Neural Radiance Fields pt 2

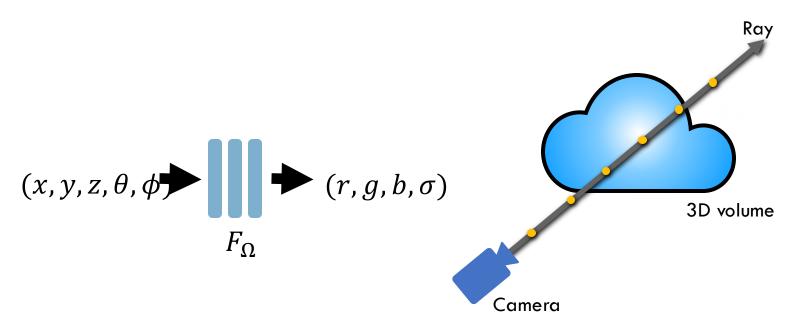
Video from the original ECCV'20 paper

CS180/280A: Intro to Computer Vision and Computational Photography

Angjoo Kanazawa and Alexei Efros

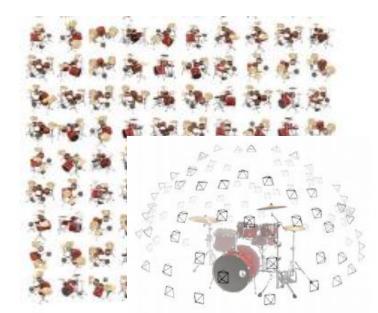
UC Berkeley Fall 2025

Recap: 3 Key Components

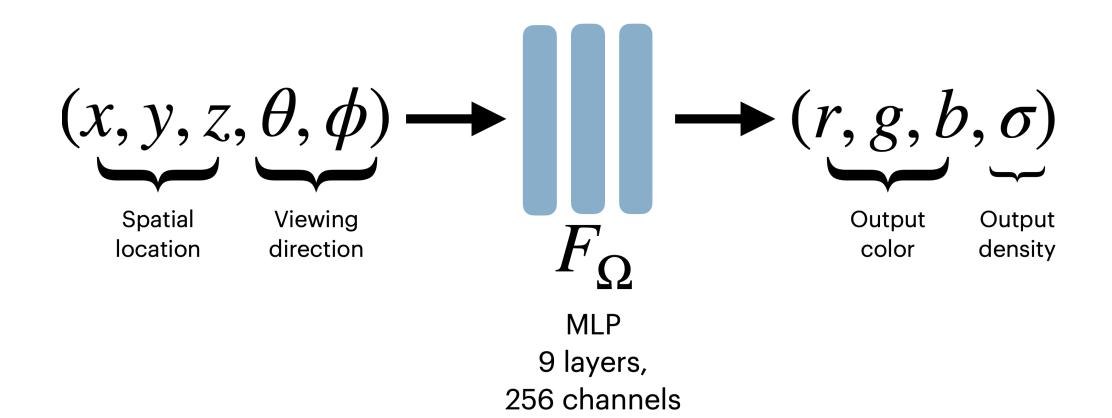


Neural Volumetric 3D Scene Representation Differentiable Volumetric Rendering Function

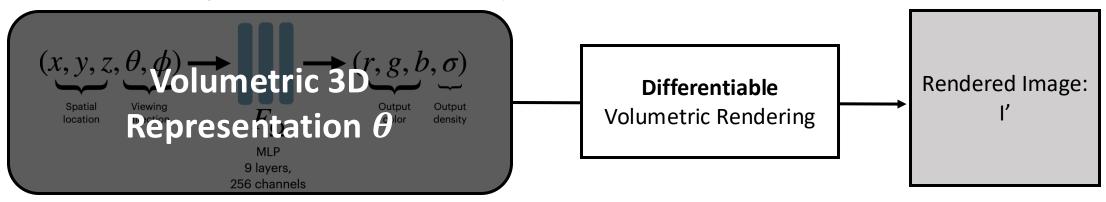
Objective: Synthesize all training views



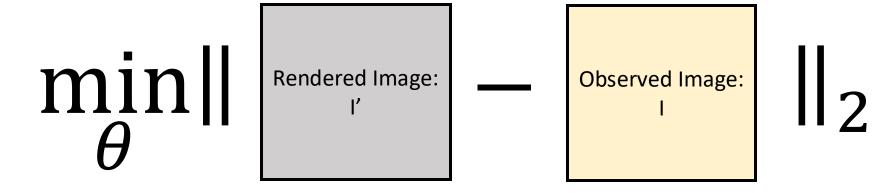
Optimization via Analysis-by-Synthesis



How an image is made ("Inference")

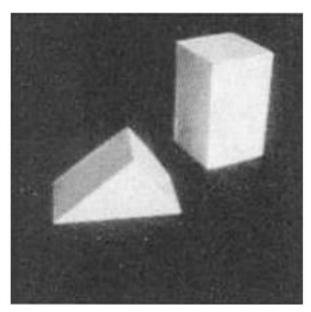


"Training" Objective (aka Analysis-by-Synthesis):

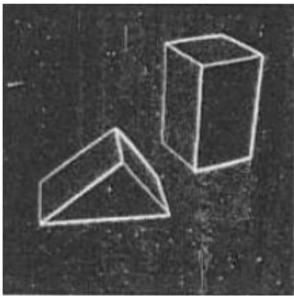


Analysis-by-Synthesis

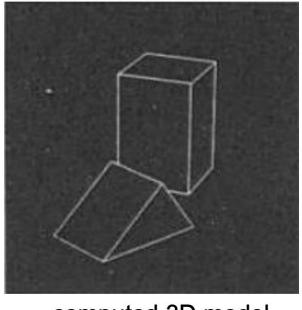
Larry Roberts
"Father of Computer Vision"



Input image



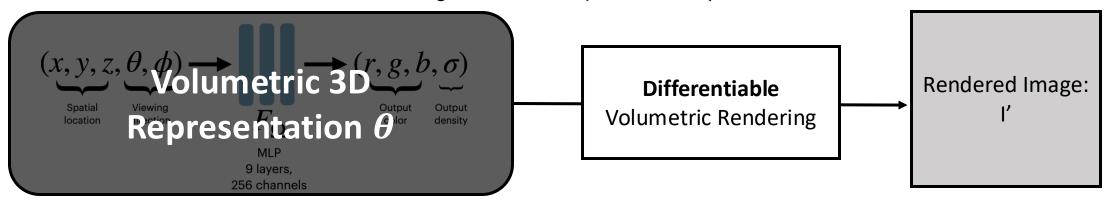
2x2 gradient operator



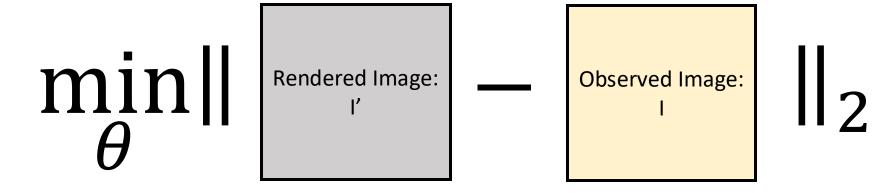
computed 3D model rendered from new viewpoint

History goes way back to the first Computer Vision paper!
 Roberts: Machine Perception of Three-Dimensional Solids, MIT, 1963

Forward Function: How an image is made (Inference)



"Training" Objective (aka Analysis-by-Synthesis):



Differentiable Rendering

ullet How to change heta (network parameter) so that we get the final image?

• Gradient Descent "Hiking"

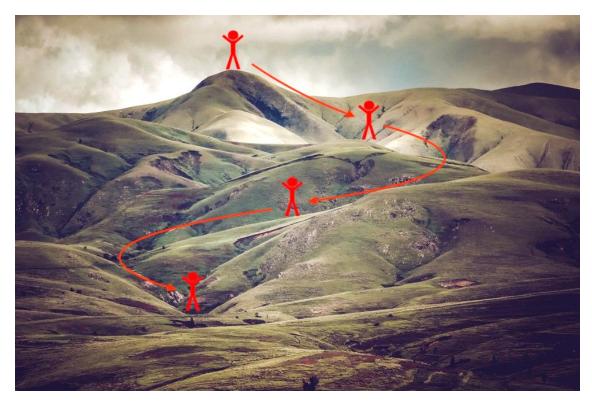
Same idea here, "hiking" now means you're going to change the network parameter little by little.

