Neural Radiance Fields pt 2

Video from the original ECCV'20 paper

CS180/280A: Intro to Computer Vision and Computational Photography
Angjoo Kanazawa and Alexei Efros
UC Berkeley Fall 2025

Lots of content from Noah Snavely and ECCV 2022 Tutorial on Neural Volumetric Rendering for Computer Vision



https://sites.google.com/berkeley.edu/nerf-tutorial/home?pli=1

Recap: 3 Key Components
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Optimization via
Analysis-by-Synthesis



“Neural Radiance Fields”
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“Neural Radiance Fields”

How an image is made (“Inference”)

Volumetric 3D Differentiable Rendered Image:
Representation 2] Volumetric Rendering I’

“Trdining" Obiecﬁve (CII(CI AnGIYSiS-by-SynfheSiS):
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Analysis-by-Synthesis

I

Larry Roberts Input image 2x2 gradient operator computed 3D model
“Father of Computer Vision” rendered from new viewpoint

* History goes way back to the first Computer Vision paper!
Roberts: Machine Perception of Three-Dimensional Solids, MIT, 1963



“Neural Radiance Fields”

Forward Function: How an image is made (Inference)

Volumetric 3D Differentiable Rendered Image:
Representation 2] Volumetric Rendering I’

“Trdining" Obiecﬁve (CII(CI AnGIYSiS-by-SynfheSiS):
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Differentiable Rendering

* How to change 0 (network parameter) so that we get the final |mc|ge2

* Gradient Descent “Hiking”

Same idea here, "hiking” now means you’re going to change
the network parameter little by little.

The “Mountain” or the “Loss” comes from the reconstruction
loss.

L=|I"-1I

oL 0Ll I'=f(x;9)
00 0dI' 90

Chain rule, aka Back propagation




“Neural Radiance Fields”

Volumetric 3D Differentiable Rendered
. Volumetric | Image: I
Representation O Rendering o
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reduce Loss” 69




“Neural Radiance Fields”

Volumetric 3D Representation 0




“Neural Radiance Fields”
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Let’s simplify, do this in 2D:

(x,y) —> —» (,9,b)

Iq

MLP



Let’s simplify, do this in 2D:

Retrieve color from this
network for every pixel

xy)—> 8 —>0gb) —

Rendered Image:
II

F Q
MLP
Optimize with “Training” Obijective (aka Analysis-by-Synthesis):
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Straight forward to implement with Pytorch




ML Recap: Multi-layer perceptrons / Fully-Connected Layer
”Cat”




Multi-layer perceptrons / Fully-Connected Layer

J) Cat”

In each layer:

— Usuall
1. Linear Transform Z — Wl -1 + b d what

f = RELU(Z) happens if f

2. Apply Non-Linearity x! = = f(2) = max(0, z) is identity?



Multi-layer perceptrons / Fully-Connected Layer

J) Cat”

In each layer:

1. Linear Transform Z = Wl (=1 + b Hsually What are the
f = RELU(2)
2. Apply Non-Linearity x — f(Z) learnable
= max(0,z)  parameters?



In our 2D case:

X ~ ~ output
\_/ \_/ ()

@ () ()
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In each layer:
1. Linear Transform Z = Wlxl_l + b Usually_ What are the
f o RELU(Z) learnable

2. Apply Non-Linearity xl = f(Z) — maX(O, Z) parameters?



Coordinate Based Neural Network

Input * Value at
Coordinate Coordinate

Multi Layer Perceptron
MLP

Slide credit: Matt Tancik



Image Representation
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Slide credit: Matt Tancik



Challenge:

How to get MLPs to represent higher frequency
functions?

Rahaman et al 2019 Basri et al 2020 Slide credit: Matt Tancik



what happens if you naively
optimize this network



fation 1000

MLP output Supervision image
Slide credit: Matt Tancik



Standard input

Slide credit: Matt Tancik



Positional Encoding

Standard input Positionally Encoded input
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Fourier Features ~(p) = (sin(2%p), cos(2°np), - - , sin(2X"'7p), cos (24 7p) )
Slide credit: Matt Tancik



ration 1000

Standard MLP MLP with Fourier features
Slide credit: Matt Tancik



Why does positional encoding help?

Target Image

Slide credit: Matt Tancik



Why does positional encoding help?

Input Target 0 1
XYy

A 36 5 []

Target Image

Slide credit: Matt Tancik



Why does positional encoding help?

Input Target 0 1
XYy
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Target Image

Slide credit: Matt Tancik



Why does positional encoding help?

