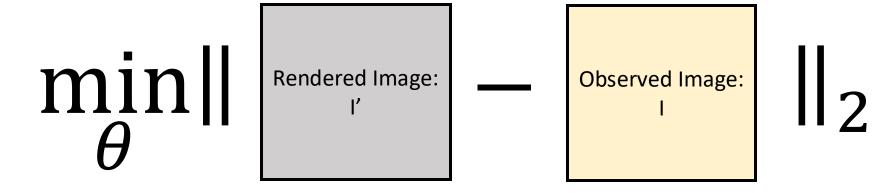
Optimization via Analysis-by-Synthesis



How an image is made ("Inference")



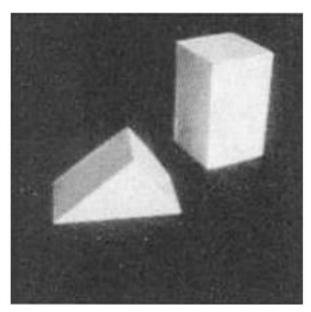
"Training" Objective (aka Analysis-by-Synthesis):



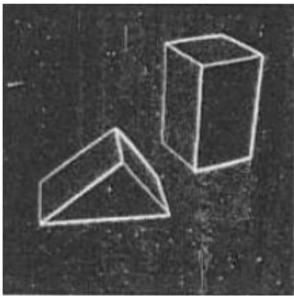
# Analysis-by-Synthesis



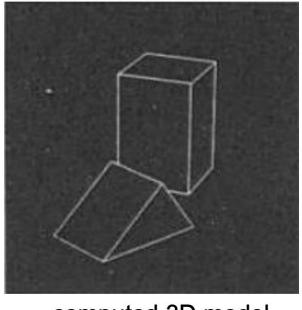
Larry Roberts
"Father of Computer Vision"



Input image



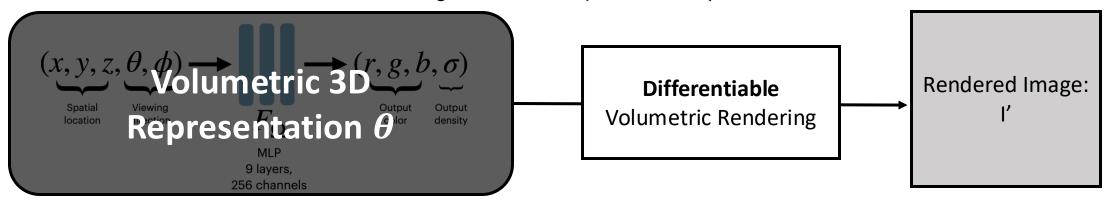
2x2 gradient operator



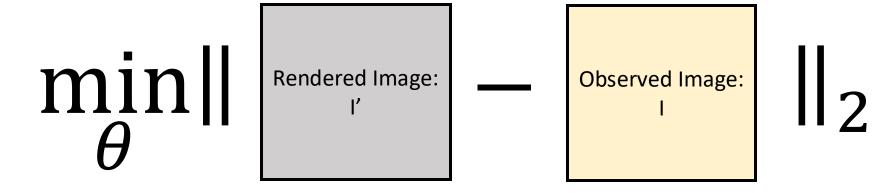
computed 3D model rendered from new viewpoint

History goes way back to the first Computer Vision paper!
 Roberts: Machine Perception of Three-Dimensional Solids, MIT, 1963

Forward Function: How an image is made (Inference)



"Training" Objective (aka Analysis-by-Synthesis):



# Differentiable Rendering

ullet How to change heta (network parameter) so that we get the final image?

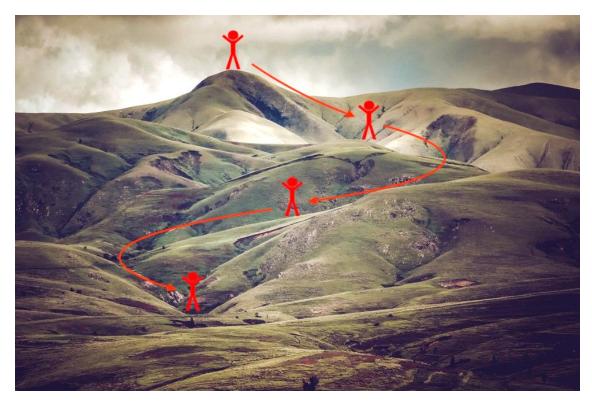
• Gradient Descent "Hiking"

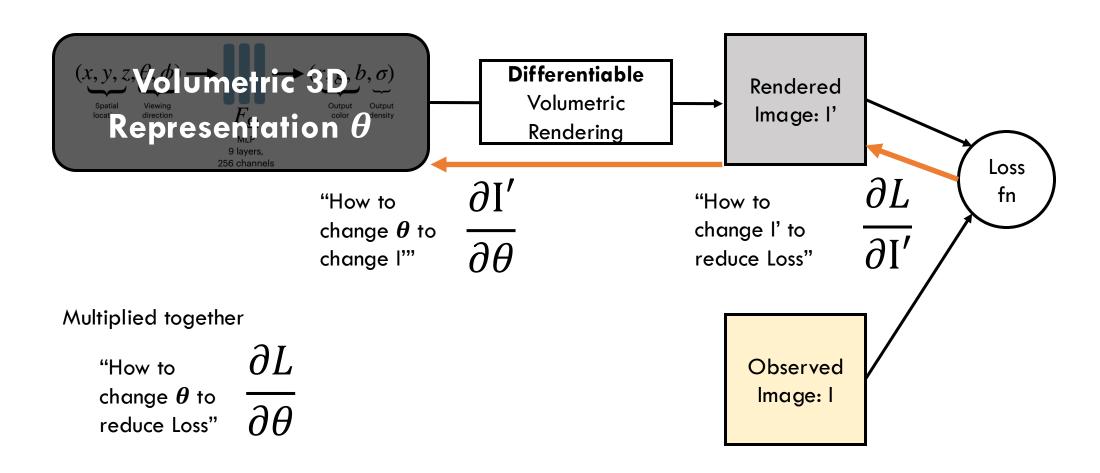
Same idea here, "hiking" now means you're going to change the network parameter little by little.

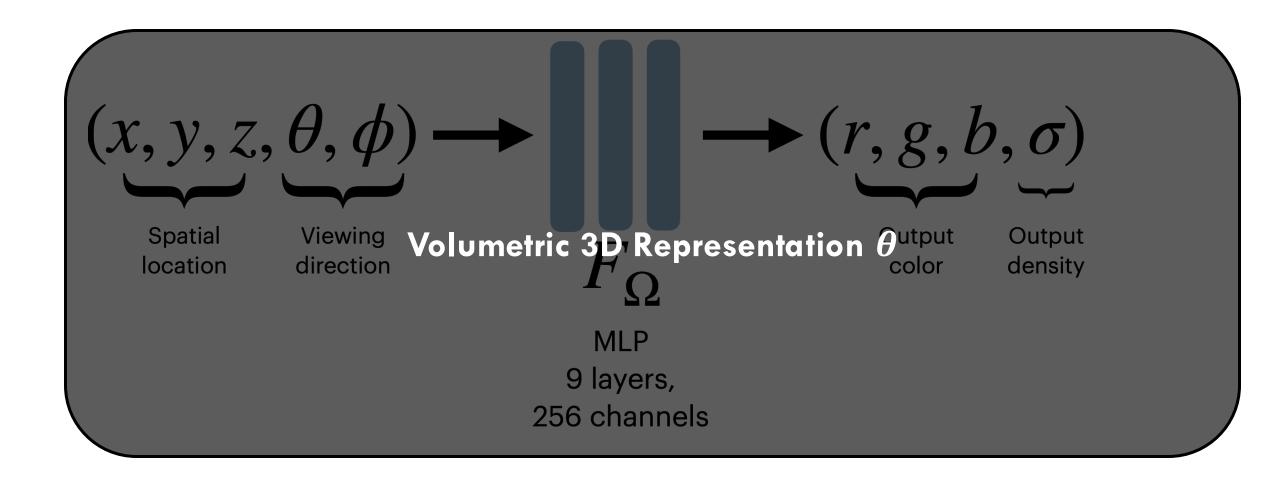
The "Mountain" or the "Loss" comes from the reconstruction loss.

