
Neural Radiance Fields pt 3

CS180/280A: Intro to Computer Vision and Computational Photography

Angjoo Kanazawa and Alexei Efros

UC Berkeley Fall 2025

Lots of content from Noah Snavely and Ben

Mildenhall, Pratul Srinivasan, and Matt Tancik from

ECCV 2022 Tutorial on Neural Volumetric Rendering

for Computer Vision

made with

https://sites.google.com/berkeley.edu/nerf-tutorial/home?pli=1
https://sites.google.com/berkeley.edu/nerf-tutorial/home?pli=1

Angjoo Kanazawa

Perceiving the 4D World

BAIR/PhD Visit Day!
March 9 2025

Where we are

Volumetric 3D
Representation 𝜽

Differentiable
Volumetric Rendering

Rendered Image:
I’

“Training” Objective (aka Analysis-by-Synthesis):

Rendered Image:
I’

Observed Image:
Imin

𝜃
 − 2

Now we need to render an image from

this 3D representation in a differentiable

manner

A Precursor: Multi-plane Images

Zou et al. Stereo Magnification, SIGGRAPH 2018

Alpha Blending

𝐼 =

(𝐶𝑎, 𝛼𝑎)

(𝐶𝑏, 𝛼𝑏)
for two image case, A and B, both

partially transparent:

𝐶𝑎 𝛼𝑎 + 𝐶𝑏 𝛼𝑏(1 − 𝛼𝑎)

Also called front-to-back compositing or “over” operation

How much light is the previous layer letting through?

General D layer case:

𝐼 = ෍

𝑖=1

𝐷

𝐶𝑖𝛼𝑖 ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

layer 1

layer 2

layer D

Volumetric formulation for NeRF

6

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral

Volumetric formulation for NeRF

at a point on the ray r(𝑡) , we can query color 𝒄(𝑡) and density 𝜎 𝑡

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡

𝐜 𝑡 , 𝜎(𝑡)

How to integrate all the info along the ray to get a color per ray?

Idea: Expected Color

• Pose probabilistically.

• Each point on the ray has a probability to be the first “hit” : 𝑃[𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡]

• Color per ray = Expected value of color with this probability of first ”hit”

𝒄 𝒓 = න
𝑡0

𝑡1

𝑃 𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡 𝒄 𝑡 𝑑𝑡
for a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

≈ ෍

𝑡=0

𝑇

𝑃 𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡 𝒄(𝑡)

≈ ෍

𝑡=0

𝑇

𝑤𝑡𝒄(𝑡)

𝑡𝑁

𝐜𝑖 , 𝜎𝑖

𝑡𝑖

= ∑
𝑖=1

𝑛

𝑇𝑖𝛼𝑖𝐜𝑖 𝑇𝑖 = ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗) 𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖)where

for a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

Differentiable Volumetric Rendering Formula

3D volume

𝑡1

𝑡𝑁

Camera

𝐜 ≈ Σ
𝑖=1

𝑛

𝑤𝑖𝐜𝑖 = ∑
𝑖=1

𝑛

𝑇𝑖𝛼𝑖𝐜𝑖

Ray

colors

weights

𝑇𝑖 = ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖)

𝑡𝑛+1

𝑡1 𝑇𝑖

𝛼𝑖

𝑡𝑖

differentiable w.r.t. 𝐜, 𝜎

9Delta is the length of each segment: 𝛿𝑖 = 𝑡𝑖+1 − 𝑡𝑖

10

3D volume

𝑡𝑁

Camera

Ray

10

Visual intuition: rendering weights is specific
to a ray

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

11

3D volume

𝑡𝑁

Camera

Ray

11

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

Visual intuition: rendering weights is specific
to a ray

What’s the point

• Remember, for each pixel or a ray we render a color with this formula
based on the Volumetric 3D Representation

• We use this to supervise the 3D Representation (sigma, RGB volume)

Volumetric 3D Representation 𝜽
Differentiable

Volumetric Rendering

Rendered Image:
I’

“Training” Objective (aka Analysis-by-Synthesis):

Rendered Image:
I’

