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Lots of content from Noah Snavely and  ECCV 2022 Tutorial on Neural Volumetric Rendering for Computer Vision

Video from the original ECCV’20 paper

https://sites.google.com/berkeley.edu/nerf-tutorial/home?pli=1


Recap: 3 Key Components

Neural Volumetric 3D 
Scene Representation

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)
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Objective: Synthesize 
all training views

Differentiable Volumetric 
Rendering Function

3D volume

𝑡𝑁

Camera

Ray

Optimization via 
Analysis-by-Synthesis



“Neural Radiance Fields”



“Neural Radiance Fields”

Volumetric 3D 
Representation 𝜽

Differentiable 
Volumetric Rendering

Rendered Image: 
I’

“Training” Objective (aka Analysis-by-Synthesis):

Rendered Image: 
I’

Observed Image: 
Imin

𝜃
 − 2 

How an image is made (“Inference”)



Analysis-by-Synthesis

• History goes way back to the first Computer Vision paper! 
Roberts: Machine Perception of Three-Dimensional Solids, MIT, 1963



“Neural Radiance Fields”

Volumetric 3D 
Representation 𝜽

Differentiable
Volumetric Rendering

Rendered Image: 
I’

“Training” Objective (aka Analysis-by-Synthesis):

Rendered Image: 
I’

Observed Image: 
Imin

𝜃
 − 2 

Forward Function: How an image is made (Inference)



Differentiable Rendering

• How to change 𝜃 (network parameter) so that we get the final image? 

• Gradient Descent “Hiking”

Same idea here, ”hiking” now means you’re going to change 

the network parameter little by little.

The “Mountain” or the “Loss” comes from the reconstruction 

loss. 

𝜕𝐿

𝜕𝜃
=

𝜕𝐿

𝜕I′

𝜕I′

𝜕𝜃

𝐿 = 𝐼′ − 𝐼
𝐼′ = 𝑓(𝑥 ; 𝜃)

Chain rule, aka Back propagation



“Neural Radiance Fields”

Volumetric 3D 

Representation 𝜽

Differentiable

Volumetric 

Rendering

Rendered 

Image: I’

Observed 

Image: I

Loss 

fn𝜕𝐿

𝜕I′

“How to 

change I’ to 

reduce Loss”

𝜕I′

𝜕𝜃

“How to 

change 𝜽 to 

change I’”

𝜕𝐿

𝜕𝜃

“How to 

change 𝜽 to 

reduce Loss”

Multiplied together



“Neural Radiance Fields”

Volumetric 3D Representation 𝜽



“Neural Radiance Fields”



Let’s simplify, do this in 2D:

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)



Let’s simplify, do this in 2D:

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏) Rendered Image: 
I’

Retrieve color from this 
network for every pixel

Optimize with “Training” Objective (aka Analysis-by-Synthesis):

Rendered 
Image: I’

Observed 
Image: Imin

𝜃
 − 2 

𝜃

𝜕𝐿

𝜕𝜃
=

𝜕(𝑟𝑔𝑏 − 𝑟𝑔𝑏′)

𝜕𝜃
Straight forward to implement with Pytorch



ML Recap: Multi-layer perceptrons / Fully-Connected Layer

W3W2W1

y

x2x1

x

”Cat”



Multi-layer perceptrons / Fully-Connected Layer

W3W2W1

y

x2x1

x
”Cat”

𝑓 = 𝑅𝐸𝐿𝑈 𝑧
= max(0, 𝑧)

Usually

In each layer:

𝑧 =  𝑊𝑙𝑥𝑙−1 + 𝑏1. Linear Transform

2. Apply Non-Linearity 𝑥𝑙 = 𝑓(𝑧)

what 

happens if f 

is identity?



Multi-layer perceptrons / Fully-Connected Layer

W3W2W1

y

x2x1

x
”Cat”

𝑓 = 𝑅𝐸𝐿𝑈 𝑧
= max(0, 𝑧)

Usually

In each layer:

𝑧 =  𝑊𝑙𝑥𝑙−1 + 𝑏1. Linear Transform

2. Apply Non-Linearity 𝑥𝑙 = 𝑓(𝑧)

What are the 

learnable 

parameters?