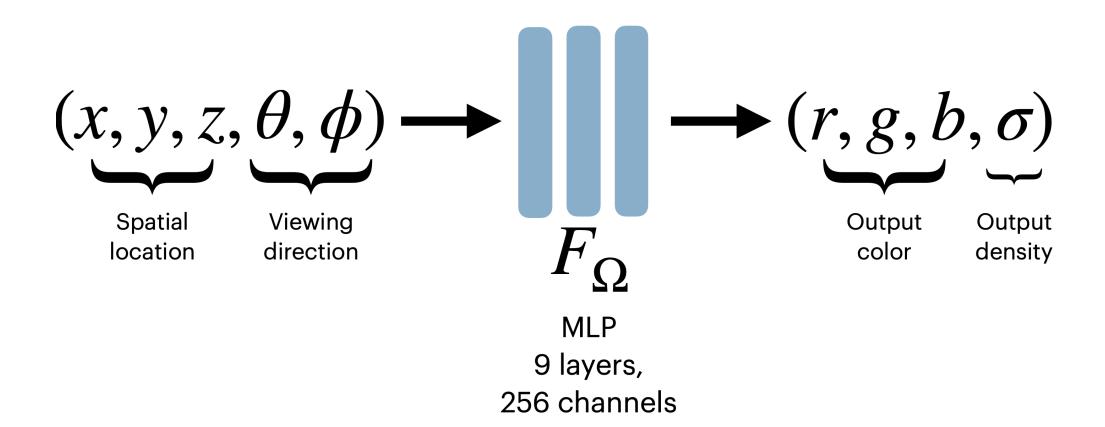
$$\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial I'} \frac{\partial I'}{\partial \theta}$$

$$L = ||I' - I||$$
  
$$I' = f(x; \theta)$$







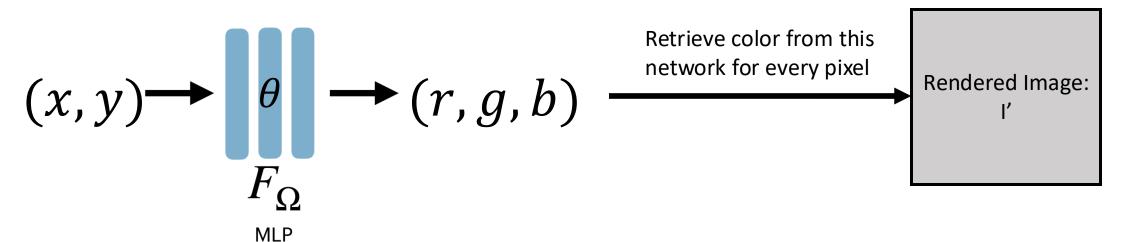


# Let's simplify, do this in 2D:

$$(x,y) \longrightarrow (r,g,b)$$

$$F_{\Omega}$$
MLP

# Let's simplify, do this in 2D:

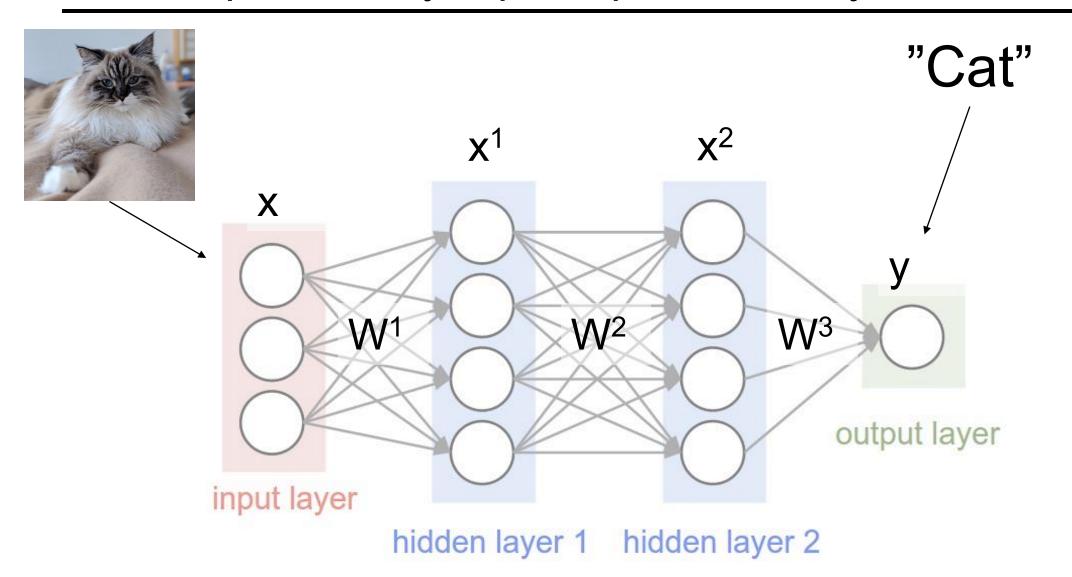


Optimize with "Training" Objective (aka Analysis-by-Synthesis):

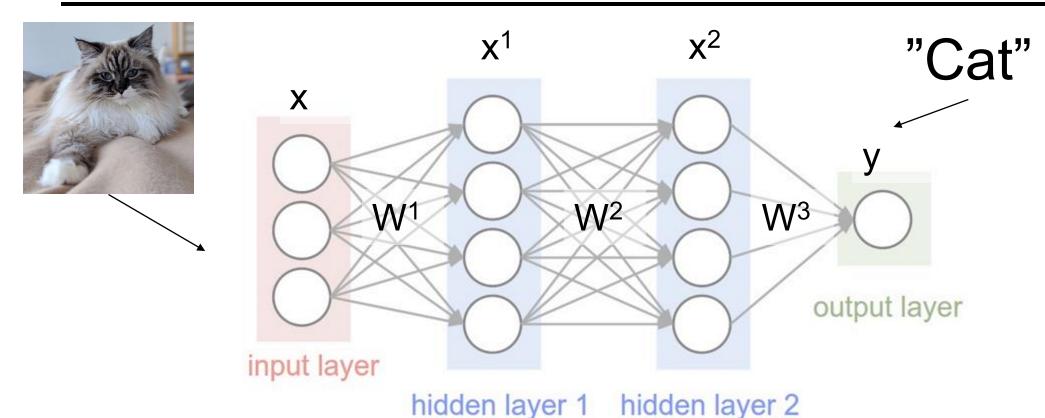
$$\frac{\partial L}{\partial \theta} = \frac{\partial (rgb - rgb')}{\partial \theta} \qquad \mathbf{min} || \mathbf{Rendered}_{\text{Image: I'}} - \mathbf{lmage: I'} ||_{\mathbf{2}}$$

Straight forward to implement with Pytorch

### ML Recap: Multi-layer perceptrons / Fully-Connected Layer



### Multi-layer perceptrons / Fully-Connected Layer



### In each layer:

1. Linear Transform 
$$z=W^lx^{l-1}+b$$

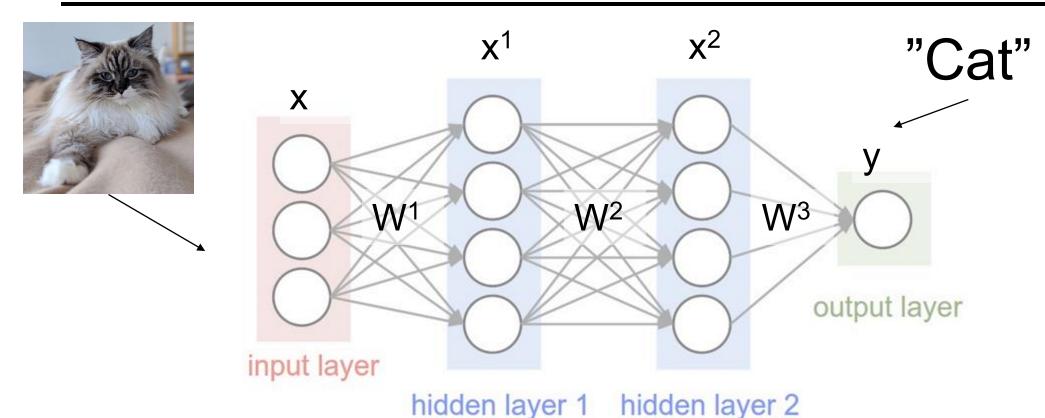
2. Apply Non-Linearity 
$$\,\chi^l=f(z)\,$$

Usually
$$f = RELU(z)$$

$$= \max(0, z)$$

what happens if f is identity?

