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Where we are

Volumetric 3D 
Representation 𝜽

Differentiable
Volumetric Rendering

Rendered Image: 
I’

“Training” Objective (aka Analysis-by-Synthesis):

Rendered Image: 
I’

Observed Image: 
Imin

𝜃
 − 2 

Now we need to render an image from 

this 3D representation in a differentiable 

manner



A Precursor: Multi-plane Images

Zou et al. Stereo Magnification, SIGGRAPH 2018



Alpha Blending

𝐼 =

(𝐶𝑎, 𝛼𝑎)

(𝐶𝑏, 𝛼𝑏)
for two image case, A and B, both 

partially transparent:

𝐶𝑎 𝛼𝑎 + 𝐶𝑏 𝛼𝑏(1 − 𝛼𝑎)

Also called front-to-back compositing or “over” operation

How much light is the previous layer letting through?

General D layer case:

𝐼 =  ෍

𝑖=1

𝐷

𝐶𝑖𝛼𝑖 ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

layer 1

layer 2

layer D



Volumetric formulation for NeRF
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Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



Volumetric formulation for NeRF

at a point on the ray r(𝑡) , we can query color 𝒄(𝑡) and density 𝜎 𝑡

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡

𝐜 𝑡 , 𝜎(𝑡)

How to integrate all the info along the ray to get a color per ray? 



Idea: Expected Color

• Pose probabilistically.

• Each point on the ray has a probability to be the first “hit” : 𝑃[𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡]

• Color per ray = Expected value of color with this probability of first ”hit”

𝒄 𝒓 =  න
𝑡0

𝑡1

𝑃 𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡 𝒄 𝑡 𝑑𝑡
for a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

≈  ෍

𝑡=0

𝑇

𝑃 𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡 𝒄(𝑡) 

≈  ෍

𝑡=0

𝑇

𝑤𝑡𝒄(𝑡) 

𝑡𝑁

𝐜𝑖 , 𝜎𝑖

𝑡𝑖

=  ∑
𝑖=1

𝑛

𝑇𝑖𝛼𝑖𝐜𝑖 𝑇𝑖 = ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗) 𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖)where



for a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

Differentiable Volumetric Rendering Formula

3D volume

𝑡1

𝑡𝑁

Camera

𝐜 ≈ Σ
𝑖=1

𝑛

𝑤𝑖𝐜𝑖 =  ∑
𝑖=1

𝑛

𝑇𝑖𝛼𝑖𝐜𝑖

Ray

colors

weights

𝑇𝑖 = ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖)

𝑡𝑛+1

𝑡1 𝑇𝑖

𝛼𝑖

𝑡𝑖

differentiable w.r.t. 𝐜, 𝜎

9Delta is the length of each segment: 𝛿𝑖 = 𝑡𝑖+1 − 𝑡𝑖
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3D volume

𝑡𝑁

Camera

Ray

10

Visual intuition: rendering weights is specific 
to a ray

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!
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3D volume

𝑡𝑁

Camera

Ray

11

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

Visual intuition: rendering weights is specific 
to a ray



What’s the point

• Remember, for each pixel or a ray we render a color with this formula 
based on the Volumetric 3D Representation

• We use this to supervise the 3D Representation (sigma, RGB volume)

Volumetric 3D Representation 𝜽
Differentiable

Volumetric Rendering

Rendered Image: 
I’

“Training” Objective (aka Analysis-by-Synthesis):

Rendered Image: 
I’

Observed Image: 
Imin

𝜃
 − 2 
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Connection to alpha compositing

Expected Color = ∑
𝑖=1

𝑛

𝑇𝑖𝐜𝑖(1 − exp(−𝜎𝑖𝛿𝑖))

𝑇𝑖 = exp − ∑
𝑗=1

𝑖−1

𝜎𝑗𝛿𝑗where

segment 

opacity 𝛼𝑖

= ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

ෑ

𝑖

exp 𝑥𝑖 = exp(෍

𝑖

𝑥𝑖)