Observed Image:
Imin

𝜃
 − 2

39

Connection to alpha compositing

Expected Color = ∑
𝑖=1

𝑛

𝑇𝑖𝐜𝑖(1 − exp(−𝜎𝑖𝛿𝑖))

𝑇𝑖 = exp − ∑
𝑗=1

𝑖−1

𝜎𝑗𝛿𝑗where

segment

opacity 𝛼𝑖

= ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

ෑ

𝑖

exp 𝑥𝑖 = exp(෍

𝑖

𝑥𝑖)

𝛼𝑖 = 1 − exp(𝜎𝑖𝛿𝑖)
1 − 𝛼𝑖 = −exp(𝜎𝑖𝛿𝑖)

Expected Color = ∑
𝑖=1

𝑛

𝑇𝑖𝐜𝑖𝛼𝑖

for a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

Summary

3D volume

𝑡1

𝑡𝑁

Camera

𝐜 ≈ Σ
𝑖=1

𝑛

𝑤𝑖𝐜𝑖 = ∑
𝑖=1

𝑛

𝑇𝑖𝛼𝑖𝐜𝑖

Ray

colors

weights

𝑇𝑖 = ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖)

𝑡𝑛+1

𝑡1 𝑇𝑖

𝛼𝑖

𝑡𝑖

differentiable w.r.t. 𝐜, 𝜎

Alpha mattes and compositing

41

Alpha mattes and compositing

42

Alpha mattes and compositing

43

Alpha mattes and compositing

44

Mildenhall*, Srinivasan*, Tancik* et al 2020, NeRF

Poole et al 2022, DreamFusion

Tang et al 2022, Compressible-composable NeRF via Rank-residual Decomposition

Rendering weight PDF is important

Remember, expected color is equal to

∫ 𝑇 𝑡 𝜎 𝑡 𝐜 𝑡 𝑑𝑡 ≈ ෍ 𝑇𝑖𝛼𝑖𝐜𝑖

𝑖

= ෍ 𝑤𝑖𝐜𝑖

𝑖

𝑇(𝑡)𝜎(𝑡) and 𝑇𝑖𝛼𝑖 are “rendering weights” — probability distribution along the ray

(continuous and discrete, respectively)

You can also render entities other than color in 3D, for example it’s depth, or any

other N-D vector 𝒗𝑖

Volume rendered ”feature” = ∑ 𝑤𝑖𝒗𝑖
𝑖

Rendering weight PDF is important — depth

46

We can use this distribution to compute expectations for other quantities, e.g.

“expected depth”:

𝑡 = ∑
𝑖

𝑇𝑖𝛼𝑖𝑡𝑖

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.

Rendering weight PDF is important — depth

47

Mean depth Median depth

Volume rendering other quantities

48

This idea can be used for any quantity we want to “volume render” into a 2D image. If 𝐯 lives

in 3D space (semantic features, normal vectors, etc.)

∑
𝑖

𝑇𝑖𝛼𝑖𝐯𝑖

can be taken per-ray to produce 2D output images.

Volume Rendering CLIP features

LERF: Language Embedded Radiance Fields, Kerr* and Kim* et al. ICCV 2023

Density as geometry

51

Normal vectors (from analytic gradient of density)

52

Previous Papers

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction via

Differentiable Ray Consistency

Differentiable ray consistency work used a forward

model with “probabilistic occupancy” to supervise

3D-from-single-image prediction.

Same rendering model as alpha compositing!

Similar Ideas before NeRF

53

Neural Volumes
(Lombardi et al. 2019)
Direct gradient descent to optimize an RGBA volume,
regularized by a 3D CNN

Multiplane image methods

Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries… (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View… (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D
CNN, big RGBA 3D volume comes out

Signal Processing Consideration
in NeRFs

What is this process?

3D volume

𝑡𝑁

Camera

Ray

mip NeRF

What is happening here?

Naïve (original) NeRF

Slide Credit: Pratul Srinivasan

Aliasing!!

Where to place samples along rays?

3D volume

𝑡𝑁

Camera

Ray

How to be more efficient than dense sampling?

3D volume

𝑡𝑁

Camera

Ray

How to be more efficient than dense sampling?