### Multi-layer perceptrons / Fully-Connected Layer



### In each layer:

each layer.

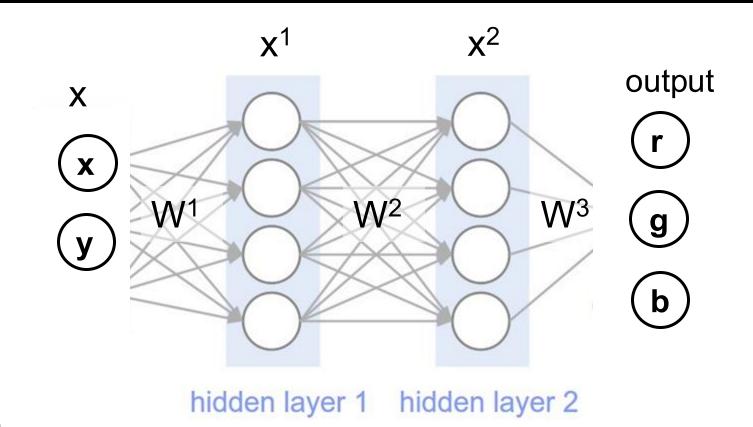
1. Linear Transform 
$$z=W^lx^{l-1}+b$$
2. Apply Non-Linearity  $x^l=f(z)$ 

Usually
$$f = RELU(z)$$

$$= \max(0, z)$$

What are the learnable parameters?

### In our 2D case:

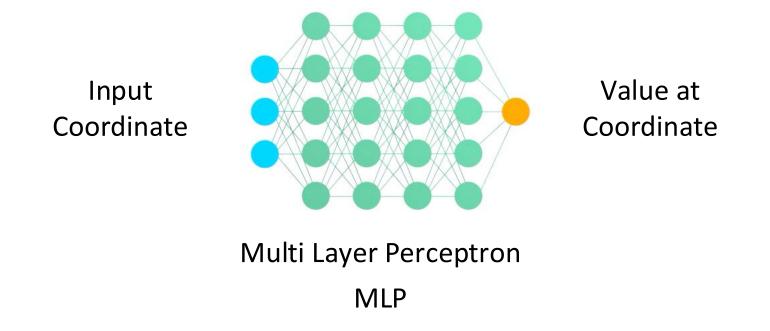


### In each layer:

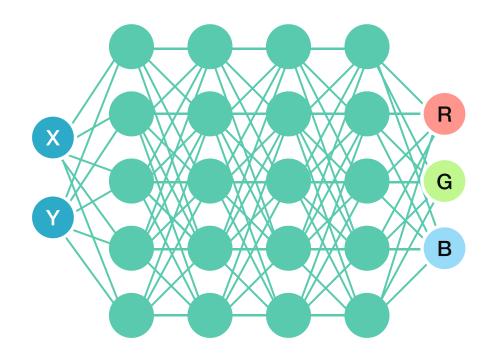
1. Linear Transform 
$$z=W^lx^{l-1}+b$$
 Usually  $f=RELU(z)$  2. Apply Non-Linearity  $x^l=f(z)$   $=\max(0,z)$ 

What are the learnable parameters?

### Coordinate Based Neural Network



# Image Representation



# Challenge:

How to get MLPs to represent higher frequency functions?

# what happens if you naively optimize this network



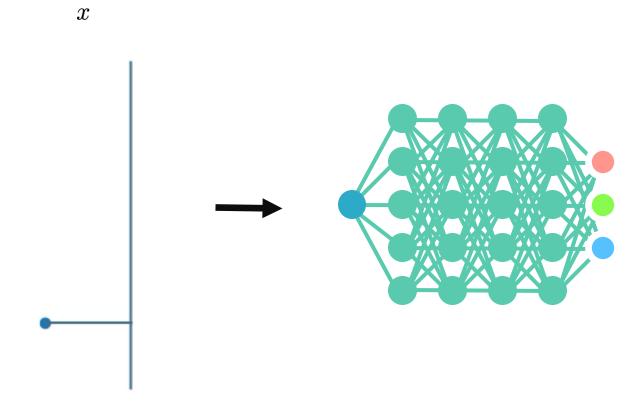


MLP output

Supervision image

Slide credit: Matt Tancik

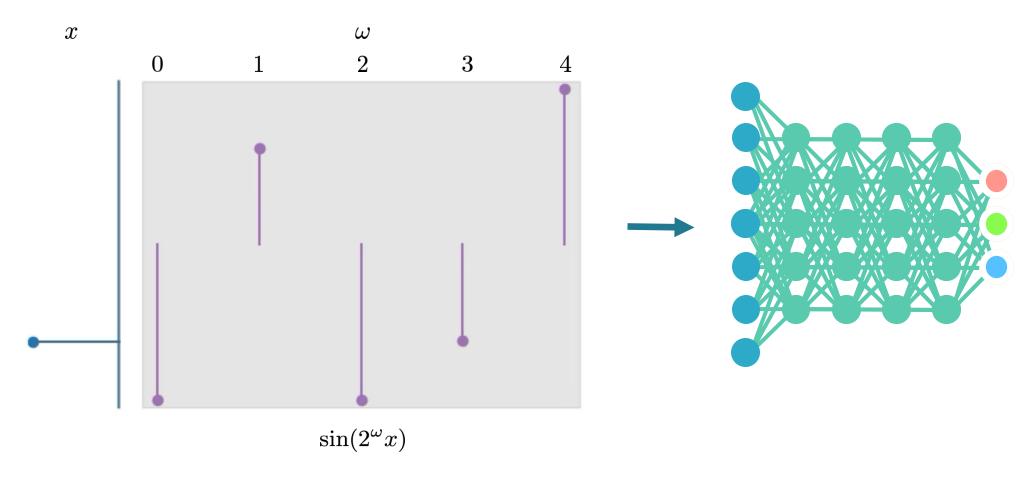
### Standard input



### **Positional Encoding**

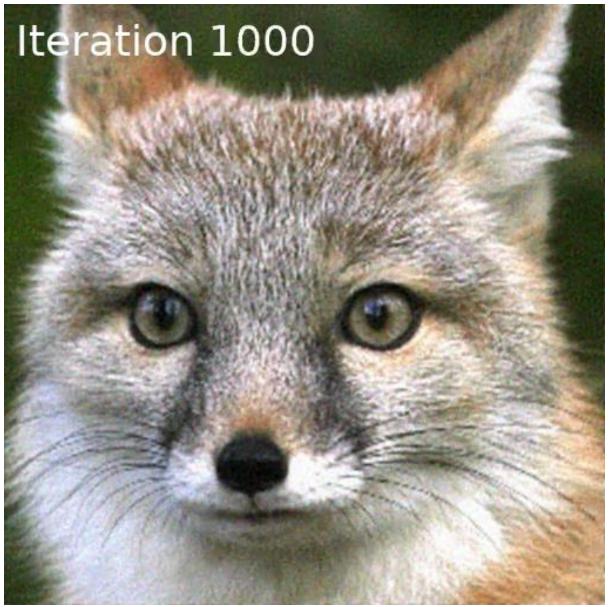
#### Standard input

#### Positionally Encoded input



Fourier Features  $\gamma(p) = \left(\sin\left(2^0\pi p\right), \cos\left(2^0\pi p\right), \cdots, \sin\left(2^{L-1}\pi p\right), \cos\left(2^{L-1}\pi p\right)\right)$  Slide credit: Matt Tancik