𝛼𝑖 = 1 − exp(𝜎𝑖𝛿𝑖)
1 − 𝛼𝑖 = −exp(𝜎𝑖𝛿𝑖)

Expected Color = ∑
𝑖=1

𝑛

𝑇𝑖𝐜𝑖𝛼𝑖



for a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

Summary

3D volume

𝑡1

𝑡𝑁

Camera

𝐜 ≈ Σ
𝑖=1

𝑛

𝑤𝑖𝐜𝑖 =  ∑
𝑖=1

𝑛

𝑇𝑖𝛼𝑖𝐜𝑖

Ray

colors

weights

𝑇𝑖 = ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖)

𝑡𝑛+1

𝑡1 𝑇𝑖

𝛼𝑖

𝑡𝑖

differentiable w.r.t. 𝐜, 𝜎



Alpha mattes and compositing
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Alpha mattes and compositing
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Alpha mattes and compositing
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Alpha mattes and compositing

44

Mildenhall*, Srinivasan*, Tancik* et al 2020, NeRF

Poole et al 2022, DreamFusion

Tang et al 2022, Compressible-composable NeRF via Rank-residual Decomposition



Rendering weight PDF is important

Remember, expected color is equal to

∫ 𝑇 𝑡 𝜎 𝑡 𝐜 𝑡 𝑑𝑡 ≈ ෍ 𝑇𝑖𝛼𝑖𝐜𝑖

𝑖

= ෍ 𝑤𝑖𝐜𝑖

𝑖

𝑇(𝑡)𝜎(𝑡) and 𝑇𝑖𝛼𝑖 are “rendering weights” — probability distribution along the ray 

(continuous and discrete, respectively)

You can also render entities other than color in 3D, for example it’s depth, or any 

other N-D vector 𝒗𝑖

Volume rendered ”feature” = ∑ 𝑤𝑖𝒗𝑖
𝑖



Rendering weight PDF is important — depth

46

We can use this distribution to compute expectations for other quantities, e.g. 

“expected depth”:

𝑡 = ∑
𝑖

𝑇𝑖𝛼𝑖𝑡𝑖

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.



Rendering weight PDF is important — depth

47

Mean depth Median depth



Volume rendering other quantities

48

This idea can be used for any quantity we want to “volume render” into a 2D image. If 𝐯 lives 

in 3D space (semantic features, normal vectors, etc.)

∑
𝑖

𝑇𝑖𝛼𝑖𝐯𝑖

can be taken per-ray to produce 2D output images.



Volume Rendering CLIP features

LERF: Language Embedded Radiance Fields, Kerr* and Kim* et al. ICCV 2023



Density as geometry

51

Normal vectors (from analytic gradient of density)
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Previous Papers

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction via 

Differentiable Ray Consistency

Differentiable ray consistency work used a forward 

model with “probabilistic occupancy” to supervise 

3D-from-single-image prediction.

Same rendering model as alpha compositing!



Similar Ideas before NeRF

53

Neural Volumes 
(Lombardi et al. 2019)
Direct gradient descent to optimize an RGBA volume, 
regularized by a 3D CNN

Multiplane image methods

Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries… (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View… (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D 
CNN, big RGBA 3D volume comes out



Signal Processing Consideration 
in NeRFs



What is this process?

3D volume

𝑡𝑁

Camera

Ray



mip NeRF

What is happening here?

Naïve (original) NeRF

Slide Credit: Pratul Srinivasan

Aliasing!!



Where to place samples along rays?

3D volume

𝑡𝑁

Camera

Ray



How to be more efficient than dense sampling?

3D volume

𝑡𝑁

Camera

Ray



How to be more efficient than dense sampling?