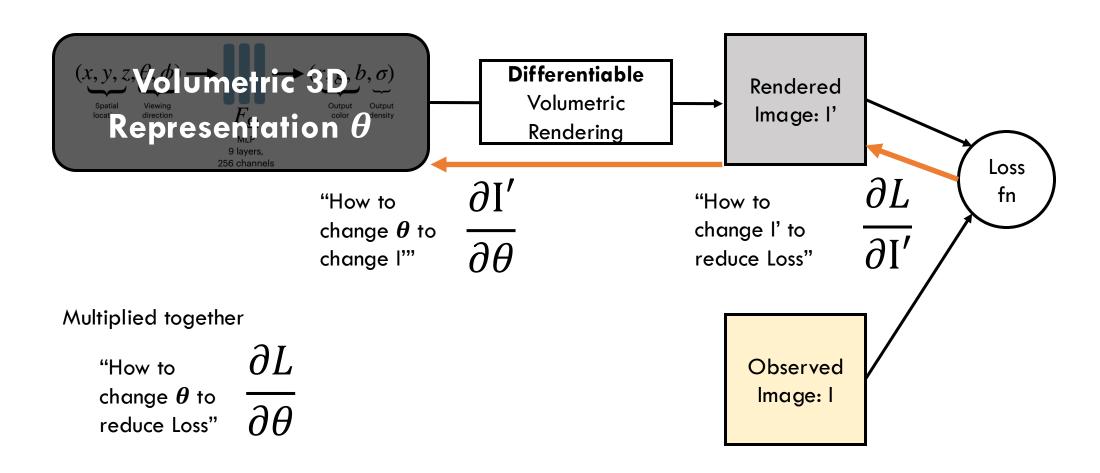
The "Mountain" or the "Loss" comes from the reconstruction loss.

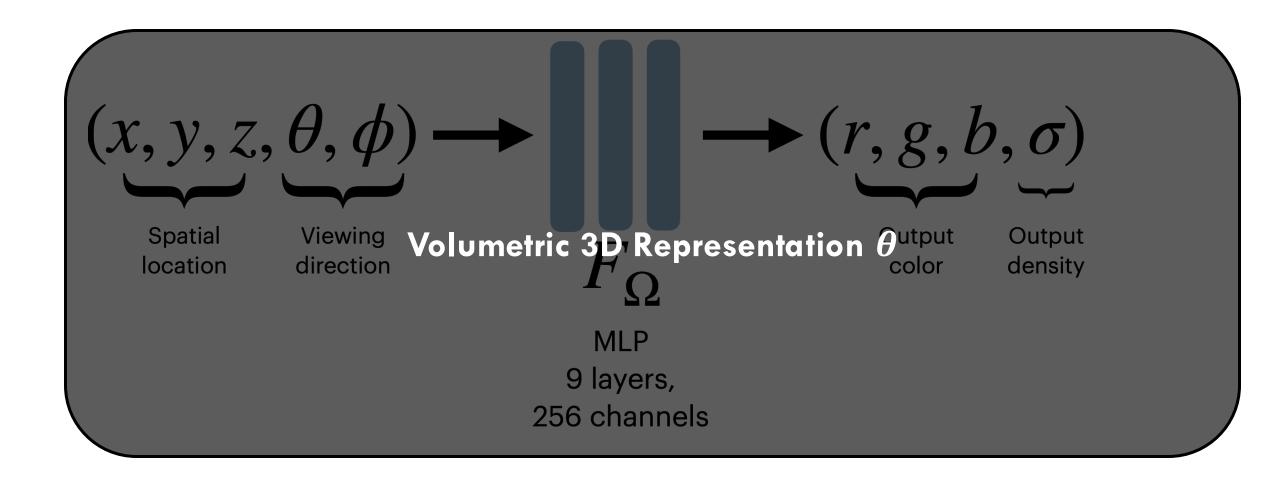
$$\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial I'} \frac{\partial I'}{\partial \theta}$$

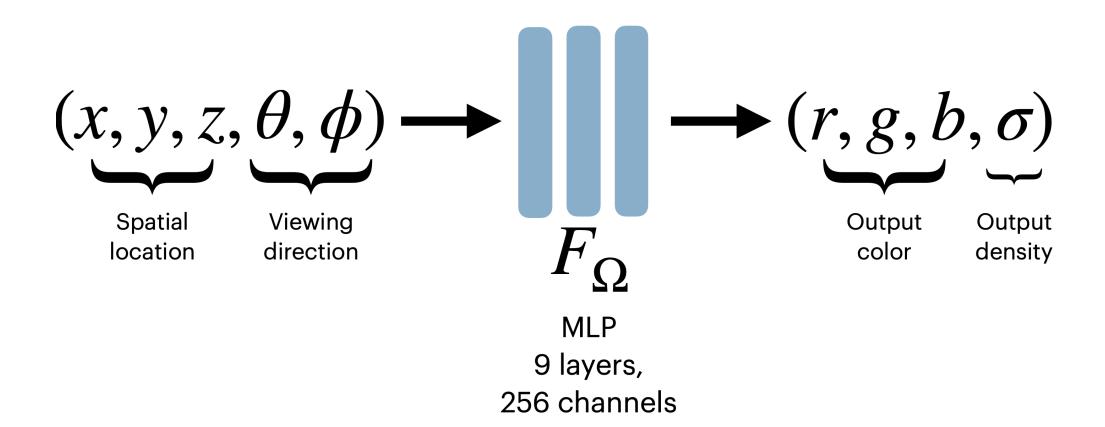
$$L = ||I' - I||$$

$$I' = f(x; \theta)$$







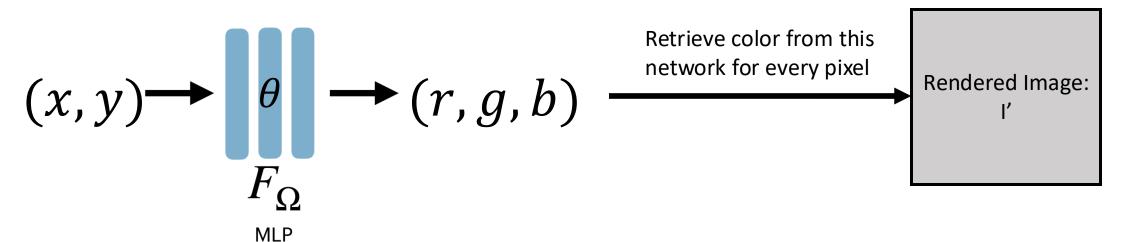


Let's simplify, do this in 2D:

$$(x,y) \longrightarrow (r,g,b)$$

$$F_{\Omega}$$
MLP

Let's simplify, do this in 2D:

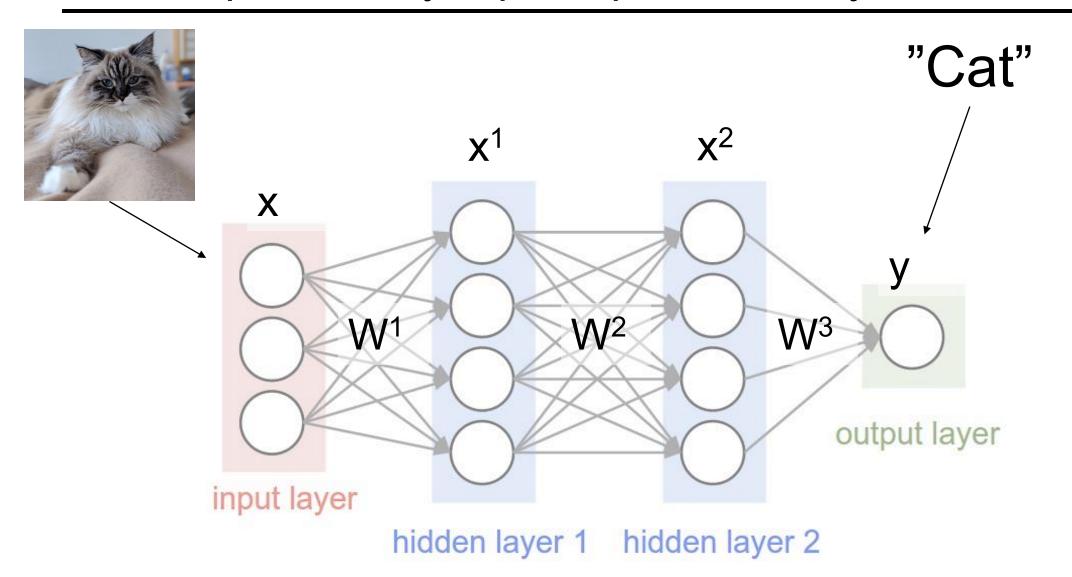


Optimize with "Training" Objective (aka Analysis-by-Synthesis):