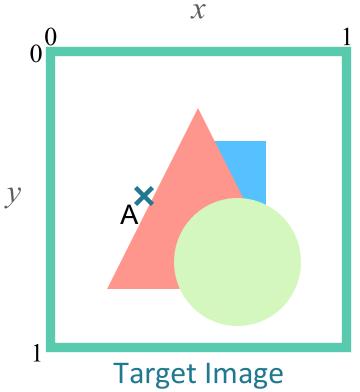


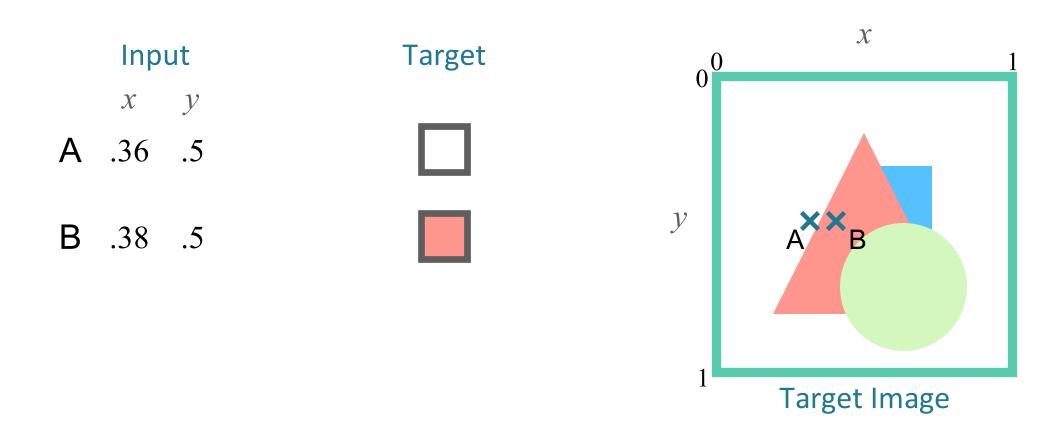
Standard MLP with Fourier features

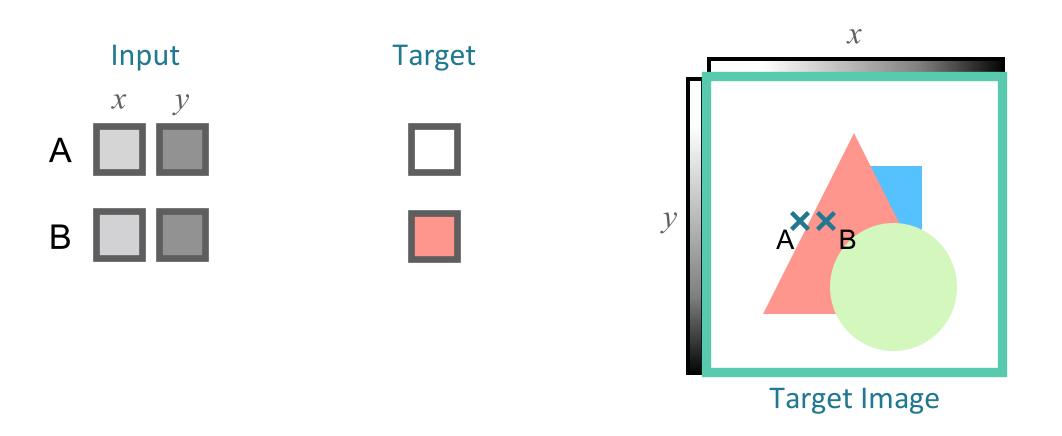
Slide credit: Matt Tancik

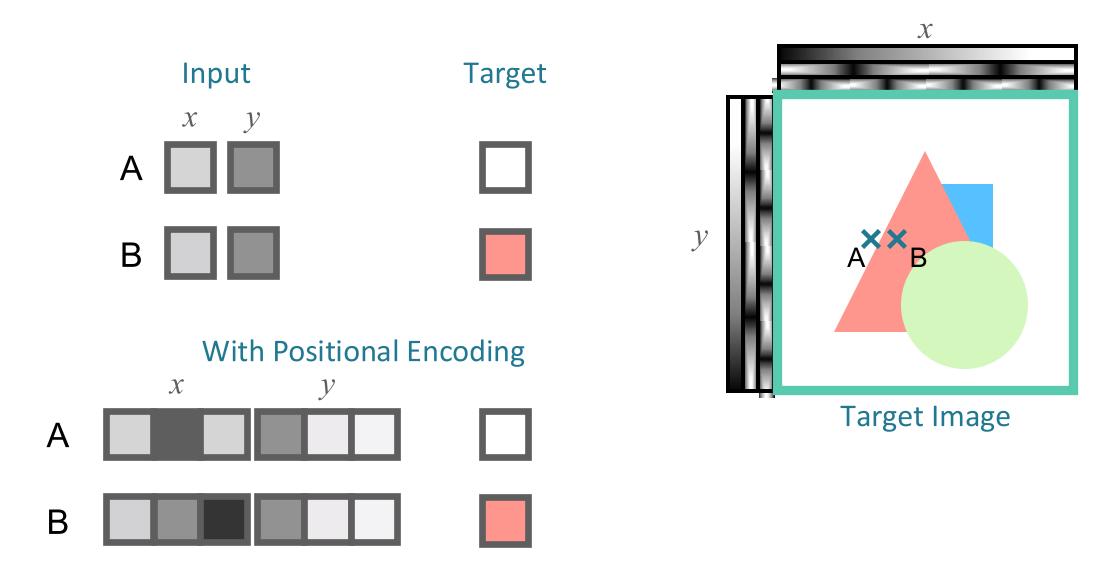






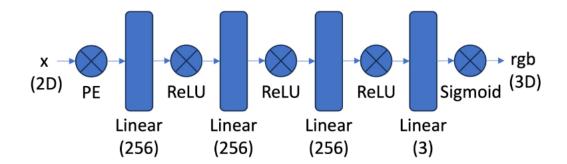




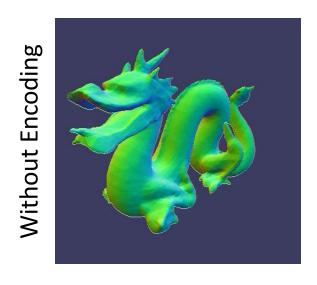


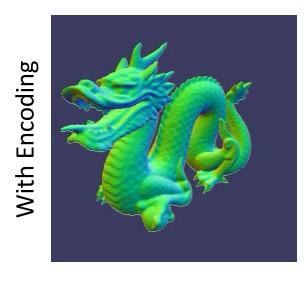
# NeRF Project Part 1

- Fit a Neural Network to a single image
- Implement this network, and Positional Embedding (PE) and reconstruct an image:



### Coordinate-based MLPs can replace any low-dimensional array





3D Shape

### NeRF with and without positional encoding



NeRF (Naive)



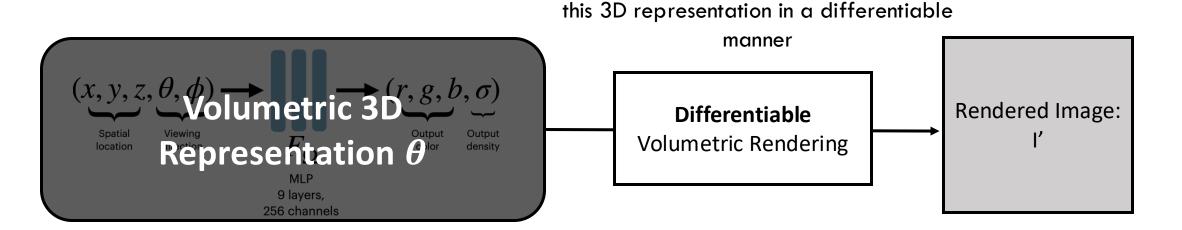
NeRF (with positional encoding)

### NeRF Network Architecture

Next section you will implement this:

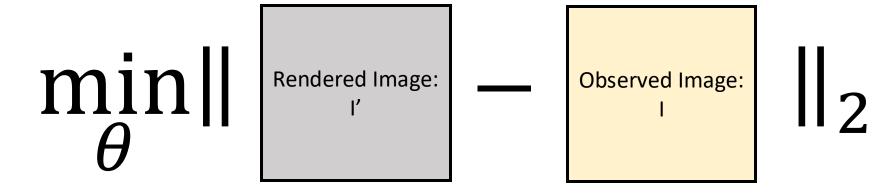


# Let's go back to 3D



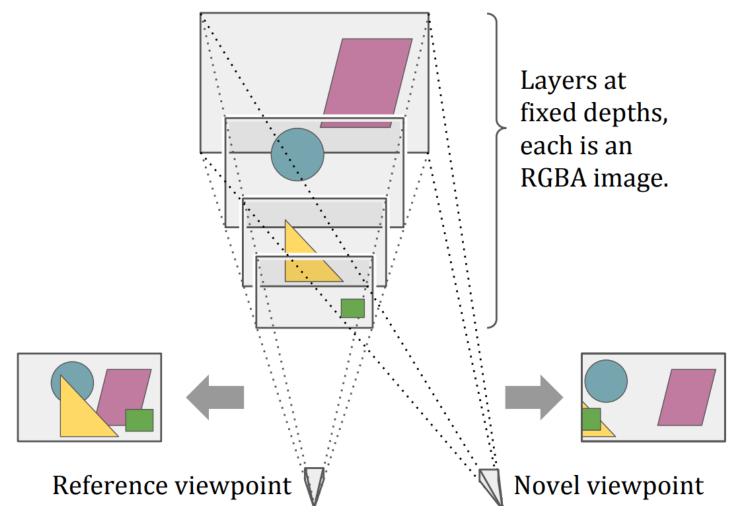
Now we need to render an image from

"Training" Objective (aka Analysis-by-Synthesis):



# Differentiable Volumetric Rendering

# A Precursor: Multi-plane Images



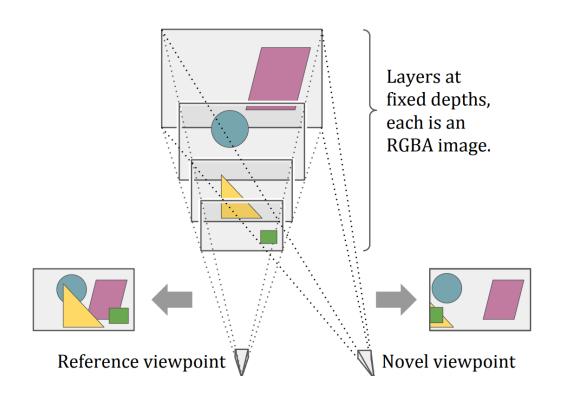
Multiplane Camera at Disney

https://www.youtube.c
om/watch?v=YdHTIUG
N1zw

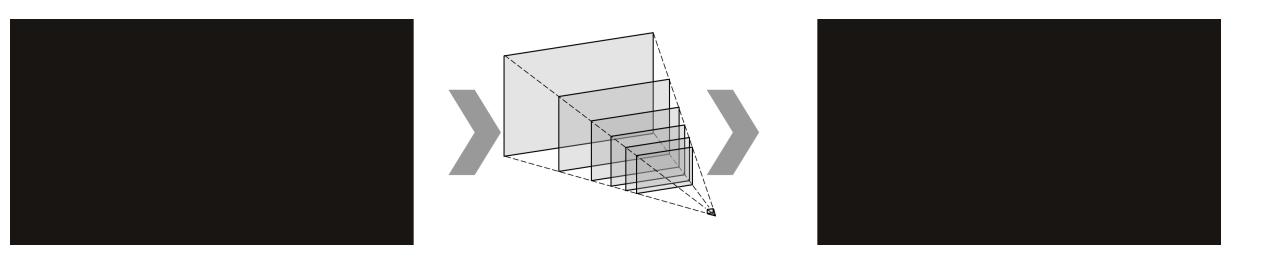
#### Generating an Image MPI

To render a novel view:

- 1. Homography warp the image from the new viewpoint
- 2. Alpha Blend each layer

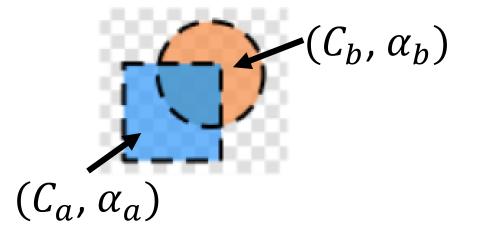


#### Sample Novel View Synthesis with a MPI



# Alpha Blending

for two image case, A and B, both partially transparent:

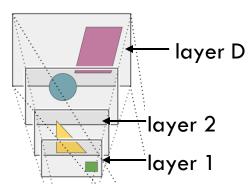


$$I = C_a \alpha_a + C_b \alpha_b (1 - \alpha_a)$$

How much light is the previous layer lettina through?

General D layer case:

$$I = \sum_{i=1}^{D} C_{i} \alpha_{i} \prod_{j=1}^{i-1} (1 - \alpha_{j})$$



#### What is missing in MPIs?

- Look at it from the side??
- You'll see all the edges!!

→ Limited camera mobility

NeRF overcomes this problem, because it's defined everywhere Volumetric Rendering behaves similarly to alpha compositing

#### Back to NeRFs

# Neural Volumetric Rendering

Through Volumetric Representation (No surfaces)!

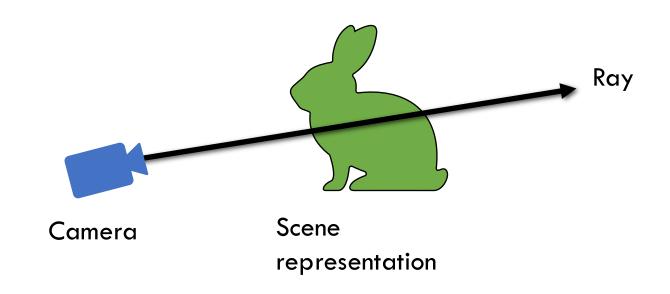


computing color along rays through 3D space



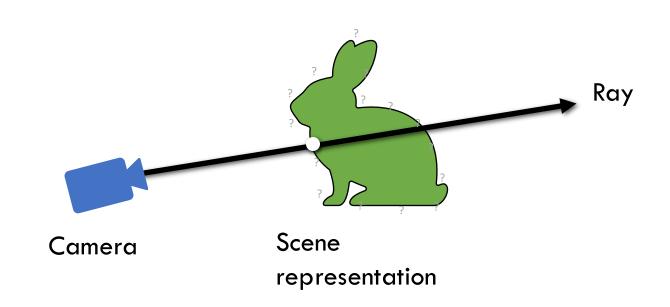
What color is this pixel?

#### Surface vs. volume rendering



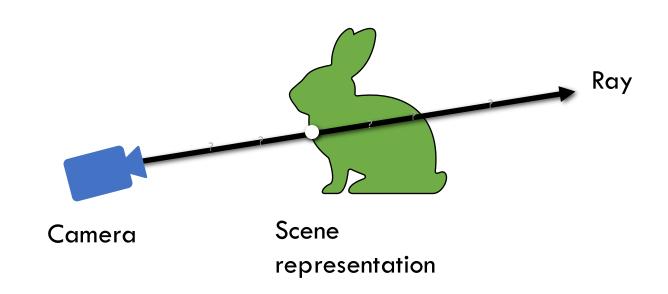
Want to know how ray interacts with scene