3D volume

𝑡𝑁

Camera

Ray



Hierarchical Sampling vs. Acceleration Structures



Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling

Iteratively use samples from NeRF to more 
efficiently sample visible scene content

Acceleration Structures

Distill/cache properties of NeRF into a structure that 

helps generate samples: e.g. Occupancy Grids

Straightforward compute —> storage tradeoff

𝑡𝑁



Hierarchical ray sampling
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Key Idea: sample points proportionally to expected 
effect on final rendering

𝑡𝑁

3D volume

Camera

Ray



Key Idea: sample points proportionally to expected 
effect on final rendering

64

3D volume

𝑡𝑁

Camera

Ray

64

treat weights as probability 
distribution for new samples
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3D volume

𝑡𝑁

Camera

Ray

65

treat weights as probability 
distribution for new samples

Key Idea: sample points proportionally to expected 
effect on final rendering

Coarse samples (stage 1)

Fine samples (stage 2)



What about aliasing during coarse sampling?

Ray

3D volume

𝑡𝑁

Camera

Ray



What about aliasing during coarse sampling?

Ray

3D volume

𝑡𝑁

Camera

Ray

lost!



Solution: train two NeRFs! —> lower resolution for first “coarse” level

What about aliasing during coarse sampling?

“coarse” 3D volume

𝑡𝑁

Camera

Ray



Solution: train two NeRFs! —> higher resolution for second “fine” level

What about aliasing during coarse sampling?

“fine” 3D volume

𝑡𝑁

Camera

Ray

This strategy is used in the original NeRF paper, you can implement it as an EC.



Further Reading on this Topic

• MipNeRF

• Low-pass filter the positional encoding

• MipNeRF360

• For 360 scenes

• Train a “Proposal Network” instead of Coarse & Fine Networks that tells where 
to sample

https://jonbarron.info/mipnerf/
https://jonbarron.info/mipnerf/
https://jonbarron.info/mipnerf360/
https://jonbarron.info/mipnerf360/


Other Advanced Topics



Compression capability of NeRF

• If Image is 256x256x3, why memorize this with a MLP?

• 3 layer MLP with 256 neurons ~ 3*256^2 learnable parameters

• In 3D:

• if there are 100 input images: 100 * 256x256x3 = 19M

• 8 layer MLP with 256 neurons ~ 524K

• Just 3% of what it takes to hold 100 images

• MLP size doesn’t change even if we have 1000 input images

• Trade off? 

• SPEED!



Why is NeRF Slow? 

For each image
    For each pixel (800, 800)
        For each sample (256)
  Eval NeRF Network

~ 163 million network callsYou have to sample densely in R5



Cache everything?

R5 is a lot to cache



Recall:

We can factorize the location R3 & the view direction R2 !



Idea

1. Factor out view-dependent effects
2. Store density + SH  in efficient 
data structure (Octree)

Spherical Harmonics PlenOctree = 
View-dependent Octree



Spherical Harmonics to model view dependent Color

• Fourier basis on the sphere

𝑠 – point on a unit sphere, s =  (𝜑, 𝜃)
𝑘𝑖  - coefficient of i-th basis
𝑦𝑖 𝑠  - SH basis, analytically 
computed, as shown on the video

Learn 𝑘𝑖  

SH models function on a sphere: 

𝑓 𝑠 =  ෍

𝑖=0

𝑛2

𝑘𝑖𝑦𝑖(𝑠)



NeRF with Spherical Functions



PlenOctree = 
Sparse Voxels + SH coefficients

Only stores nonempty voxels

Yu et al. ICCV 2021



Plenoxel = “Plenoptic Volume Element”

Generalization of PlenOctree – A data structure consisting of Plenoxels Yu et al. CVPR 2022



No MLP required..



Make continuous via tri-linear interpolation

A B

C D

α

β

1-α

1-β

= 𝛽(𝛼𝐴 + (1 − 𝛼𝐵))

+(1 − 𝛽)(𝛼𝐶 + (1 − 𝛼𝐷))





But MLPs are convenient

Feature Grid

MLP

View Direction

Position

Appearance Embedding

Time



InstantNGP
• Hybrid approach

• Grid → hashmap → Feature retrieval

• Pass to a small MLP

• Fast and convenient!