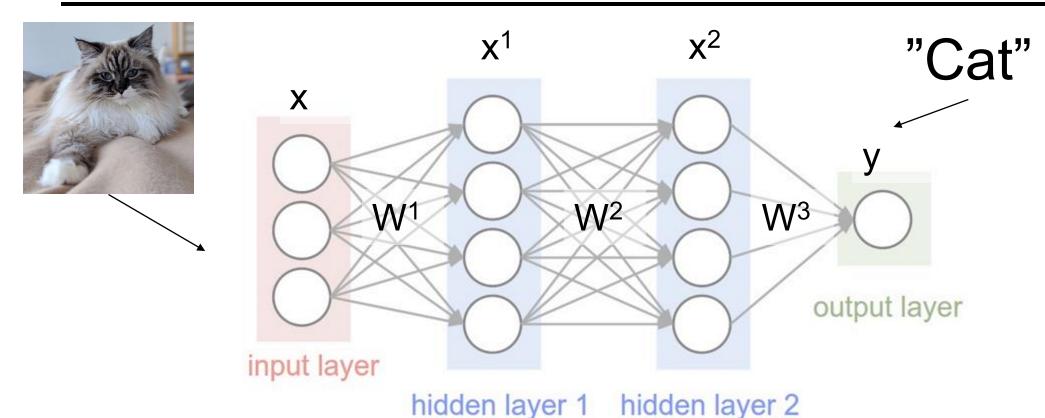
$$\frac{\partial L}{\partial \theta} = \frac{\partial (rgb - rgb')}{\partial \theta} \qquad \mathbf{min} || \mathbf{Rendered}_{\text{Image: I'}} - \mathbf{lmage: I'} ||_{\mathbf{2}}$$

Straight forward to implement with Pytorch

ML Recap: Multi-layer perceptrons / Fully-Connected Layer



Multi-layer perceptrons / Fully-Connected Layer



In each layer:

1. Linear Transform
$$z=W^lx^{l-1}+b$$

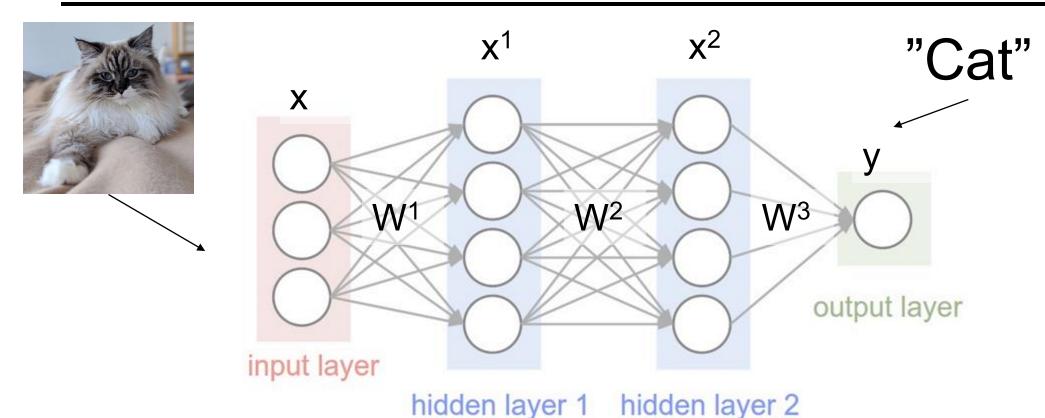
2. Apply Non-Linearity
$$\,\chi^l=f(z)\,$$

Usually
$$f = RELU(z)$$

$$= \max(0, z)$$

what happens if f is identity?

Multi-layer perceptrons / Fully-Connected Layer



In each layer:

each layer.

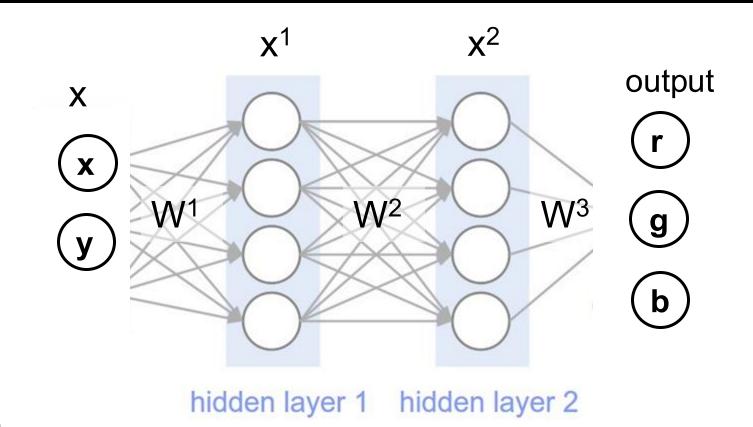
1. Linear Transform
$$z=W^lx^{l-1}+b$$
2. Apply Non-Linearity $x^l=f(z)$

Usually
$$f = RELU(z)$$

$$= \max(0, z)$$

What are the learnable parameters?

In our 2D case:



In each layer:

1. Linear Transform
$$z=W^lx^{l-1}+b$$
 Usually $f=RELU(z)$ 2. Apply Non-Linearity $x^l=f(z)$ $=\max(0,z)$

What are the learnable parameters?

Coordinate Based Neural Network

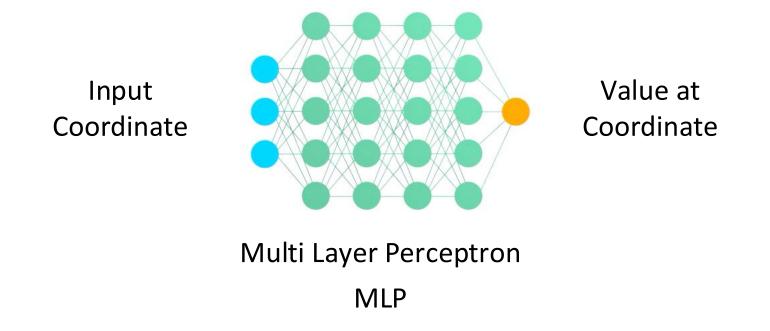
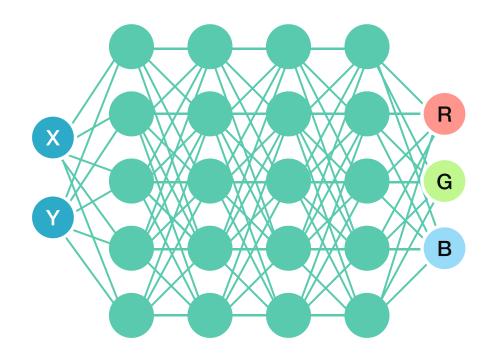


Image Representation



Challenge:

How to get MLPs to represent higher frequency functions?