3D volume

𝑡𝑁

Camera

Ray

Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling

Iteratively use samples from NeRF to more
efficiently sample visible scene content

Acceleration Structures

Distill/cache properties of NeRF into a structure that

helps generate samples: e.g. Occupancy Grids

Straightforward compute —> storage tradeoff

𝑡𝑁

Hierarchical ray sampling

63
63

Key Idea: sample points proportionally to expected
effect on final rendering

𝑡𝑁

3D volume

Camera

Ray

Key Idea: sample points proportionally to expected
effect on final rendering

64

3D volume

𝑡𝑁

Camera

Ray

64

treat weights as probability
distribution for new samples

65

3D volume

𝑡𝑁

Camera

Ray

65

treat weights as probability
distribution for new samples

Key Idea: sample points proportionally to expected
effect on final rendering

Coarse samples (stage 1)

Fine samples (stage 2)

What about aliasing during coarse sampling?

Ray

3D volume

𝑡𝑁

Camera

Ray

What about aliasing during coarse sampling?

Ray

3D volume

𝑡𝑁

Camera

Ray

lost!

Solution: train two NeRFs! —> lower resolution for first “coarse” level

What about aliasing during coarse sampling?

“coarse” 3D volume

𝑡𝑁

Camera

Ray

Solution: train two NeRFs! —> higher resolution for second “fine” level

What about aliasing during coarse sampling?

“fine” 3D volume

𝑡𝑁

Camera

Ray

This strategy is used in the original NeRF paper, you can implement it as an EC.

Further Reading on this Topic

• MipNeRF

• Low-pass filter the positional encoding

• MipNeRF360

• For 360 scenes

• Train a “Proposal Network” instead of Coarse & Fine Networks that tells where
to sample

https://jonbarron.info/mipnerf/
https://jonbarron.info/mipnerf/
https://jonbarron.info/mipnerf360/
https://jonbarron.info/mipnerf360/

Other Advanced Topics

Compression capability of NeRF

• If Image is 256x256x3, why memorize this with a MLP?

• 3 layer MLP with 256 neurons ~ 3*256^2 learnable parameters

• In 3D:

• if there are 100 input images: 100 * 256x256x3 = 19M

• 8 layer MLP with 256 neurons ~ 524K

• Just 3% of what it takes to hold 100 images

• MLP size doesn’t change even if we have 1000 input images

• Trade off?

• SPEED!

Why is NeRF Slow?

For each image
 For each pixel (800, 800)
 For each sample (256)
 Eval NeRF Network

~ 163 million network callsYou have to sample densely in R5

Cache everything?

R5 is a lot to cache

Recall:

We can factorize the location R3 & the view direction R2 !

Idea

1. Factor out view-dependent effects
2. Store density + SH in efficient
data structure (Octree)

Spherical Harmonics PlenOctree =
View-dependent Octree

Spherical Harmonics to model view dependent Color

• Fourier basis on the sphere

𝑠 – point on a unit sphere, s = (𝜑, 𝜃)
𝑘𝑖 - coefficient of i-th basis
𝑦𝑖 𝑠 - SH basis, analytically
computed, as shown on the video

Learn 𝑘𝑖

SH models function on a sphere:

𝑓 𝑠 = ෍

𝑖=0

𝑛2

𝑘𝑖𝑦𝑖(𝑠)

NeRF with Spherical Functions

PlenOctree =
Sparse Voxels + SH coefficients

Only stores nonempty voxels

Yu et al. ICCV 2021

Plenoxel = “Plenoptic Volume Element”

Generalization of PlenOctree – A data structure consisting of Plenoxels Yu et al. CVPR 2022

No MLP required..

Make continuous via tri-linear interpolation

A B

C D

α

β

1-α

1-β

= 𝛽(𝛼𝐴 + (1 − 𝛼𝐵))

+(1 − 𝛽)(𝛼𝐶 + (1 − 𝛼𝐷))

But MLPs are convenient

Feature Grid

MLP

View Direction

Position

Appearance Embedding

Time

InstantNGP
• Hybrid approach

• Grid → hashmap → Feature retrieval

• Pass to a small MLP

• Fast and convenient!