#### Surface vs. volume rendering



Surface rendering — loop over geometry, check for ray hits

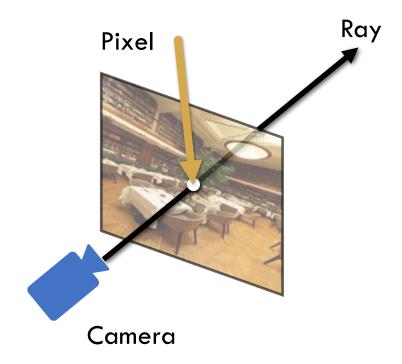
#### Surface vs. volume rendering



Volume rendering — loop over ray points, query geometry

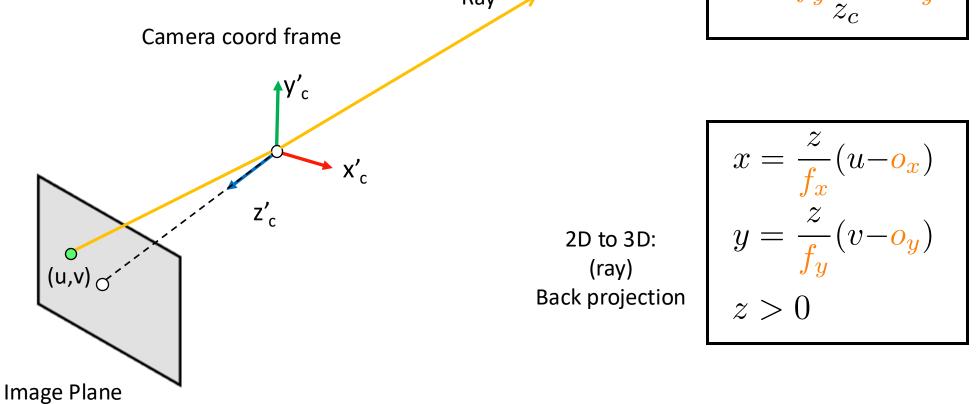
#### Recap: Cameras and rays

- We need the mathematical mapping from  $(camera, pixel) \rightarrow ray$
- Then can abstract underlying problem as learning the function  $ray \rightarrow color$



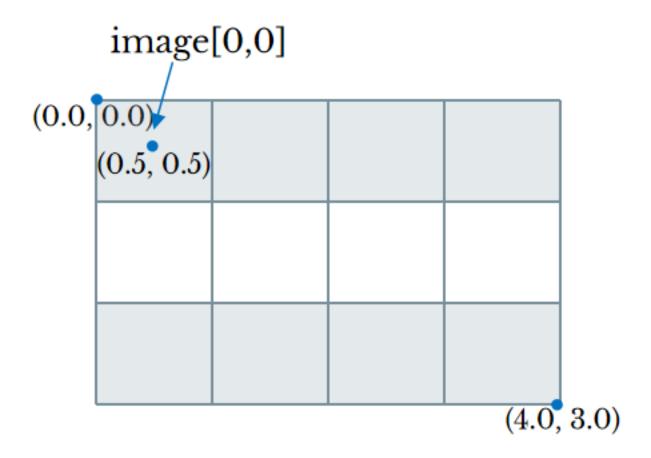
#### Compute the Ray





#### **Details:**

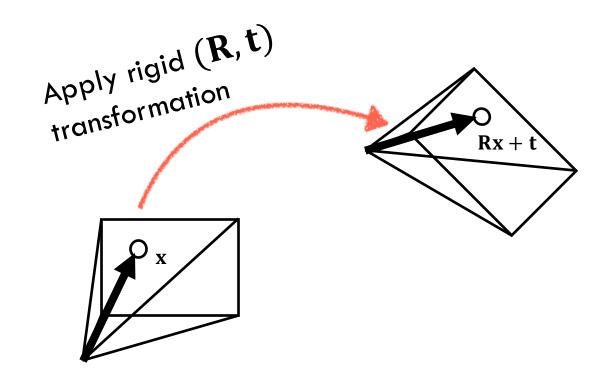
A half-pixel offset — add 0.5 to i and j so ray precisely hits pixel center



#### Want: Ray in the World

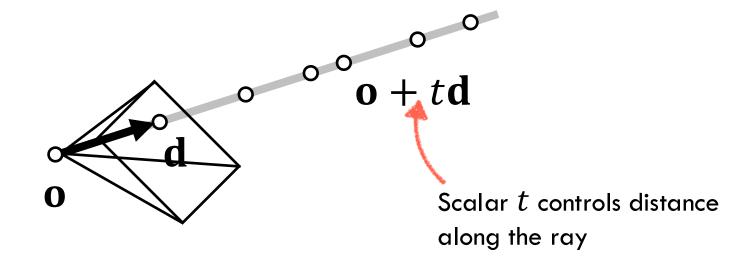
What coordinate space is the current ray in?

Convert it to World!



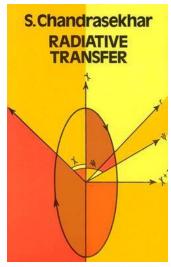
#### Calculating points along a ray

In the world coordinate frame:



# History of volume rendering

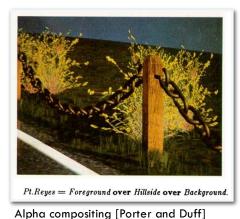
#### In Early computer graphics





- Theory of volume rendering co-opted from physics in the 1980s: absorption, emission, out-scattering/in-scattering
- Adapted for visualising medical data and linked with alpha compositing
- Modern path tracers use sophisticated Monte Carlo methods to render volumetric effects

#### Alpha compositing



- Theory of volume rendering co-opted from physics in the 1980s: absorption, emission, out-scattering/in-scattering
- Alpha rendering developed for digital compositing in VFX movie production

#### Volume rendering for visualization



Medical data visualisation [Levoy]

- Theory of volume rendering co-opted from physics in the 1980s: absorption, emission, out-scattering/in-scattering
- Alpha rendering developed for digital compositing in VFX movie production
- Volume rendering applied to visualise 3D medical scan data in 1990s

Chandrasekhar 1950, Radiative Transfer Kajiya 1984, Ray Tracing Volume Densities Porter and Duff 1984, Compositing Digital Image



#### Absorption



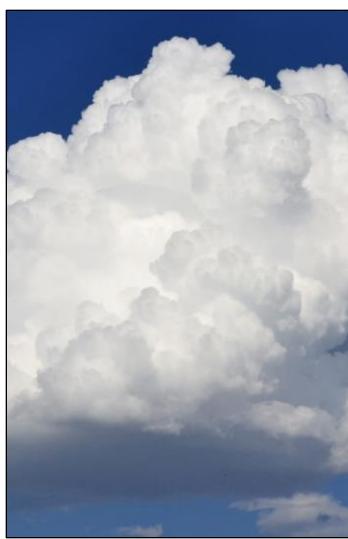


#### Scattering



#### **Emission**







http://commons.wikimedia.org

http://wikipedia.org

# Simplify

#### **Absorption**



#### **Emission**



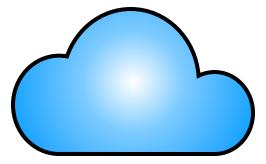




60

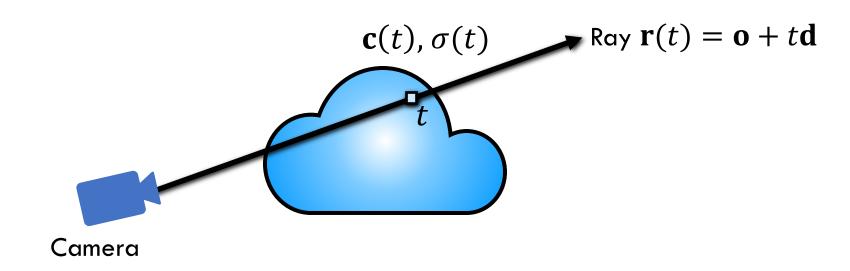
# Volume rendering derivations

#### Volumetric formulation for NeRF



Scene is a cloud of tiny colored particles

#### Volumetric formulation for NeRF



at a point on the ray  $\mathbf{r}(t)$  , we can query color  $oldsymbol{c}(t)$  and density  $\sigma(t)$ 

How to integrate all the info along the ray to get a color per ray?