what happens if you naively optimize this network

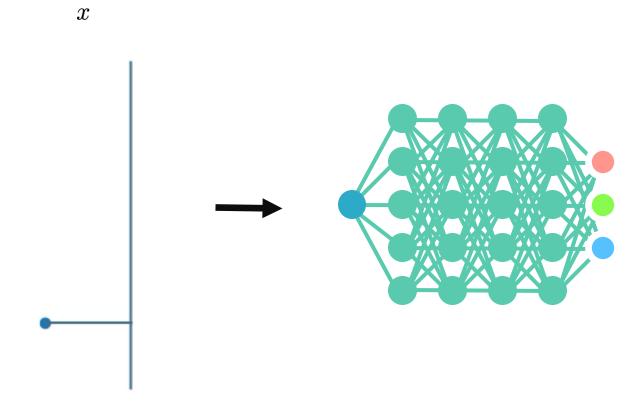


MLP output

Supervision image

Slide credit: Matt Tancik

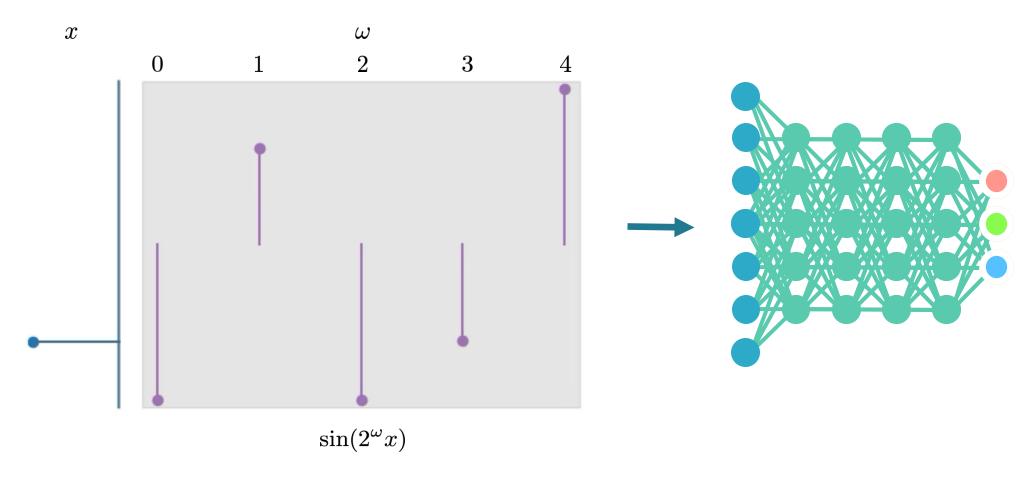
Standard input



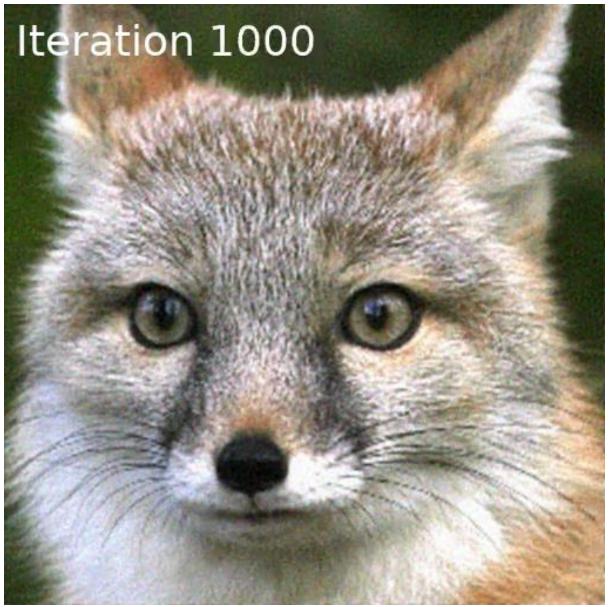
Positional Encoding

Standard input

Positionally Encoded input

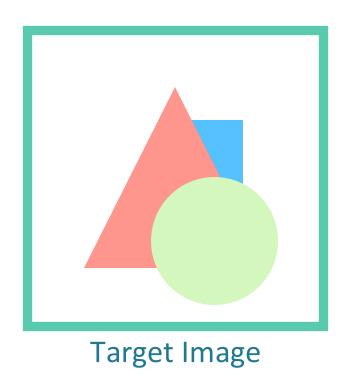


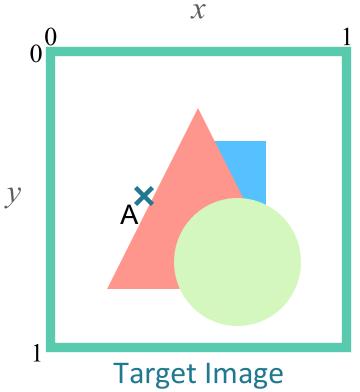
Fourier Features $\gamma(p) = \left(\sin\left(2^0\pi p\right), \cos\left(2^0\pi p\right), \cdots, \sin\left(2^{L-1}\pi p\right), \cos\left(2^{L-1}\pi p\right)\right)$ Slide credit: Matt Tancik

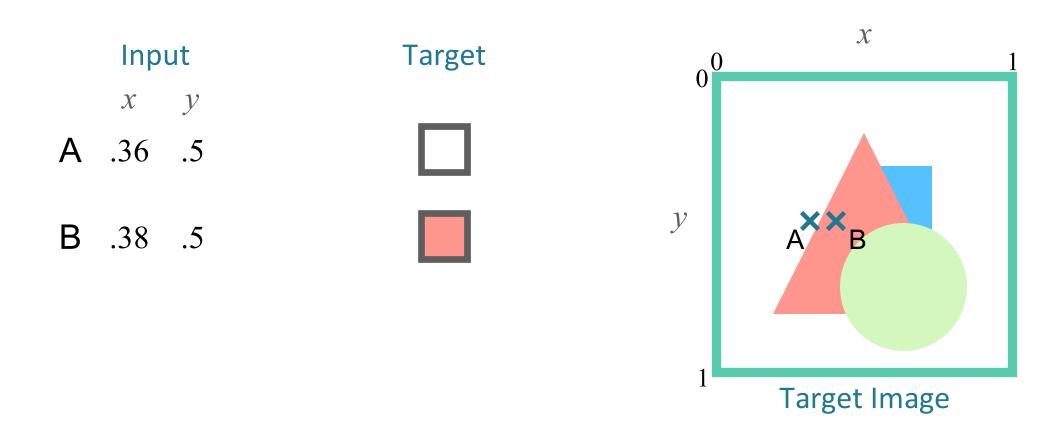


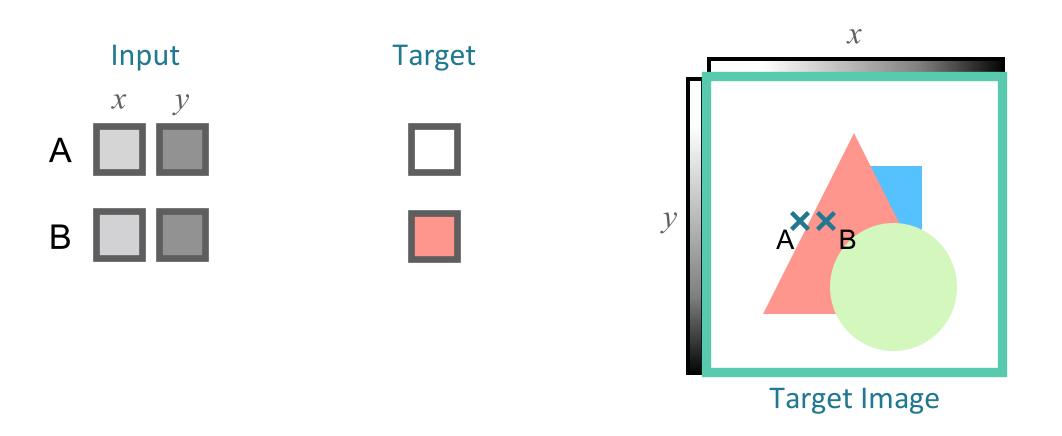
Standard MLP with Fourier features

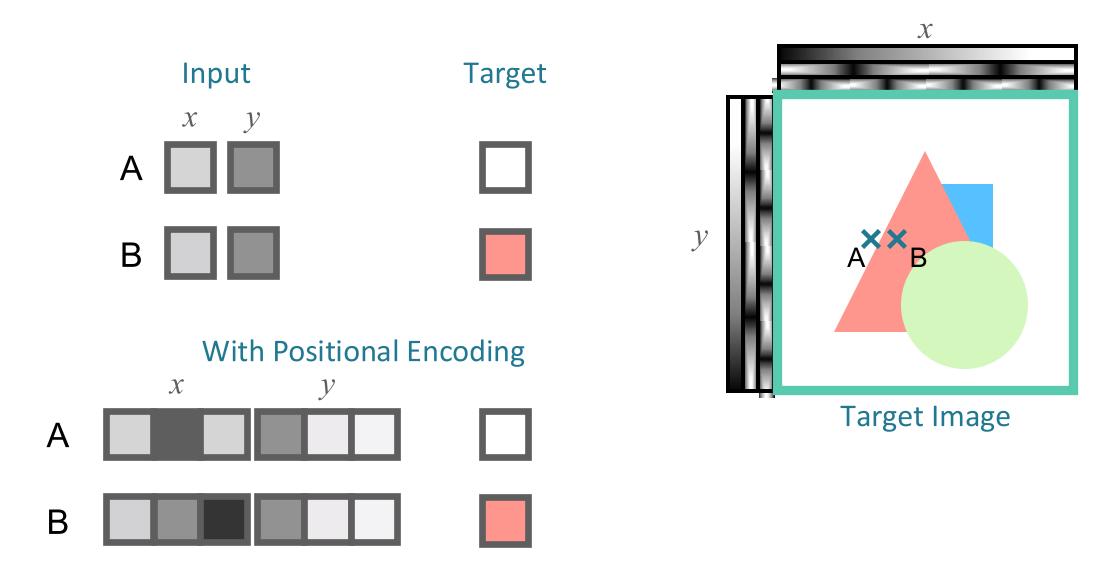
Slide credit: Matt Tancik





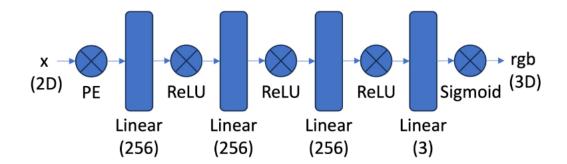




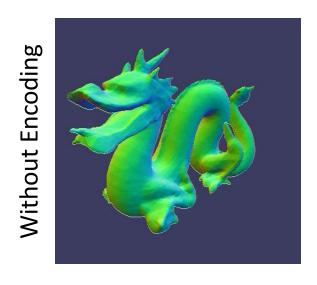


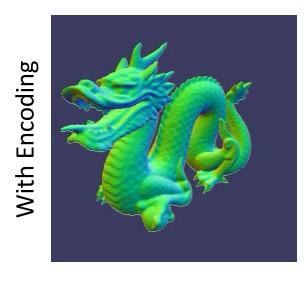
NeRF Project Part 1

- Fit a Neural Network to a single image
- Implement this network, and Positional Embedding (PE) and reconstruct an image:



Coordinate-based MLPs can replace any low-dimensional array





3D Shape

NeRF with and without positional encoding

NeRF (Naive)

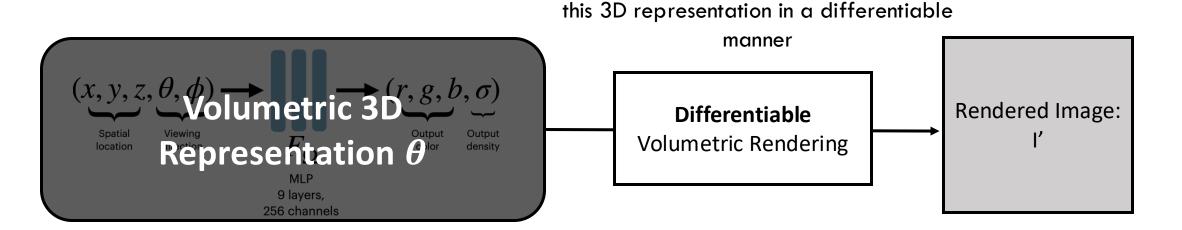
NeRF (with positional encoding)

NeRF Network Architecture

Next section you will implement this:

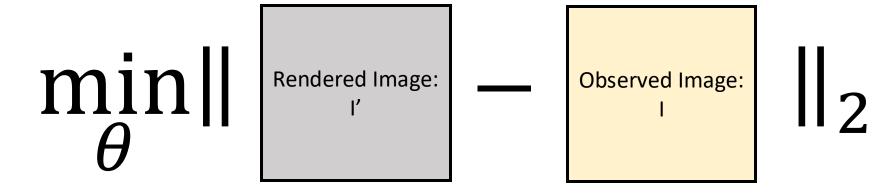


Let's go back to 3D



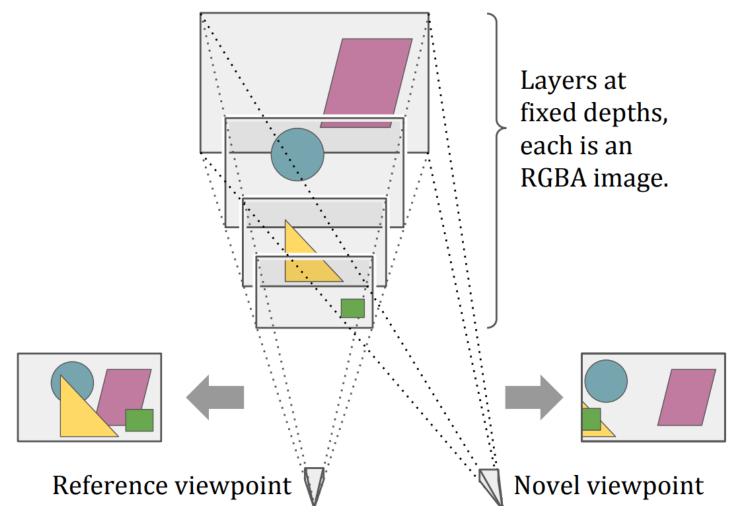
Now we need to render an image from

"Training" Objective (aka Analysis-by-Synthesis):



Differentiable Volumetric Rendering

A Precursor: Multi-plane Images



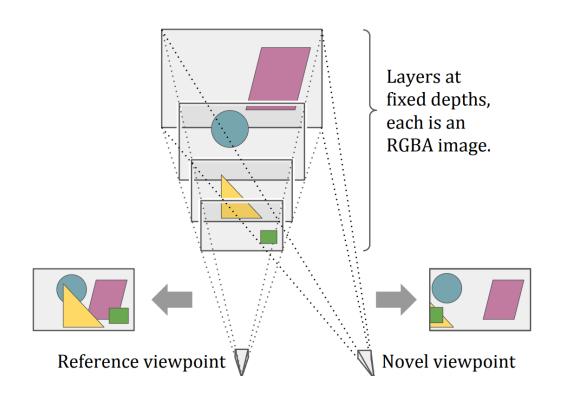
Multiplane Camera at Disney

https://www.youtube.c
om/watch?v=YdHTIUG
N1zw

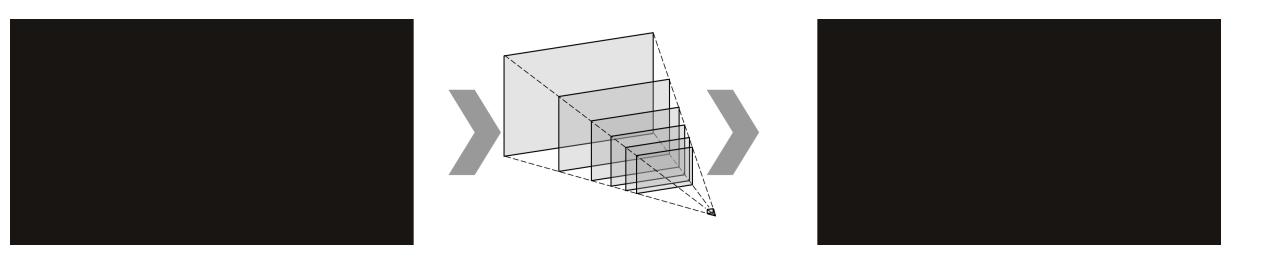
Generating an Image MPI

To render a novel view:

- 1. Homography warp the image from the new viewpoint
- 2. Alpha Blend each layer

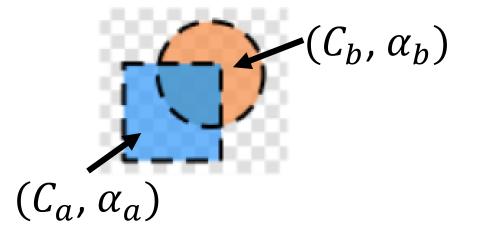


Sample Novel View Synthesis with a MPI



Alpha Blending

for two image case, A and B, both partially transparent:

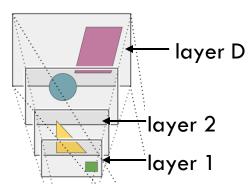


$$I = C_a \alpha_a + C_b \alpha_b (1 - \alpha_a)$$

How much light is the previous layer lettina through?

General D layer case:

$$I = \sum_{i=1}^{D} C_{i} \alpha_{i} \prod_{j=1}^{i-1} (1 - \alpha_{j})$$



What is missing in MPIs?

- Look at it from the side??
- You'll see all the edges!!

→ Limited camera mobility

NeRF overcomes this problem, because it's defined everywhere Volumetric Rendering behaves similarly to alpha compositing

Back to NeRFs

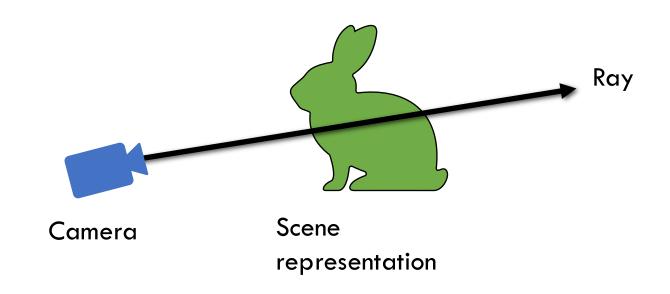
Neural Volumetric Rendering

Through Volumetric Representation (No surfaces)!

computing color along rays through 3D space

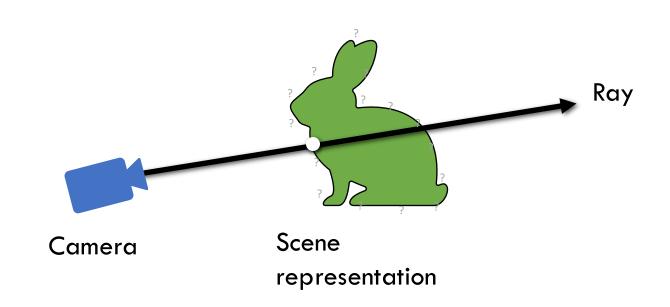
What color is this pixel?