In our 2D case:

W3W2W1

x2x1

x

𝑓 = 𝑅𝐸𝐿𝑈 𝑧
= max(0, 𝑧)

Usually

In each layer:

𝑧 =  𝑊𝑙𝑥𝑙−1 + 𝑏1. Linear Transform

2. Apply Non-Linearity 𝑥𝑙 = 𝑓(𝑧)

What are the 

learnable 

parameters?

output

x

y

r

g
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Input 
Coordinate 

Value at 
Coordinate 

MLP

Coordinate Based Neural Network

Multi Layer Perceptron

Slide credit: Matt Tancik



Slide credit: Matt Tancik



Challenge:
How to get MLPs to represent higher frequency 

functions?

Rahaman et al. 2019, Basri et al. 2020
Slide credit: Matt Tancik



what happens if you naively 

optimize this network



MLP output Supervision image
Slide credit: Matt Tancik



Standard input

Slide credit: Matt Tancik



Standard input Positionally Encoded input

Positional Encoding

Fourier Features
Slide credit: Matt Tancik



Standard MLP MLP with Fourier features
Slide credit: Matt Tancik



Target Image

Why does positional encoding help?

Slide credit: Matt Tancik
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Slide credit: Matt Tancik
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NeRF Project Part 1

• Fit a Neural Network to a single image

• Implement this network, and Positional Embedding (PE) and reconstruct 

an image:



Coordinate-based MLPs can replace any low-dimensional array

3D Shape 3D MRI 3D NeRF

W
it

h
o

u
t 

En
co

d
in

g
W

it
h

 E
n

co
d

in
g

Slide credit: Matt Tancik



NeRF (Naive) NeRF (with positional encoding)

NeRF with and without positional encoding

Slide credit: Matt Tancik



NeRF Network Architecture

Next section you will implement this:



Let’s go back to 3D

Volumetric 3D 
Representation 𝜽

Differentiable
Volumetric Rendering

Rendered Image: 
I’

“Training” Objective (aka Analysis-by-Synthesis):

Rendered Image: 
I’

Observed Image: 
Imin

𝜃
 − 2 

Now we need to render an image from 

this 3D representation in a differentiable 

manner



Differentiable Volumetric 
Rendering



A Precursor: Multi-plane Images

Zou et al. Stereo Magnification, SIGGRAPH 2018



Multi-
plane 
Camera at 
Disney

https://www.youtube.c
om/watch?v=YdHTlUG
N1zw

https://www.youtube.com/watch?v=YdHTlUGN1zw
https://www.youtube.com/watch?v=YdHTlUGN1zw
https://www.youtube.com/watch?v=YdHTlUGN1zw
https://www.youtube.com/watch?v=YdHTlUGN1zw
https://www.youtube.com/watch?v=YdHTlUGN1zw
https://www.youtube.com/watch?v=YdHTlUGN1zw
https://www.youtube.com/watch?v=YdHTlUGN1zw


Generating an Image MPI

Zou et al. Stereo Magnification, SIGGRAPH 2018

To render a novel view:

1. Homography warp the image from 

the new viewpoint

2. Alpha Blend each layer



Sample Novel View Synthesis with a MPI

Single-view view synthesis with multiplane images, Tucker and Snavely CVPR 2020



Alpha Blending

𝐼 =

(𝐶𝑎, 𝛼𝑎)

(𝐶𝑏, 𝛼𝑏)
for two image case, A and B, both 

partially transparent:

𝐶𝑎 𝛼𝑎 + 𝐶𝑏 𝛼𝑏(1 − 𝛼𝑎)

Also called front-to-back compositing or “over” operation

How much light is the previous layer letting through?

General D layer case:

𝐼 =  ෍

𝑖=1

𝐷

𝐶𝑖𝛼𝑖 ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

layer 1

layer 2

layer D



What is missing in MPIs?

• Look at it from the side?? 

• You’ll see all the edges!!

➔ Limited camera mobility

NeRF overcomes this problem, because it’s defined everywhere

Volumetric Rendering behaves similarly to alpha compositing



Back to NeRFs

4
4



Neural Volumetric Rendering
computing color along rays 

through 3D space

What color is this pixel?

Through Volumetric 

Representation 

(No surfaces)!