Müller et al. SIGGRAPH 2022

Feature Grid

Hashtable

Feature Grid > Hashmap

Mapping with collisions

Latest: Gaussian Splatting

• Approximate with 3D
Gaussian points

• Rasterize instead of volrend

• Still alpha-blend

• no MLP + SH like plenoxels

Kerbl and Kopanas et al. SIGGRAPH 2023

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

1. Find primitives that affect the pixel

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Rendering a mesh via Rasterization

Rasterization = conversion of

primitives to pixels (details in

CS184)

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Rendering a mesh via Rasterization

Rasterization = conversion of

primitives to pixels (details in

CS184)

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Position 𝐩

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Position 𝐩

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Position 𝐩

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

+ Lots of efficient GPU optimization strategies

Bottom line

• Gaussian Splats still estimate volumetric rendering (same alpha-

compositing, just with gaussians)

• MUCH faster because no sampling, no neural nets, rasterization

• From 30 sec / frame for 800x800 image original NeRF

• Plenoxels/InstantNGP: 10-30FPS 1920x1080 image

• GS: ~100-200+ FPS at 1920×1080

• Best balance of quality and speed – current status quo

104

Camera Quality
Small noise in the camera can be made robust by also optimizing the

camera

Camera

So far we’ve been

optimizing this

Also do backdrop on the

camera parameters

Camera Optimization

Noisy Camera from IMU/Lidar Result with Camera Optimization

Small noise in the results can be improved

Starting from scratch is still an active area of research [Barf Lin et

al. 2021, NeRF— …]

The Dynamic World

TODO better art

Memories of Australia –Andrew S. Hamilton

Holy grail

• Dynamic Novel View Synthesis from Monocular Camera

• Very difficult! Extremely under constrained problem

Todo: add some figure

Simple baseline for adding time

TODO

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙, 𝑡) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹Ω

Hard without simultaneous multiple view!

Through a deformation network

(𝑟, 𝑔, 𝑏, 𝜎)(𝑥, 𝑦, 𝑧)
Camera Coordinate

Frame

(𝑥′, 𝑦′, 𝑧′)
Canonical

Coordinate Frame

Deformation Network NeRF

D-NeRF [Pumarola et al. CVPR 2021], Nerfies [Park et al. ICCV 2021], HyperNeRF, NR-NeRF, etc..

Still very under constrained

Dynamic View Synthesis: Monocular is hard

D-NeRF [Pumarola et al. CVPR 2021], NSFF [Li et al., CVPR 2021],HyperNeRF[Park et al. SIGASia 2021]…..

• But performance on in-the-wild monocular capture still far [Gao et al. NeurIPS 2022]

What if we knew how they deform?

HumanNeRF Weng et al. CVPR 2022

HMMR, Kanazawa et al.

CVPR 2019

Other kinds of dynamic changes

Appearance Changes

Exposure differences

Lighting changes (day, night)..

Clouds passing by..

Nerf-W [Martin-Brualla et al. CVPR 2021]

Appearance Embedding: Pretty Robust

Solution

TODO

Nerf-W [Martin-Brualla et al. CVPR 2021]

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙, v𝑖) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹Ω

N-dim vector

Optimized per image: “Auto-Decoding”

ie GLO: Generative Latent Optimization [Bojanowski et al. ICML 2018]

Appearance Embedding

https://arxiv.org/search/stat?searchtype=author&query=Bojanowski%2C+P

Appearance Changes
Appearance Encoding is Effective

Transient objects

• Happens all the time! People
moving around, interacting with the
world

• Difficult! Problem of Grouping

• how do you know which part is
connected or

• Can use two NeRFs, one global,
one per-image, but this often
leads to degenerate solutions

• Current solution: Ignore (mask out)

Why is dynamic scenes hard?

• Unless you have a light dome

• Essentially you only have a single-view

Building & Reusing

Prior Knowledge

Machine Learning

NeRF is per-scene optimization

• We need lots of images to get good view synthesis!!

• Also there’s no knowledge reused from prior scene reconstructions

• How to bring learning in the picture?