Surface vs. volume rendering



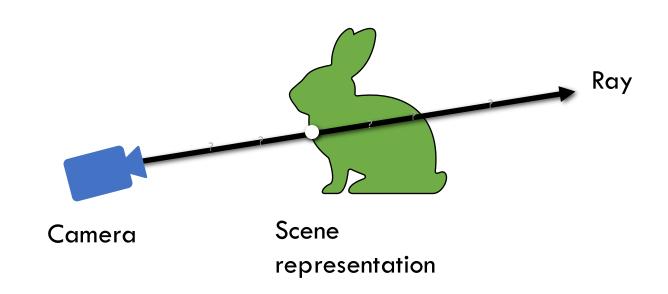
Want to know how ray interacts with scene

Surface vs. volume rendering



Surface rendering — loop over geometry, check for ray hits

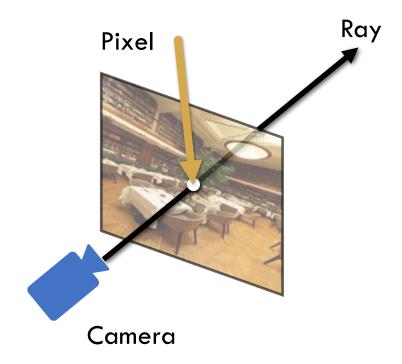
Surface vs. volume rendering



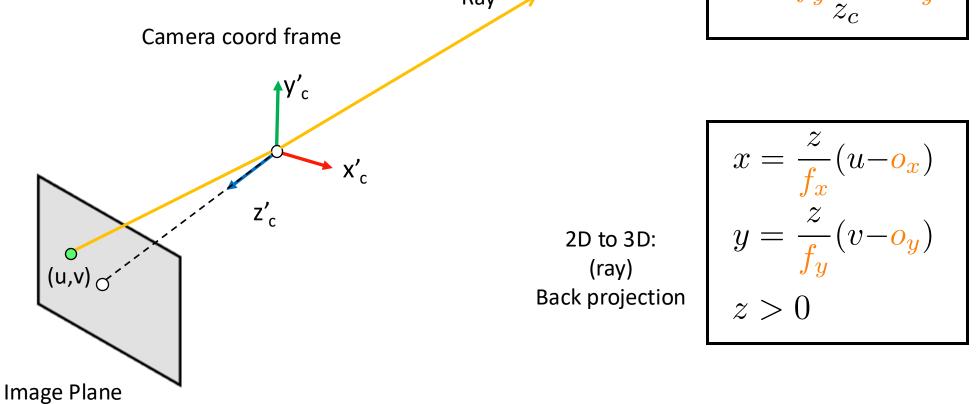
Volume rendering — loop over ray points, query geometry

Recap: Cameras and rays

- We need the mathematical mapping from $(camera, pixel) \rightarrow ray$
- Then can abstract underlying problem as learning the function $ray \rightarrow color$

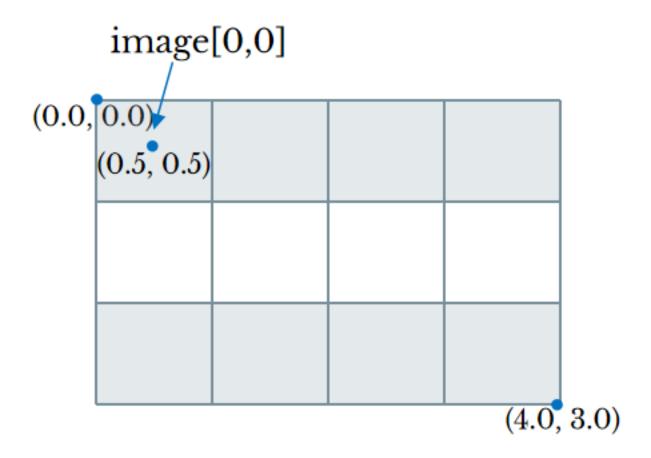


Compute the Ray



Details:

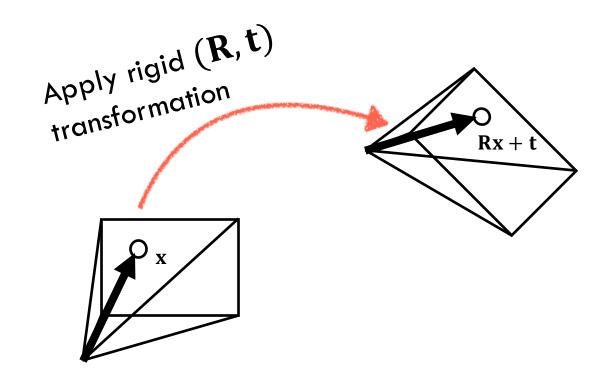
A half-pixel offset — add 0.5 to i and j so ray precisely hits pixel center



Want: Ray in the World

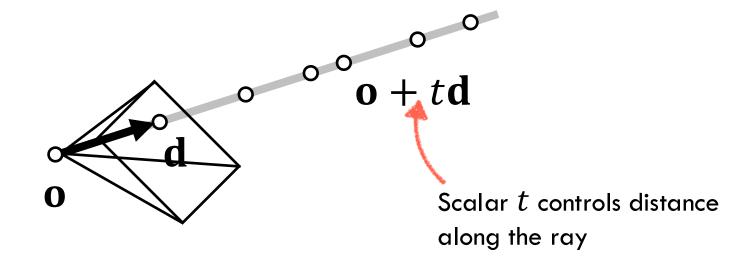
What coordinate space is the current ray in?

Convert it to World!



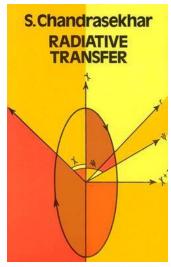
Calculating points along a ray

In the world coordinate frame:



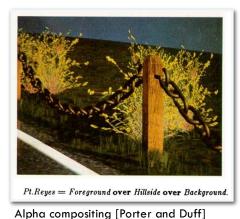
History of volume rendering

In Early computer graphics



- Theory of volume rendering co-opted from physics in the 1980s: absorption, emission, out-scattering/in-scattering
- Adapted for visualising medical data and linked with alpha compositing
- Modern path tracers use sophisticated Monte Carlo methods to render volumetric effects

Alpha compositing



- Theory of volume rendering co-opted from physics in the 1980s: absorption, emission, out-scattering/in-scattering
- Alpha rendering developed for digital compositing in VFX movie production

Volume rendering for visualization

Medical data visualisation [Levoy]

- Theory of volume rendering co-opted from physics in the 1980s: absorption, emission, out-scattering/in-scattering
- Alpha rendering developed for digital compositing in VFX movie production
- Volume rendering applied to visualise 3D medical scan data in 1990s

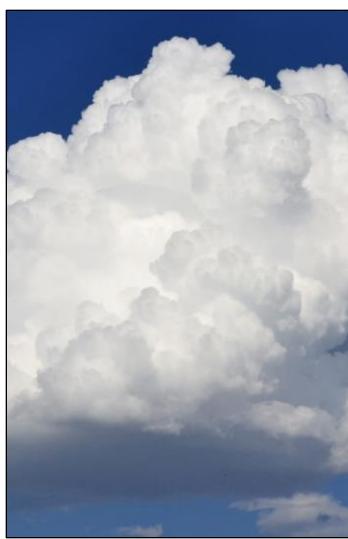
Chandrasekhar 1950, Radiative Transfer Kajiya 1984, Ray Tracing Volume Densities Porter and Duff 1984, Compositing Digital Image

Absorption

Scattering



Emission





http://commons.wikimedia.org

http://wikipedia.org

Simplify

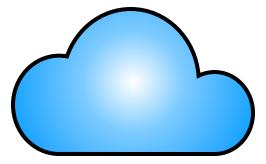
Absorption

Emission

60

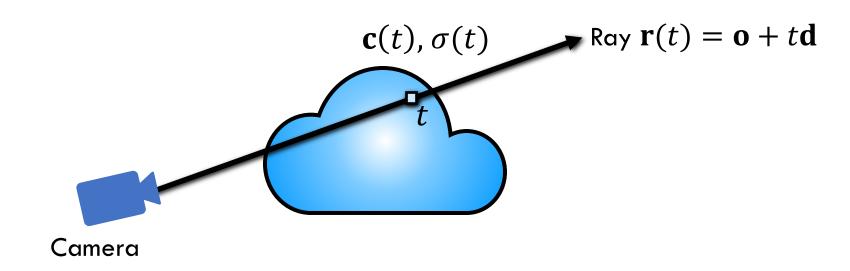
Volume rendering derivations

Volumetric formulation for NeRF



Scene is a cloud of tiny colored particles

Volumetric formulation for NeRF



at a point on the ray $\mathbf{r}(t)$, we can query color $oldsymbol{c}(t)$ and density $\sigma(t)$

How to integrate all the info along the ray to get a color per ray?