#### Idea: Expected Color

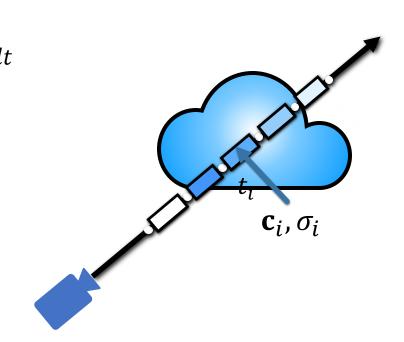
- Pose probabilistically.
- Each point on the ray has a probability to be the first "hit" :  $P[first\ hit\ at\ t]$
- Color per ray = Expected value of color with this probability of first "hit"

for a ray 
$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$$
:

$$c(r) = \int_{t_0}^{t_1} P[first \ hit \ at \ t] c(t) dt$$

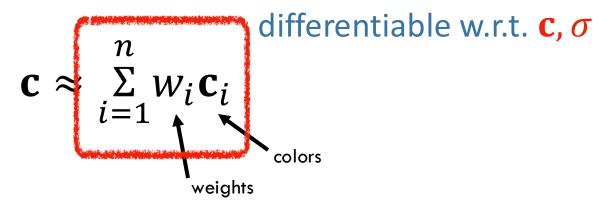
$$\approx \sum_{t=0}^{T} P[first \ hit \ at \ t] c(t)$$

$$\approx \sum_{t=0}^{T} w_t c(t)$$



#### Differentiable Volumetric Rendering Formula

for a ray  $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$ :

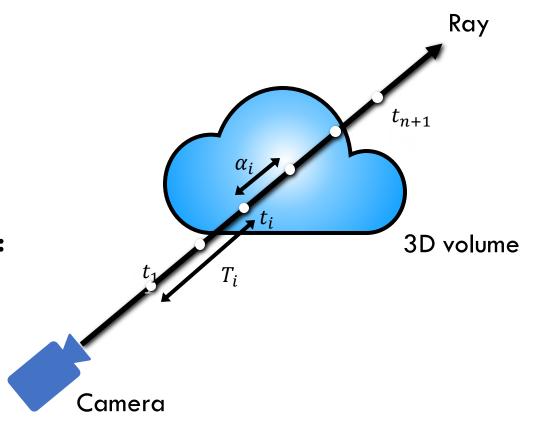


How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

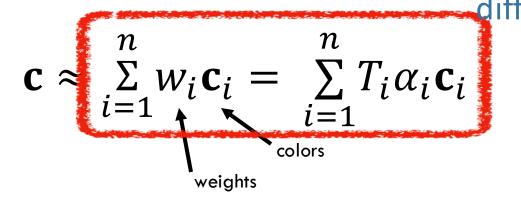


$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$



#### Summary

for a ray  $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$ :

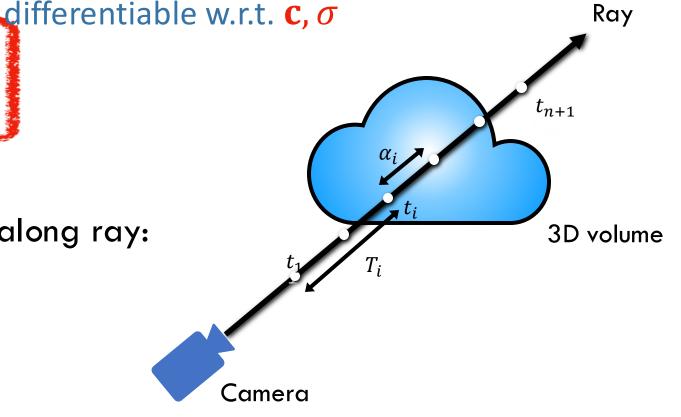


How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$



$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$

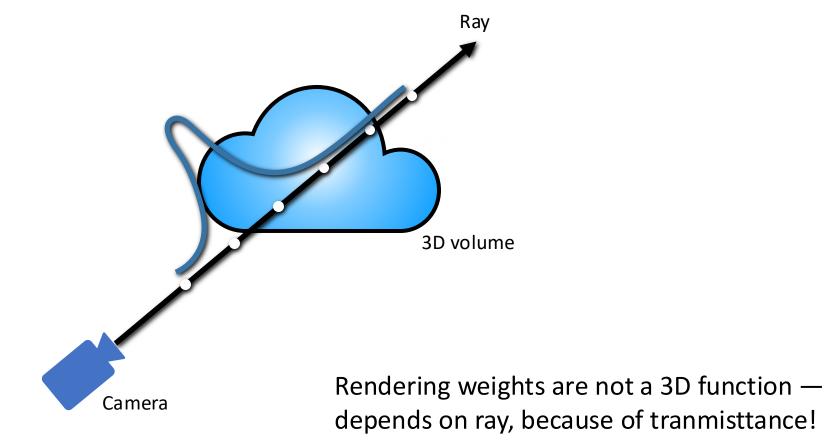


#### Complete derivation

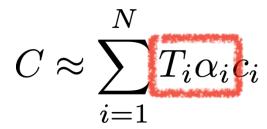
- If you want a complete derivation of the volrend equation, see this <a href="https://drive.google.com/file/d/1QsCK5V0d6DSc0QGcKsV97u83JFd-dFoz/view">https://drive.google.com/file/d/1QsCK5V0d6DSc0QGcKsV97u83JFd-dFoz/view</a>
- From slide 35
- Or <a href="https://arxiv.org/pdf/2209.02417">https://arxiv.org/pdf/2209.02417</a>

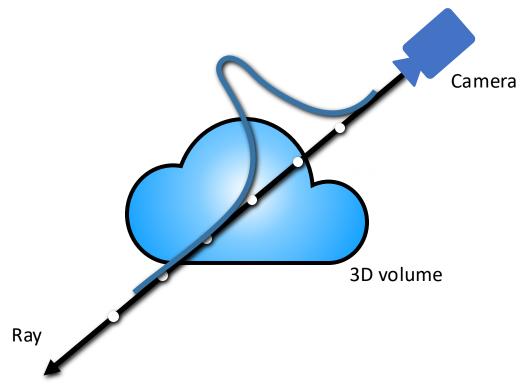
# Visual intuition: rendering weights is specific to a ray

$$C pprox \sum_{i=1}^{N} T_i \alpha_i c_i$$



# Visual intuition: rendering weights is specific to a ray





Rendering weights are not a 3D function — depends on ray, because of tranmisttance!

#### Rendering weight PDF is important

Remember, expected color is equal to

$$\int T(t)\sigma(t)\mathbf{c}(t)dt \approx \sum_{i} T_{i}\alpha_{i}\mathbf{c}_{i} = \sum_{i} w_{i}\mathbf{c}_{i}$$

 $T(t)\sigma(t)$  and  $T_i\alpha_i$  are "rendering weights" — <u>probability distribution</u> along the ray (continuous and discrete, respectively)

You can also render entities other than color in 3D, for example it's depth, or any other N-D vector  $oldsymbol{v}_i$ 

Volume rendered "feature" 
$$=\sum_i w_i oldsymbol{v}_i$$

#### Rendering weight PDF is important — depth

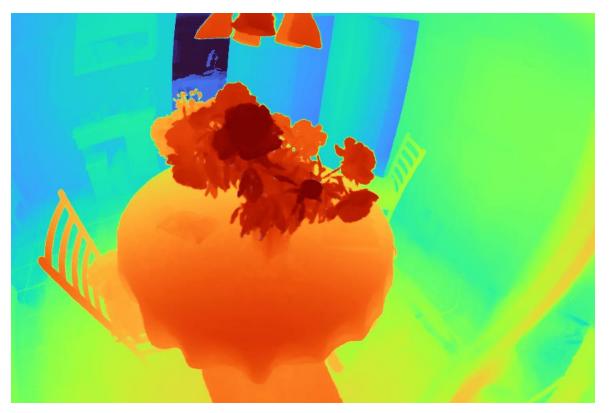
We can use this distribution to compute expectations for other quantities, e.g. "expected depth":

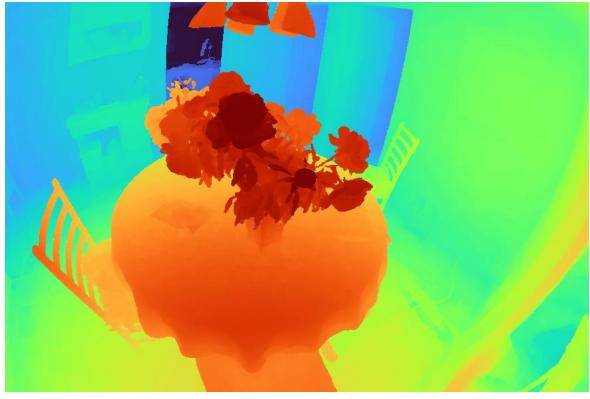
$$\overline{t} = \sum_{i} T_{i} \alpha_{i} t_{i}$$

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.