Müller et al. SIGGRAPH 2022

Feature Grid

Hashtable

Feature Grid > Hashmap

Mapping with collisions



Latest: Gaussian Splatting

• Approximate with 3D 
Gaussian points

• Rasterize instead of volrend

• Still alpha-blend

• no MLP + SH like plenoxels

Kerbl and Kopanas et al. SIGGRAPH 2023



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

1. Find primitives that affect the pixel



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Rendering a mesh via Rasterization

Rasterization = conversion of 

primitives to pixels (details in 

CS184)



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Rendering a mesh via Rasterization

Rasterization = conversion of 

primitives to pixels (details in 

CS184)



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Position 𝐩



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Position 𝐩



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

Position 𝐩



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani



Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

+ Lots of efficient GPU optimization strategies



Bottom line

• Gaussian Splats still estimate volumetric rendering (same alpha-

compositing, just with gaussians)

• MUCH faster because no sampling, no neural nets, rasterization

• From 30 sec / frame for 800x800 image original NeRF

• Plenoxels/InstantNGP: 10-30FPS 1920x1080 image

• GS: ~100-200+ FPS at 1920×1080

• Best balance of quality and speed – current status quo
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Camera Quality
Small noise in the camera can be made robust by also optimizing the 

camera

Camera

So far we’ve been 

optimizing this

Also do backdrop on the 

camera parameters





Camera Optimization

Noisy Camera from IMU/Lidar Result with Camera Optimization

Small noise in the results can be improved

Starting from scratch is still an active area of research [Barf Lin et 

al. 2021, NeRF— … ]



The Dynamic World

TODO better art

Memories of Australia –Andrew S. Hamilton



Holy grail

• Dynamic Novel View Synthesis from Monocular Camera

• Very difficult! Extremely under constrained problem

Todo: add some figure 



Simple baseline for adding time

TODO

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙, 𝑡) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹Ω

Hard without simultaneous multiple view!



Through a deformation network

(𝑟, 𝑔, 𝑏, 𝜎)(𝑥, 𝑦, 𝑧)
Camera Coordinate 

Frame

(𝑥′, 𝑦′, 𝑧′)
Canonical 

Coordinate Frame

Deformation Network NeRF

D-NeRF [Pumarola et al. CVPR 2021], Nerfies [Park et al. ICCV 2021], HyperNeRF, NR-NeRF, etc.. 

Still very under constrained



Dynamic View Synthesis: Monocular is hard

D-NeRF [Pumarola et al. CVPR 2021], NSFF [Li et al., CVPR 2021],HyperNeRF[Park et al. SIGASia 2021]…..

• But performance on in-the-wild monocular capture still far [Gao et al. NeurIPS 2022]



What if we knew how they deform? 

HumanNeRF Weng et al. CVPR 2022

HMMR, Kanazawa et al. 

CVPR 2019



Other kinds of dynamic changes



Appearance Changes

Exposure differences

Lighting changes (day, night)..

Clouds passing by.. 

Nerf-W [Martin-Brualla et al. CVPR 2021] 



Appearance Embedding: Pretty Robust 

Solution

TODO

Nerf-W [Martin-Brualla et al. CVPR 2021] 

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙, v𝑖) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹Ω

N-dim vector

Optimized per image: “Auto-Decoding” 

ie GLO: Generative Latent Optimization [Bojanowski et al. ICML 2018] 

Appearance Embedding

https://arxiv.org/search/stat?searchtype=author&query=Bojanowski%2C+P


Appearance Changes
Appearance Encoding is Effective 



Transient objects

• Happens all the time! People 
moving around, interacting with the 
world

• Difficult! Problem of Grouping 

• how do you know which part is 
connected or 

• Can use two NeRFs, one global, 
one per-image, but this often 
leads to degenerate solutions

• Current solution: Ignore (mask out)



Why is dynamic scenes hard?

• Unless you have a light dome

• Essentially you only have a single-view



Building & Reusing 

Prior Knowledge

Machine Learning



NeRF is per-scene optimization

• We need lots of images to get good view synthesis!!

• Also there’s no knowledge reused from prior scene reconstructions

• How to bring learning in the picture?