Idea: Expected Color

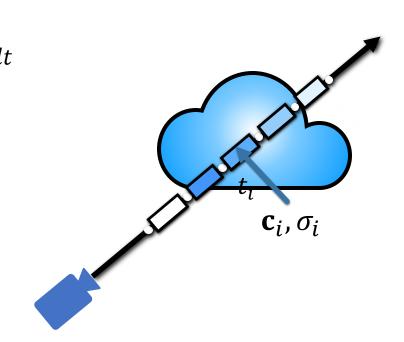
- Pose probabilistically.
- Each point on the ray has a probability to be the first "hit" : $P[first\ hit\ at\ t]$
- Color per ray = Expected value of color with this probability of first "hit"

for a ray
$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$$
:

$$c(r) = \int_{t_0}^{t_1} P[first \ hit \ at \ t] c(t) dt$$

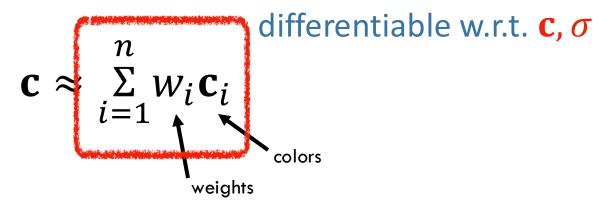
$$\approx \sum_{t=0}^{T} P[first \ hit \ at \ t] c(t)$$

$$\approx \sum_{t=0}^{T} w_t c(t)$$



Differentiable Volumetric Rendering Formula

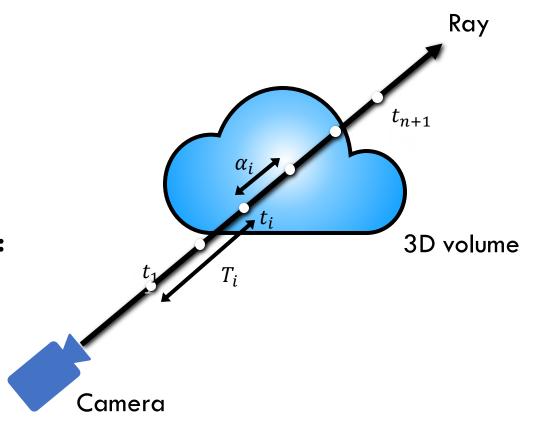
for a ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:



How much light is blocked earlier along ray:

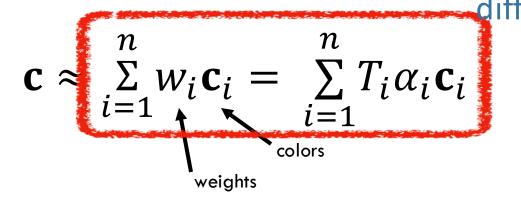
$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$



Summary

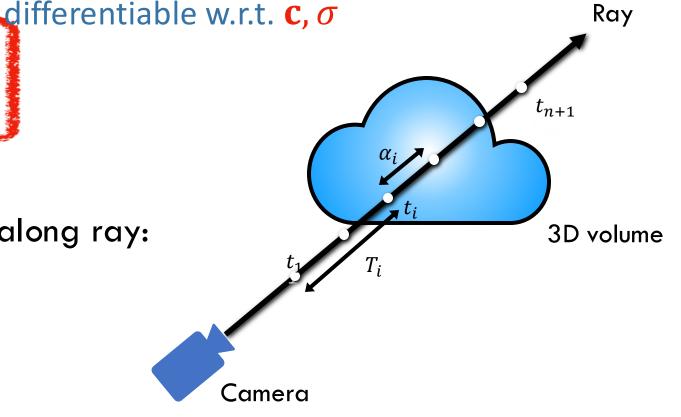
for a ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:



How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$

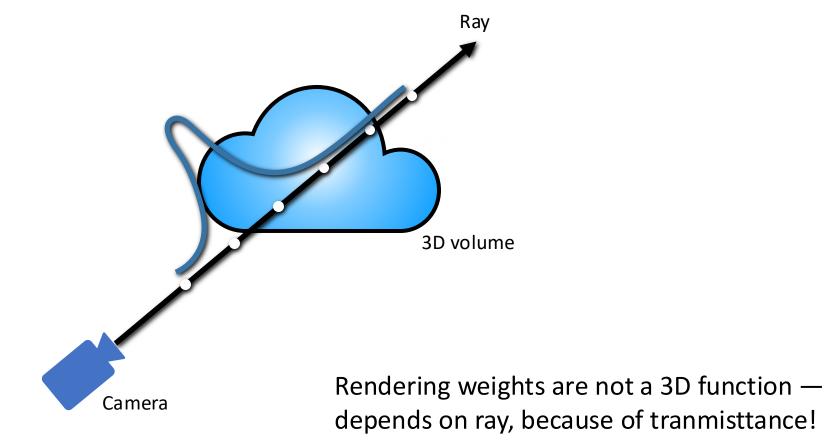


Complete derivation

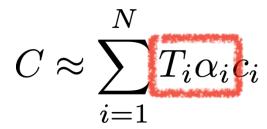
- If you want a complete derivation of the volrend equation, see this https://drive.google.com/file/d/1QsCK5V0d6DSc0QGcKsV97u83JFd-dFoz/view
- From slide 35
- Or https://arxiv.org/pdf/2209.02417

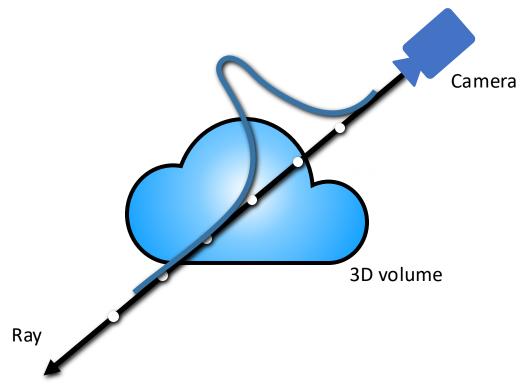
Visual intuition: rendering weights is specific to a ray

$$C pprox \sum_{i=1}^{N} T_i \alpha_i c_i$$



Visual intuition: rendering weights is specific to a ray





Rendering weights are not a 3D function — depends on ray, because of tranmisttance!

Rendering weight PDF is important

Remember, expected color is equal to

$$\int T(t)\sigma(t)\mathbf{c}(t)dt \approx \sum_{i} T_{i}\alpha_{i}\mathbf{c}_{i} = \sum_{i} w_{i}\mathbf{c}_{i}$$

 $T(t)\sigma(t)$ and $T_i\alpha_i$ are "rendering weights" — <u>probability distribution</u> along the ray (continuous and discrete, respectively)

You can also render entities other than color in 3D, for example it's depth, or any other N-D vector $oldsymbol{v}_i$

Volume rendered "feature"
$$=\sum_i w_i oldsymbol{v}_i$$

Rendering weight PDF is important — depth

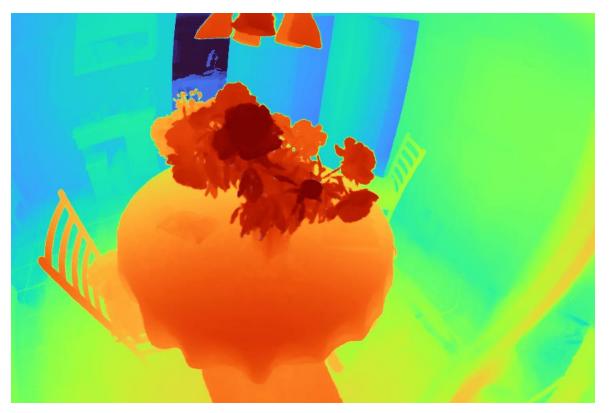
We can use this distribution to compute expectations for other quantities, e.g. "expected depth":

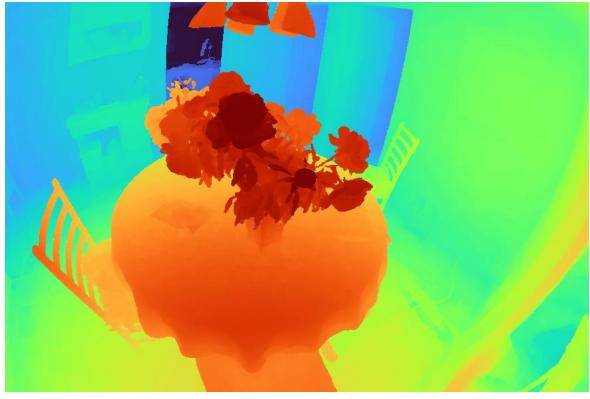
$$\overline{t} = \sum_{i} T_{i} \alpha_{i} t_{i}$$

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.