Lots of slide from here on modified from Ben Mildenhall



Surface vs. volume rendering

46

Ray

Camera Scene 

representation

Want to know how ray interacts with scene



Surface vs. volume rendering

47

Ray

Camera Scene 

representation

?

?

?

?

?

?
?

?

?

?

???
?

?

Surface rendering — loop over geometry, check for ray hits



Surface vs. volume rendering

48

Ray

Camera Scene 

representation

Volume rendering — loop over ray points, query geometry

? ?

?
?

?



Recap: Cameras and rays
• We need the mathematical mapping from 

(camera, pixel) → ray

• Then can abstract underlying problem as 

learning the function ray→ color

4
9

Camera

Ray
Pixel



Compute the Ray

z’c

y’c

x’c

Image Plane

Camera coord frame

(u,v)

Ray

Slide credit: Shree Nayar

3D to 2D:
(point)

2D to 3D:
(ray)

Back projection



A half-pixel offset — add 0.5 to i and j so ray precisely hits pixel center

51

Details:



Want: Ray in the World

• What coordinate space is the current ray in? 

• Convert it to World!

𝐱

𝐑𝐱 + 𝐭



Calculating points along a ray

53

𝐨
𝐝

𝐨 + 𝑡𝐝

Scalar 𝑡 controls distance 

along the ray

In the world coordinate frame:



History of volume rendering

54



In Early computer graphics

Kajiya 1984, Ray Tracing Volume Densities

Chandrasekhar 1950, Radiative Transfer

‣ Theory of volume rendering co-opted from physics in the 1980s: 

absorption, emission, out-scattering/in-scattering

‣ Adapted for visualising medical data and linked with alpha 

compositing

‣ Modern path tracers use sophisticated Monte Carlo methods to 

render volumetric effects

Ray tracing simulated cumulus cloud [Kajiya]

55



Alpha compositing

56

Porter and Duff 1984, Compositing Digital Images

Alpha compositing [Porter and Duff]

‣ Theory of volume rendering co-opted from physics in the 1980s: 

absorption, emission, out-scattering/in-scattering

‣ Alpha rendering developed for digital compositing in VFX 

movie production

‣ Modern path tracers use sophisticated Monte Carlo methods to 

render volumetric effects



Volume rendering for visualization

57

Levoy 1988, Display of Surfaces from Volume Data

Max 1995, Optical Models for Direct Volume Rendering

Kajiya 1984, Ray Tracing Volume Densities

Chandrasekhar 1950, Radiative Transfer

Porter and Duff 1984, Compositing Digital Images

‣ Theory of volume rendering co-opted from physics in the 1980s: 

absorption, emission, out-scattering/in-scattering

‣ Alpha rendering developed for digital compositing in VFX 

movie production

‣ Volume rendering applied to visualise 3D medical scan data in 

1990s 

Medical data visualisation [Levoy]



Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://wikipedia.org

Scattering Emission

59



Simplify

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://wikipedia.org

Scattering Emission

60



Volume rendering derivations

61



Volumetric formulation for NeRF

62

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



Volumetric formulation for NeRF

at a point on the ray r(𝑡) , we can query color 𝒄(𝑡) and density 𝜎 𝑡

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡

𝐜 𝑡 , 𝜎(𝑡)

How to integrate all the info along the ray to get a color per ray? 



Idea: Expected Color

• Pose probabilistically.

• Each point on the ray has a probability to be the first “hit” : 𝑃[𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡]

• Color per ray = Expected value of color with this probability of first ”hit”

𝒄 𝒓 =  න
𝑡0

𝑡1

𝑃 𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡 𝒄 𝑡 𝑑𝑡
for a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

≈  ෍

𝑡=0

𝑇

𝑃 𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡 𝒄(𝑡) 

≈  ෍

𝑡=0

𝑇

𝑤𝑡𝒄(𝑡) 

𝑡𝑁

𝐜𝑖 , 𝜎𝑖

𝑡𝑖



for a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

Differentiable Volumetric Rendering Formula

3D volume

𝑡1

𝑡𝑁

Camera

𝐜 ≈ Σ
𝑖=1

𝑛

𝑤𝑖𝐜𝑖 =  ∑
𝑖=1

𝑛

𝑇𝑖𝛼𝑖𝐜𝑖

Ray

colors

weights

𝑇𝑖 = ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖)

