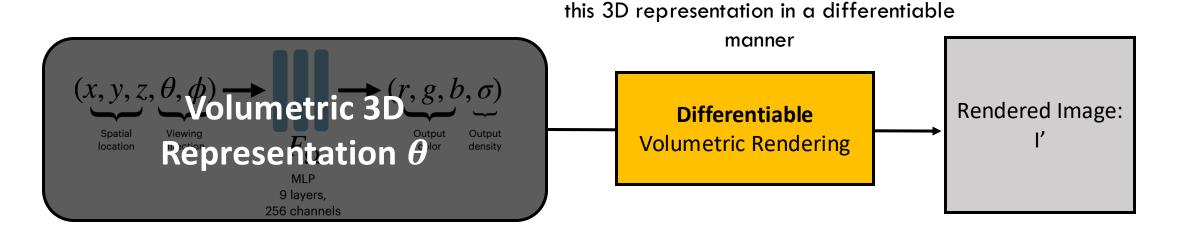
Neural Radiance Fields pt 3

made with

CS180/280A: Intro to Computer Vision and Computational Photography

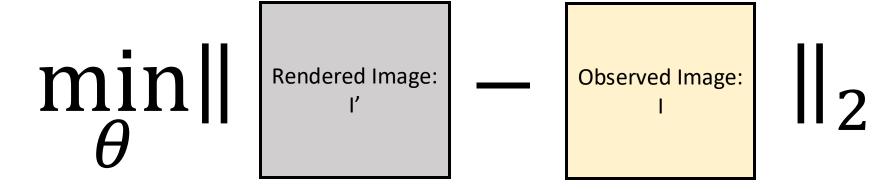
Lots of content from Noah Snavely and Ben Mildenhall, Pratul Srinivasan, and Matt Tancik from ECCV 2022 Tutorial on Neural Volumetric Rendering for Computer Vision Angjoo Kanazawa and Alexei Efros UC Berkeley Fall 2025

Where we are

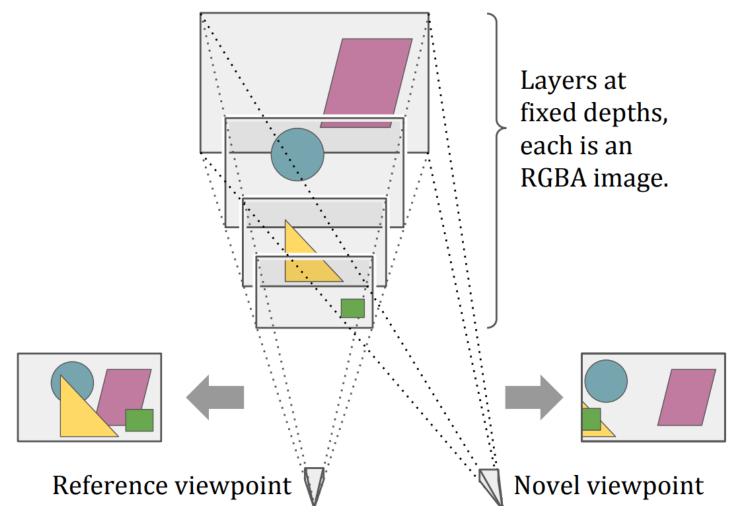


Now we need to render an image from

"Training" Objective (aka Analysis-by-Synthesis):

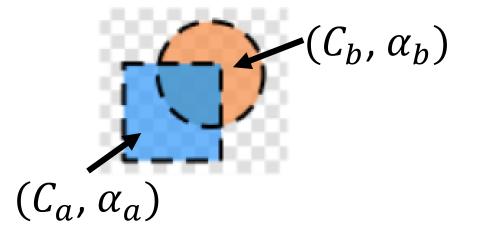


A Precursor: Multi-plane Images



Alpha Blending

for two image case, A and B, both partially transparent:

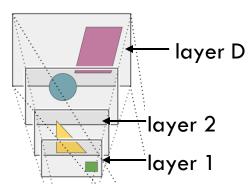


$$I = C_a \alpha_a + C_b \alpha_b (1 - \alpha_a)$$

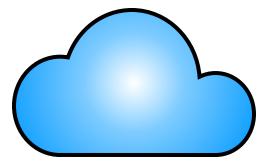
How much light is the previous layer lettina through?

General D layer case:

$$I = \sum_{i=1}^{D} C_{i} \alpha_{i} \prod_{j=1}^{i-1} (1 - \alpha_{j})$$

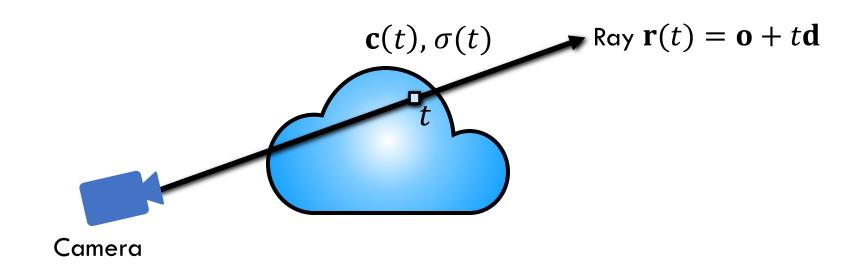


Volumetric formulation for NeRF



Scene is a cloud of tiny colored particles

Volumetric formulation for NeRF



at a point on the ray $\mathbf{r}(t)$, we can query color $oldsymbol{c}(t)$ and density $\sigma(t)$

How to integrate all the info along the ray to get a color per ray?