X
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Slide credit: Matt Tancik



Why does positional encoding help?
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Slide credit: Matt Tancik



NeRF Project Part 1

* Fit a Neural Network to a single image

* Implement this network, and Positional Embedding (PE) and reconstruct

an image:
X » rgb
(2D)  pg ReLU ReLU RelU [ sigmoid (3D)

Linear Linear Linear Linear
(256) (256) (256) (3)



Without Encoding

With Encoding

Coordinate-based MLPs can replace any low-dimensional array

3D Shape

Slide credit: Matt Tancik



NeRF with and without positional encoding

NeRF (Naive) NeRF (with positional encoding)

Slide credit: Matt Tancik



NeRF Network Architecture

Next section you will implement this:

»density

Concat ReLu  (1D)
Linear
(3D) PE RelLU RelLU RelLU RelU RelLU RelLU RelLU \
Linear Linear Linear Linear Linear Linear Linear Linear - ». —P.—b rgb
(256) (256) (256) (256) (256) (256) (256) (256) RelU Sigmoid (3D)
Linear| Linear Linear
) ‘ Concat (256) | (128) (3)
d

(D) pe



Let’s go back to 3D

Now we need to render an image from
this 3D representation in a differentiable

manner
Volumetric 3D Differentiable Rendered Image:
Representation 2] Volumetric Rendering I’

“Trdining" Obiecﬁve (CII(CI AnGIYSiS-by-SynfheSiS):

|
m 1 n Rendered Image: | e Observed Image:
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Differentiable Volumetric
Rendering



A Precursor: Multi-plane Images
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Layers at
. fixed depths,
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Reference viewpoint v Q Novel viewpoint

Zou et al. Stereo Magnification, SIGGRAPH 2018



Multi-
plane
Camera at
Disney

https: / /www.youtube.c
om/watchev=YdHTIUG

Nl1zw



https://www.youtube.com/watch?v=YdHTlUGN1zw
https://www.youtube.com/watch?v=YdHTlUGN1zw
https://www.youtube.com/watch?v=YdHTlUGN1zw
https://www.youtube.com/watch?v=YdHTlUGN1zw
https://www.youtube.com/watch?v=YdHTlUGN1zw
https://www.youtube.com/watch?v=YdHTlUGN1zw
https://www.youtube.com/watch?v=YdHTlUGN1zw

Generating an Image MPI

L / / Layers at

e | | fixed depths,
- K each is an
\; J RGBA image.

To render a novel view: { LA-

1. Homography warp the image from
€ new viewpoint

2. AIphCI Blend each |0|yer Reference viewpoint v ﬂ Novel viewpoint

Zou et al. Stereo Magnification, SIGGRAPH 2018



Sample Novel View Synthesis with a MPI

Single-view view synthesis with multiplane images, Tucker and Snavely CVPR 2020



Also called front-to-back compositing or “over” operation

Alpha Blending

~ =
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What is missing in MPIs?

* Look at it from the side??

* You'll see all the edgesl!!
=» Limited camera mobility

NeRF overcomes this problem, because it’s defined everywhere

Volumetric Rendering behaves similarly to alpha compositing



Back to NeRFs



Volumetric Rendering

Through Volumetric computing color along rays
through 3D space

L —

What color is this pixel?

Representation
(No surfaces)!

Lots of slide from here on modified from Ben Mildenhall



Surface vs. volume rendering

Camera Scene
representation

Woant to know how ray interacts with scene

Ray

46



Surface vs. volume rendering

Ray

Camera Scene
representation

Surface rendering — loop over geometry, check for ray hits

47



Surface vs. volume rendering

Ray

Camera Scene
representation

Volume rendering — loop over ray points, query geometry

48



Recap: Cameras and rays

* We need the mathematical mapping from
(camera, pixel) = ray
* Then can abstract underlying problem as

learning the function ray — color

Camera



Compute the Ray

Ray

Camera coord frame

"/

(uv) g~

Image Plane

3D to 2D:
(point)

2D to 3D:

(ray)
Back projection
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u=J,— +
Ze
V= %—F
Zc
x:i(u—
2
y=—(v—
z>0

Slide credit: Shree Nayar



Details:

A half-pixel offset — add 0.5 to i and | so ray precisely hits pixel center

imz}ge[0,0]

0.070.0%
(0.5.0.5)

(4.0, 8.0)

51



Want: Ray in the World

* What coordinate space is the current ray in?

* Convert it to World! 9
g\d (R’

ApPY y gtion
onS*orm
A\l Rx+ t

A




Calculating points along a ray

In the world coordinate frame:

O
O

o ©

0 o+ td

0 Scalar € controls distance
along the ray



History of volume rendering



In Early computer graphics

S.Chandrasekhar

RADIATIVE
TRANSFER

4

Ray tracing simulated cumulus cloud [Kajiya]

Chandrasekhar 1950, Radiative Transfer
Kajiya 1984, Ray Tracing Volume Densities

Theory of volume rendering co-opted from physics in the 1980s:
absorption, emission, out-scattering /in-scattering

Adapted for visualising medical data and linked with alpha
compositing

Modern path tracers use sophisticated Monte Carlo methods to
render volumetric effects

55



Alpha compositing

> Alpha rendering developed for digital compositing in VFX
movie production

Pt.Reyes = Foreground over Hillside over Background.