Rendering weight PDF is important — depth

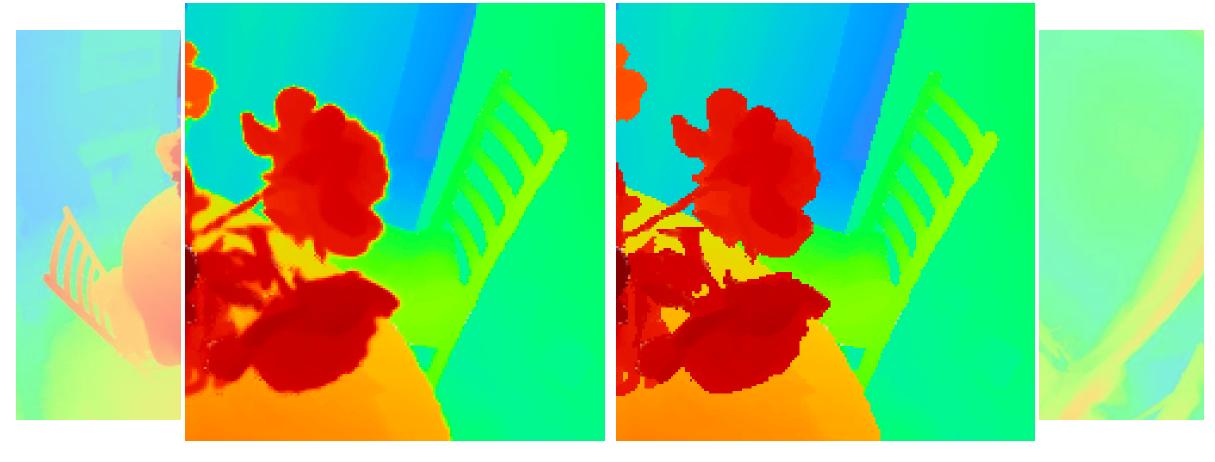




Mean depth

Median depth

Rendering weight PDF is important — depth



Mean depth Median depth

Volume rendering other quantities

This idea can be used for any quantity we want to "volume render" into a 2D image. If **V** lives in 3D space (semantic features, normal vectors, etc.)

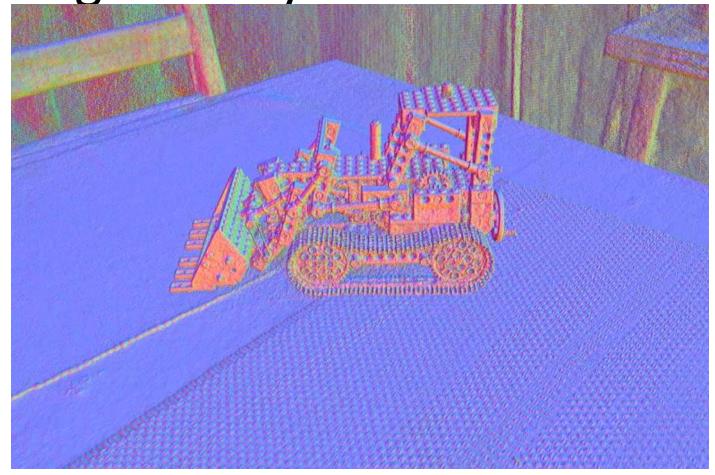
$$\sum_{i} T_{i} \alpha_{i} \mathbf{v}_{i}$$

can be taken per-ray to produce 2D output images.

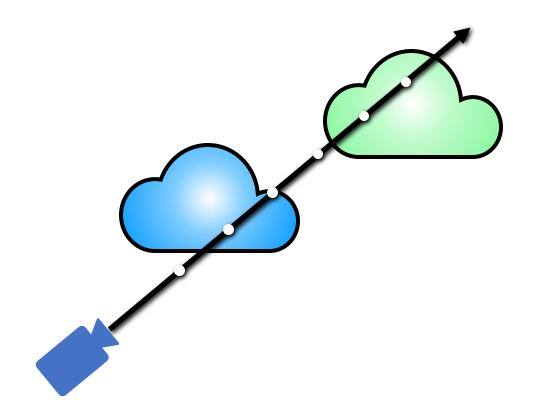
Volume Rendering CLIP features

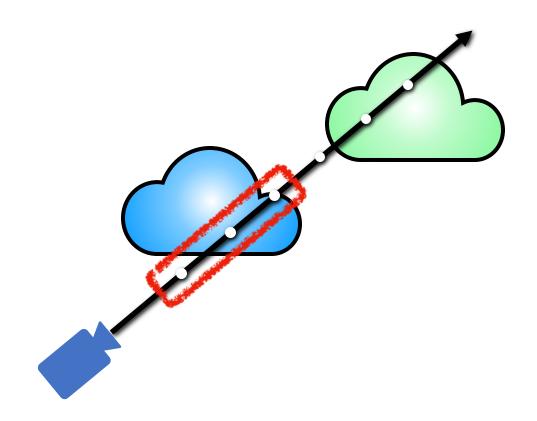
LERF: Language Embedded Radiance Fields, Kerr* and Kim* et al. ICCV 2023

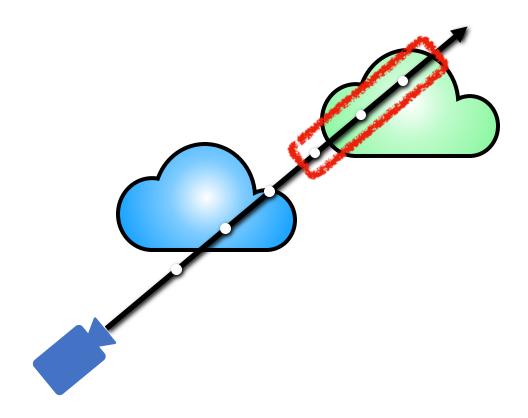
Density as geometry



Normal vectors (from analytic gradient of density)



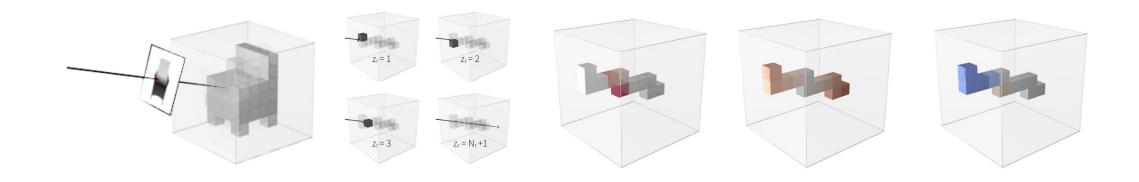




 $\label{eq:mildenhall*, Srinivasan*, Tancik* et al 2020, NeRF} \\$

Poole et al 2022, DreamFusion

Previous Papers



Differentiable ray consistency work used a forward model with "probabilistic occupancy" to supervise 3D-from-single-image prediction.

Same rendering model as alpha compositing!

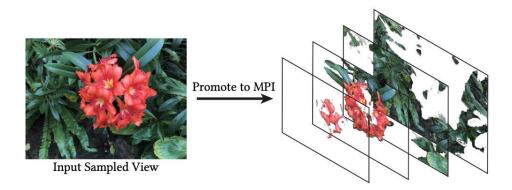
$$p(z_r=i) = egin{cases} (1-x_i^r) \prod_{j=1}^{i-1} x_j^r, & ext{if } i \leq N_r \ \prod_{j=1}^{N_r} x_j^r, & ext{if } i = N_r+1 \end{cases}$$

Similar Ideas before NeRF

Multiplane image methods

Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries... (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out



Neural Volumes (Lombardi et al. 2019) Direct gradient descent to optimize an RGBA volume, regularized by a 3D CNN