#### Rendering weight PDF is important — depth

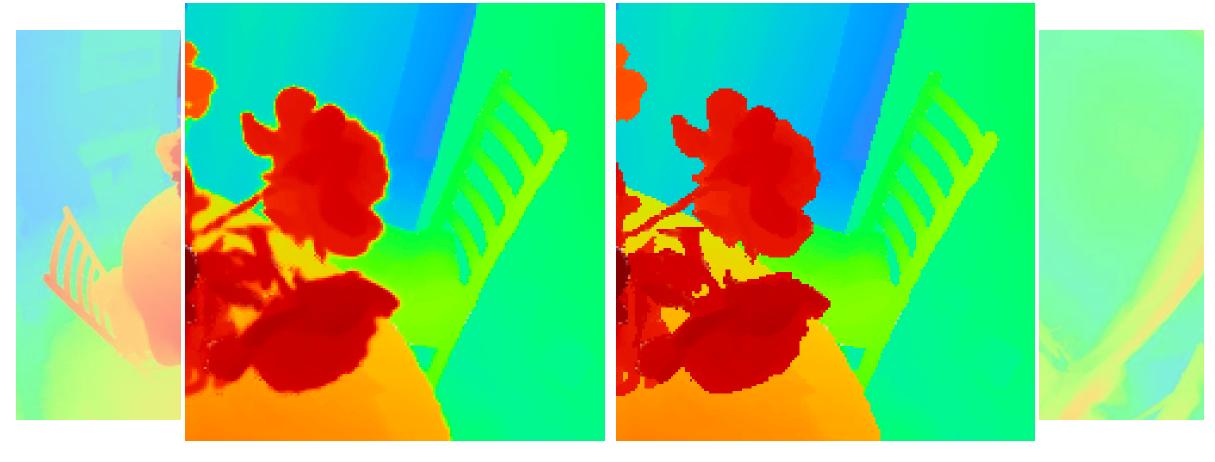




Mean depth

Median depth

# Rendering weight PDF is important — depth



Mean depth Median depth

#### Volume rendering other quantities

This idea can be used for any quantity we want to "volume render" into a 2D image. If **V** lives in 3D space (semantic features, normal vectors, etc.)

$$\sum_{i} T_{i} \alpha_{i} \mathbf{v}_{i}$$

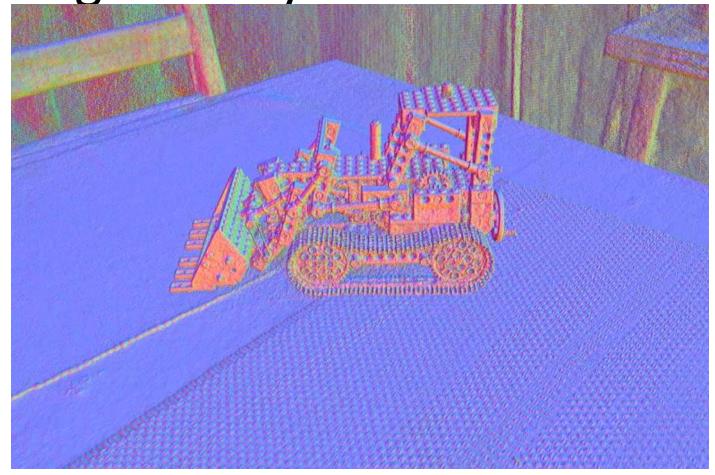
can be taken per-ray to produce 2D output images.

# Volume Rendering CLIP features

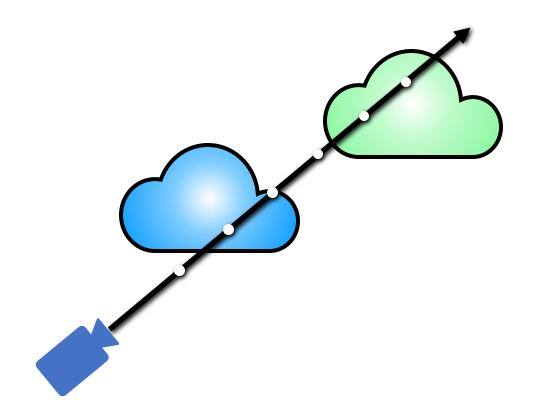


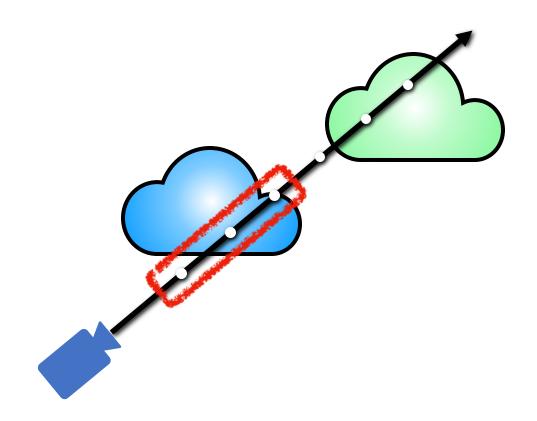
LERF: Language Embedded Radiance Fields, Kerr\* and Kim\* et al. ICCV 2023

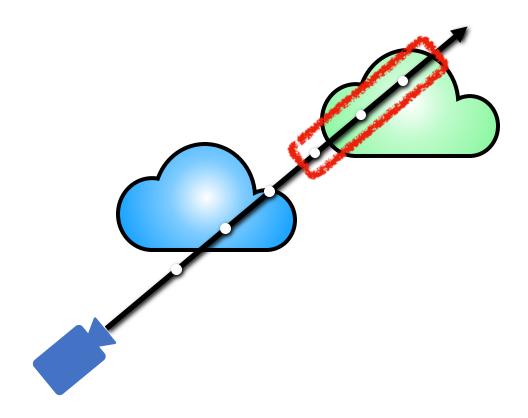
Density as geometry



Normal vectors (from analytic gradient of density)









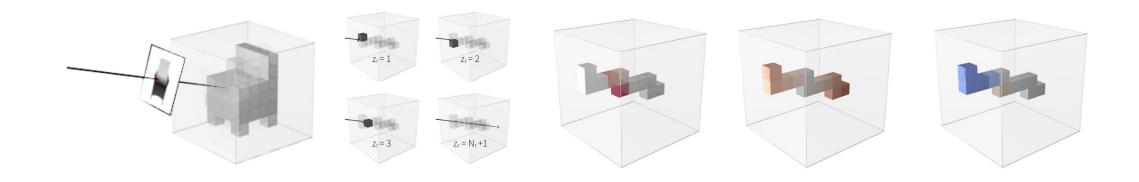




 $\label{eq:mildenhall*, Srinivasan*, Tancik* et al 2020, NeRF} \\$ 

Poole et al 2022, DreamFusion

#### **Previous Papers**



Differentiable ray consistency work used a forward model with "probabilistic occupancy" to supervise 3D-from-single-image prediction.

Same rendering model as alpha compositing!

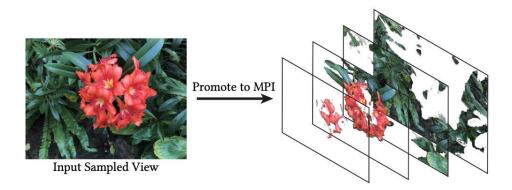
$$p(z_r=i) = egin{cases} (1-x_i^r) \prod_{j=1}^{i-1} x_j^r, & ext{if } i \leq N_r \ \prod_{j=1}^{N_r} x_j^r, & ext{if } i = N_r+1 \end{cases}$$

#### Similar Ideas before NeRF

#### Multiplane image methods

Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries... (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out



Neural Volumes (Lombardi et al. 2019) Direct gradient descent to optimize an RGBA volume, regularized by a 3D CNN