Alpha compositing [Porter and Duff]

Porter and Duff 1984, Compositing Digital Images

56



Volume rendering for visualization

> Volume rendering applied to visualise 3D medical scan data in

1990s

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering
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Absorption Scattering

Absorption

http: //wikipedia.org
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Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering



Simplify

Absorption Scattering

Emission

http://commons.wikimedia.org

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http: //wikipedia.org

60



Volume rendering derivations



Volumetric formulation for NeRF

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral



Volumetric formulation for NeRF

c(t), a(t) Ray r(t) = 0 + td

t

Camera

at a point on the ray r(t) , we can query color ¢(t) and density a(t)

How to integrate all the info along the ray to get a color per ray?



ldea: Expected Color

* Pose probabilistically.
* Each point on the ray has a probability to be the first “hit” : P[first hit at t]
* Color per ray = Expected value of color with this probability of first "hit”

—_ . tl
for a ray r(t) = o + td: c(r) = j P([first hit at t]c(t)dt
t

0

T
z P[first hit at t]c(t)
t=0




Differentiable Volumetric Rendering Formula
for a ray r(t) = o + td:

"y differentiable w.rt. C, 0 Ray

* " colors

weights

How much light is blocked earlier along ray: 3D volume

1—1
T; = [1(1—a)
j=1

‘ Camera

How much light is contributed by ray segment i:

a; =1 — exp(—0;0;)

66



Summary

for a ray r(t) = o + td:
g s e mesmrenmend I {fE€ r€ Ntiable W.rt. €, 0 Ray

n 3
2, Tia;c;
=1 3

colors

weights

How much light is blocked earlier along ray: 3D volume

1—1

T;=111-q)

j=1 ‘
Camera

How much light is contributed by ray segment i:

a; =1 — exp(—0;0;)

67



Complete derivation

* If you want a complete derivation of the volrend equation, see this
https: / /drive.google.com /file /d /1QsCK5V0d6DSc0QGcKsV97u83JFd

-dFoz /view
* From slide 35
* Or https://arxiv.org/pdf/2209.02417



https://drive.google.com/file/d/1QsCK5V0d6DSc0QGcKsV97u83JFd-dFoz/view
https://drive.google.com/file/d/1QsCK5V0d6DSc0QGcKsV97u83JFd-dFoz/view
https://drive.google.com/file/d/1QsCK5V0d6DSc0QGcKsV97u83JFd-dFoz/view
https://arxiv.org/pdf/2209.02417

Visual intuition: rendering weights is specific
to a ray

Ray

3D volume

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

69
69



Visual intuition: rendering weights is specific
to a ray

Camera

N
C~ E !szﬂz‘}'i
i—1

3D volume

Ray

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

70
70



Rendering weight PDF is important

Remember, expected color is equal to

[TOo(Oc®)dt ~ Z T.ac; = Z wic,

l l

T(t)o(t) and T;«; are “rendering weights” — probability distribution along the ray
(continuous and discrete, respectively)

You can also render entities other than color in 3D, for example it's depth, or any
other N-D vector v;

Volume rendered "feature” = ), w;v;
{



Rendering weight PDF is important — depth

We can use this distribution to compute expectations for other quantities, e.g.
“expected depth”:

t = YT;a;t;
i

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.



Rendering weight PDF is important — depth

Mean depth Median depth

73



Rendering weight PDF is important — depth

Mean depth Median depth



Volume rendering other quantities

This idea can be used for any quantity we want to “volume render” into a 2D image. If V lives
in 3D space (semantic features, normal vectors, etc.)

YTia;v;
l

can be taken per-ray to produce 2D output images.



Volume Rendering CLIP features

LERF: Language Embedded Radiance Fields, Kerr* and Kim* et al. ICCV 2023



Density as geometr

Normal vectors (from analytic gradient of density)

78



Alpha mattes and compositing




Alpha mattes and compositing




Alpha mattes and compositing




Alpha mattes and compositing

Mildenhall*, Srinivasan®, Tancik* et al 2020, NeRF
Poole et al 2022, DreamFusion 82

Tang et al 2022, Compressible-composable NeRF via Rank-residual Decomposition



Previous Papers

r~ —8 .

/ 7= z=2

N—T - e | =

\\\J‘: ) 'JJ

e T IRSEgENE
r i—1

Differentiable ray consistency work used a forward (1—af) [[ =}, ifi<N,
model with “probabilistic occupancy” to supervise plzr =i)=¢ =
3D-from-single-image prediction. z7, ifi =N, +1
Same rendering model as alpha compositing! v =t

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction via
Differentiable Ray Consistency
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Similar Ideas before NeRF

Multiplane image methods Neural Volumes

Stereo Magnification (Zhou et al. 2018) (Lombardi et al. 2019)

Pushing the Boundaries... (Srinivasan et al. 2019) Direct gradient descent to optimize an RGBA volume,
Local Light Field Fusion (Mildenhall et al. 2019) regularized by a 3D CNN

DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D
CNN, big RGBA 3D volume comes out

AR
Input Sampled View

84
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