Few-shot NeRF
• One-shot (single-view): pixelNeRF [Yu

et al. CVPR’19]

• Few-shot (3~10 views): pixelNeRF,I
BRNet [Wang et al. CVPR’21], MVSNet
[Chen et al. ICCV’21], etc…

• Challenging for predicting completely
unseen real scenes

IBRNet

• How to deal with the multi-modal

nature of the problem??

Data is the bottleneck

• Large-scale Real-World Multi-view Data is hard to collect:

CO3D [Reizenstein ICCV 2021]

• A lot to learn from other single-view 3D prediction models:

Gkioxari et al. CVPR 2022

https://gkioxari.github.io/

Time Line

NeRF
paper release

(arXiv)

Real-Time
Rendering
PlenOctrees,

FastNeRF, SNeRG,
etc..

March 2021 March 2022March 2020 March 2024March 2023

Fast Training
Plenoxels,

Instant-NGP
etc..

City-scale
BlockNeRF..

Quality & Speed
Gaussian Splatting

Tancik et al. CVPR 2022

Kerbl* and Kopanas* et al.
SIGGRAPH 2023

Yu* and Fridovich* et
al. CVPR 2022
Yu et al. ICCV 2021

Mildenhall*, Srinivasan*, and
Tancik* et al. ECCV 2020

3D Generation
DreamFusion

Poole et al. ICLR 2023

Time Line

NeRF
paper release

(arXiv)

Real-Time
Rendering
PlenOctrees,

FastNeRF, SNeRG,
etc..

March 2021 March 2022March 2020 March 2024March 2023

Fast Training
Plenoxels,

Instant-NGP
etc..

City-scale
BlockNeRF..

Quality & Speed
Gaussian Splatting

3D Generation
DreamFusion

October 2022

Matthew Tancik*, Ethan Weber*, Evonne Ng*, Ruilong Li, Brent Yi, Justin Kerr,
Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja,

David McAllister, Angjoo Kanazawa

A Modular Framework for NeRF Development

+143 additional Github collaborators
SIGGRAPH 2023

Sponsored by

Design Goals

Use
Develop

Learn

Easy to:

An End-to-End Framework

Onboarding Pipelines

• COLMAP

• Polycam

• Record3D

• MetaShape

• RealityCapture

• Kiri Engine

Data Pipelines

Easy to Develop

Pythonic and Modular

Volumetric
Rendering

Fields & EncodersSampling

Easy to Develop

Pythonic and Modular

Volumetric
Rendering

Fields & EncodersSampling

• Uniform

• Occupancy

• PDF

• Proposal

• Spacing Fn

• Positional Encoding

• Fourier Features

• Hash Encoding

• Spherical Harmonics

• Matrix Decomposition

• Fused MLP

• Voxel Grid

• RGB

• RGB-SH

• Depth

• Accumulation

• Normals

Striking the balance between performance & easy development

A ray

Optimized
Cameras

NeRF Field

Dict Encoding
+

Fused MLP

Appearance Embedding

RGB,
density

Current Model

Scene Contraction

Proposal Sampler

Dict Encoding
+

Fused MLP

Proposal Sampler

Dict Encoding
+

Fused MLP

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

(X, Y, Z,
theta, phi)

mip-NeRF 360, NeRF-W,
NeRF--/BaRF, InstantNGP

Nerfacto

An Active Discord Community

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)
Nerfacto

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)
Nerfacto-huge

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

Custom Interactivity

Viewer

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

Custom Interactivity

self.checkbox = ViewerCheckbox(name="Checkbox", default_value=False)

current_value = self.checkbox.value

…

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

Coming Soon: Viser Integration
Python library for web-based 3D visualization

Shareable Links Mobile Support

viser.studio

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

Coming Soon: Viser Integration
Python library for web-based 3D visualization

Shareable Links Mobile Support

viser.studio

Export
Options

Geometry Conversion

Point CloudNeRF

Camera Effects

VFX: Blender Integration

Grade eterna

Grade eterna

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

Custom Interactivity

	Default Section
	Slide 1: Neural Radiance Fields pt 3
	Slide 2: Perceiving the 4D World