𝑡𝑛+1

𝑡1 𝑇𝑖

𝛼𝑖

𝑡𝑖

differentiable w.r.t. 𝐜, 𝜎

66



for a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

Summary

3D volume

𝑡1

𝑡𝑁

Camera

𝐜 ≈ Σ
𝑖=1

𝑛

𝑤𝑖𝐜𝑖 =  ∑
𝑖=1

𝑛

𝑇𝑖𝛼𝑖𝐜𝑖

Ray

colors

weights

𝑇𝑖 = ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖)

𝑡𝑛+1

𝑡1 𝑇𝑖

𝛼𝑖

𝑡𝑖

differentiable w.r.t. 𝐜, 𝜎

67



Complete derivation

• If you want a complete derivation of the volrend equation, see this 
https://drive.google.com/file/d/1QsCK5V0d6DSc0QGcKsV97u83JFd
-dFoz/view

• From slide 35

• Or https://arxiv.org/pdf/2209.02417

https://drive.google.com/file/d/1QsCK5V0d6DSc0QGcKsV97u83JFd-dFoz/view
https://drive.google.com/file/d/1QsCK5V0d6DSc0QGcKsV97u83JFd-dFoz/view
https://drive.google.com/file/d/1QsCK5V0d6DSc0QGcKsV97u83JFd-dFoz/view
https://arxiv.org/pdf/2209.02417


69

3D volume

𝑡𝑁

Camera

Ray

69

Visual intuition: rendering weights is specific 
to a ray

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!



70

3D volume

𝑡𝑁

Camera

Ray

70

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

Visual intuition: rendering weights is specific 
to a ray



Rendering weight PDF is important

Remember, expected color is equal to

∫ 𝑇 𝑡 𝜎 𝑡 𝐜 𝑡 𝑑𝑡 ≈ ෍ 𝑇𝑖𝛼𝑖𝐜𝑖

𝑖

= ෍ 𝑤𝑖𝐜𝑖

𝑖

𝑇(𝑡)𝜎(𝑡) and 𝑇𝑖𝛼𝑖 are “rendering weights” — probability distribution along the ray 

(continuous and discrete, respectively)

You can also render entities other than color in 3D, for example it’s depth, or any 

other N-D vector 𝒗𝑖

Volume rendered ”feature” = ∑ 𝑤𝑖𝒗𝑖
𝑖



Rendering weight PDF is important — depth

72

We can use this distribution to compute expectations for other quantities, e.g. 

“expected depth”:

𝑡 = ∑
𝑖

𝑇𝑖𝛼𝑖𝑡𝑖

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.



Rendering weight PDF is important — depth

73

Mean depth Median depth



Rendering weight PDF is important — depth

74

Mean depth Median depth



Volume rendering other quantities

75

This idea can be used for any quantity we want to “volume render” into a 2D image. If 𝐯 lives 

in 3D space (semantic features, normal vectors, etc.)

∑
𝑖

𝑇𝑖𝛼𝑖𝐯𝑖

can be taken per-ray to produce 2D output images.



Volume Rendering CLIP features

LERF: Language Embedded Radiance Fields, Kerr* and Kim* et al. ICCV 2023



Density as geometry

78

Normal vectors (from analytic gradient of density)



Alpha mattes and compositing

79



Alpha mattes and compositing

80



Alpha mattes and compositing

81



Alpha mattes and compositing

82

Mildenhall*, Srinivasan*, Tancik* et al 2020, NeRF

Poole et al 2022, DreamFusion

Tang et al 2022, Compressible-composable NeRF via Rank-residual Decomposition



83

Previous Papers

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction via 

Differentiable Ray Consistency

Differentiable ray consistency work used a forward 

model with “probabilistic occupancy” to supervise 

3D-from-single-image prediction.

Same rendering model as alpha compositing!



Similar Ideas before NeRF

84

Neural Volumes 
(Lombardi et al. 2019)
Direct gradient descent to optimize an RGBA volume, 
regularized by a 3D CNN

Multiplane image methods

Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries… (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View… (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D 
CNN, big RGBA 3D volume comes out
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