Few-shot NeRF
• One-shot (single-view): pixelNeRF [Yu 

et al. CVPR’19]

• Few-shot (3~10 views): pixelNeRF,I 
BRNet [Wang et al. CVPR’21], MVSNet 
[Chen et al. ICCV’21], etc…

• Challenging for predicting completely 
unseen real scenes

IBRNet

• How to deal with the multi-modal 

nature of the problem??



Data is the bottleneck

• Large-scale Real-World Multi-view Data is hard to collect: 

CO3D [Reizenstein ICCV 2021] 

• A lot to learn from other single-view 3D prediction models:

Gkioxari et al. CVPR 2022

https://gkioxari.github.io/


Time Line

NeRF
paper release 

(arXiv)

Real-Time 
Rendering
PlenOctrees, 

FastNeRF, SNeRG, 
etc..

March 2021 March 2022March 2020 March 2024March 2023

Fast Training
Plenoxels, 

Instant-NGP
etc..

City-scale
BlockNeRF..

Quality & Speed
Gaussian Splatting

Tancik et al. CVPR 2022

Kerbl* and Kopanas* et al. 
SIGGRAPH 2023

Yu* and Fridovich* et 
al. CVPR 2022
Yu et al. ICCV 2021

Mildenhall*, Srinivasan*, and 
Tancik* et al. ECCV 2020

3D Generation
DreamFusion

Poole et al. ICLR 2023



Time Line

NeRF
paper release 

(arXiv)

Real-Time 
Rendering
PlenOctrees, 

FastNeRF, SNeRG, 
etc..

March 2021 March 2022March 2020 March 2024March 2023

Fast Training
Plenoxels, 

Instant-NGP
etc..

City-scale
BlockNeRF..

Quality & Speed
Gaussian Splatting

3D Generation
DreamFusion

October 2022



Matthew Tancik*, Ethan Weber*, Evonne Ng*, Ruilong Li, Brent Yi, Justin Kerr, 
Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, 

David McAllister, Angjoo Kanazawa

A Modular Framework for NeRF Development

+143 additional Github collaborators
SIGGRAPH 2023

Sponsored by



Design Goals

Use
Develop

Learn 

Easy to:



An End-to-End Framework







Onboarding Pipelines

• COLMAP

• Polycam

• Record3D

• MetaShape

• RealityCapture

• Kiri Engine

Data Pipelines



Easy to Develop 

Pythonic and Modular

Volumetric 
Rendering

Fields & EncodersSampling



Easy to Develop 

Pythonic and Modular

Volumetric 
Rendering

Fields & EncodersSampling

• Uniform

• Occupancy

• PDF

• Proposal

• Spacing Fn

• Positional Encoding

• Fourier Features

• Hash Encoding

• Spherical Harmonics

• Matrix Decomposition

• Fused MLP

• Voxel Grid

• RGB

• RGB-SH

• Depth

• Accumulation

• Normals



Striking the balance between performance & easy development

A ray

Optimized
Cameras

NeRF Field

Dict Encoding
+

Fused MLP

Appearance Embedding

RGB, 
density

Current Model

Scene Contraction

Proposal Sampler

Dict Encoding
+

Fused MLP

Proposal Sampler

Dict Encoding
+

Fused MLP

(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

(X, Y, Z, 
theta, phi)

mip-NeRF 360, NeRF-W,
NeRF--/BaRF, InstantNGP

Nerfacto



An Active Discord Community



(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)



(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)
Nerfacto



(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)
Nerfacto-huge



(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)



(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

Custom Interactivity



Viewer



(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)



(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)



(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

Custom Interactivity

self.checkbox = ViewerCheckbox(name="Checkbox", default_value=False)

current_value = self.checkbox.value

…



(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

Coming Soon: Viser Integration
Python library for web-based 3D visualization 

Shareable Links Mobile Support

viser.studio



(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

Coming Soon: Viser Integration
Python library for web-based 3D visualization 

Shareable Links Mobile Support

viser.studio



Export 
Options



Geometry Conversion

Point CloudNeRF



Camera Effects



VFX: Blender Integration





Grade eterna



Grade eterna



(𝑥, 𝑦, 𝑧,

𝜃, 𝜙)

Custom Interactivity
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