	Volumetric Rendering
	Slide 3: Where we are
	Slide 4: A Precursor: Multi-plane Images
	Slide 5: Alpha Blending
	Slide 6: Volumetric formulation for NeRF
	Slide 7: Volumetric formulation for NeRF
	Slide 8: Idea: Expected Color
	Slide 9: Differentiable Volumetric Rendering Formula
	Slide 10: Visual intuition: rendering weights is specific to a ray
	Slide 11: Visual intuition: rendering weights is specific to a ray
	Slide 12: What’s the point

	Untitled Section
	Slide 39: Connection to alpha compositing
	Slide 40: Summary
	Slide 41: Alpha mattes and compositing
	Slide 42: Alpha mattes and compositing
	Slide 43: Alpha mattes and compositing
	Slide 44: Alpha mattes and compositing
	Slide 45: Rendering weight PDF is important
	Slide 46: Rendering weight PDF is important — depth
	Slide 47: Rendering weight PDF is important — depth
	Slide 48: Volume rendering other quantities
	Slide 49: Volume Rendering CLIP features
	Slide 51: Density as geometry
	Slide 52: Previous Papers
	Slide 53: Similar Ideas before NeRF

	Sampling
	Slide 54: Signal Processing Consideration in NeRFs
	Slide 55: What is this process?
	Slide 56: What is happening here?
	Slide 57: Where to place samples along rays?
	Slide 58: How to be more efficient than dense sampling?
	Slide 59: How to be more efficient than dense sampling?
	Slide 60: Hierarchical Sampling vs. Acceleration Structures
	Slide 61: Hierarchical Sampling vs. Acceleration Structures
	Slide 62: Hierarchical ray sampling
	Slide 63: Key Idea: sample points proportionally to expected effect on final rendering
	Slide 64: Key Idea: sample points proportionally to expected effect on final rendering
	Slide 65: Key Idea: sample points proportionally to expected effect on final rendering
	Slide 66: What about aliasing during coarse sampling?
	Slide 67: What about aliasing during coarse sampling?
	Slide 68: What about aliasing during coarse sampling?
	Slide 69: What about aliasing during coarse sampling?
	Slide 70: Further Reading on this Topic

	Advanced
	Slide 71: Other Advanced Topics
	Slide 72: Compression capability of NeRF
	Slide 73: Why is NeRF Slow?
	Slide 74: Cache everything?
	Slide 75: Recall:
	Slide 76: Idea
	Slide 77: Spherical Harmonics to model view dependent Color
	Slide 78: NeRF with Spherical Functions
	Slide 79: PlenOctree = Sparse Voxels + SH coefficients
	Slide 80: Plenoxel = “Plenoptic Volume Element”
	Slide 81: No MLP required..
	Slide 82: Make continuous via tri-linear interpolation
	Slide 83
	Slide 84: But MLPs are convenient
	Slide 85: InstantNGP
	Slide 86: Latest: Gaussian Splatting
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Rendering a mesh via Rasterization
	Slide 92: Rendering a mesh via Rasterization
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 100
	Slide 101
	Slide 102
	Slide 103: Bottom line
	Slide 104
	Slide 105: Camera Quality
	Slide 106
	Slide 107: Camera Optimization
	Slide 108: The Dynamic World
	Slide 109: Holy grail
	Slide 110: Simple baseline for adding time
	Slide 111: Through a deformation network
	Slide 112: Dynamic View Synthesis: Monocular is hard
	Slide 113: What if we knew how they deform?
	Slide 114: Other kinds of dynamic changes
	Slide 115: Appearance Changes
	Slide 116: Appearance Embedding: Pretty Robust Solution
	Slide 117: Appearance Changes
	Slide 118: Transient objects
	Slide 119: Why is dynamic scenes hard?
	Slide 120: Building & Reusing Prior Knowledge
	Slide 121: NeRF is per-scene optimization
	Slide 122: Few-shot NeRF
	Slide 123: Data is the bottleneck
	Slide 124: Time Line
	Slide 125: Time Line
	Slide 126
	Slide 127: Design Goals
	Slide 128: An End-to-End Framework
	Slide 129
	Slide 130
	Slide 131
	Slide 132: Easy to Develop
	Slide 133: Easy to Develop
	Slide 134
	Slide 135: An Active Discord Community
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141: Viewer
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147: Export Options
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154