Idea: Expected Color

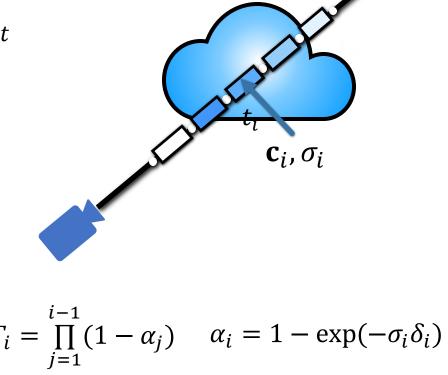
- Pose probabilistically.
- Each point on the ray has a probability to be the first "hit" : $P[first\ hit\ at\ t]$
- Color per ray = Expected value of color with this probability of first "hit"

for a ray
$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$$
:

$$c(r) = \int_{t_0}^{t_1} P[first \ hit \ at \ t] c(t) dt$$

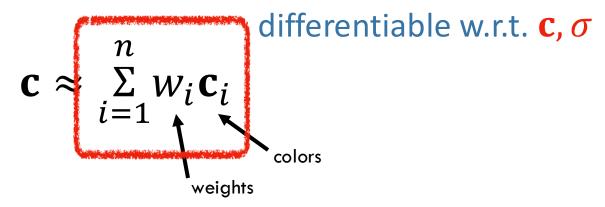
$$\approx \sum_{t=0}^{T} P[first \ hit \ at \ t] c(t)$$

$$\approx \sum_{t=0}^{T} w_t c(t)$$



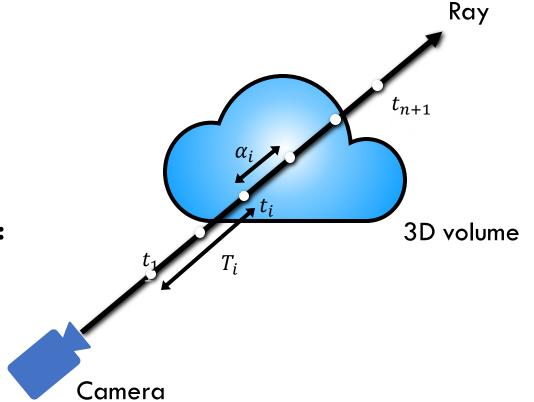
Differentiable Volumetric Rendering Formula

for a ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:



How much light is blocked earlier along ray:

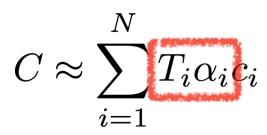
$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

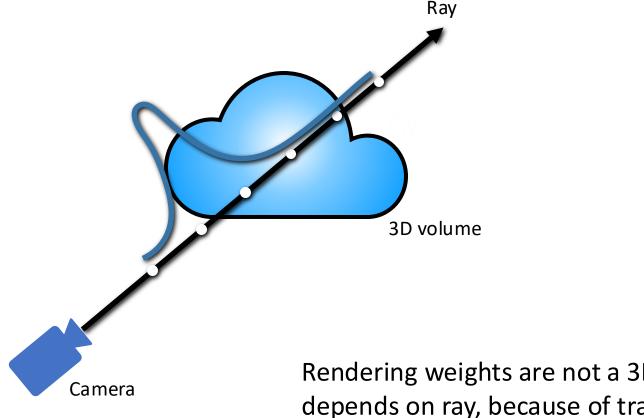


How much light is contributed by ray segment *i*:

$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$

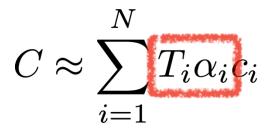
Visual intuition: rendering weights is specific to a ray

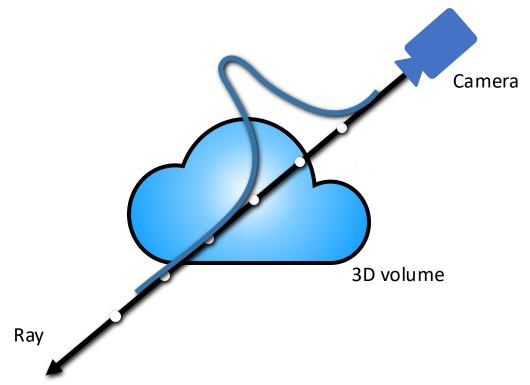




Rendering weights are not a 3D function depends on ray, because of tranmisttance!

Visual intuition: rendering weights is specific to a ray

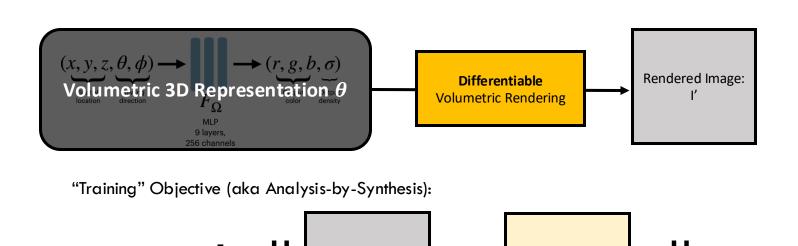




Rendering weights are not a 3D function — depends on ray, because of tranmisttance!

What's the point

- Remember, for each pixel or a ray we render a color with this formula based on the Volumetric 3D Representation
- We use this to supervise the 3D Representation (sigma, RGB volume)



Observed Image:

Connection to alpha compositing

Expected Color =
$$\sum_{i=1}^{n} T_i \mathbf{c}_i (1 - \exp(-\sigma_i \delta_i))$$

segment

opacity $lpha_i$

Expected Color =
$$\sum_{i=1}^{n} T_i \mathbf{c}_i \alpha_i$$

$$\prod_{i} \exp(x_{i}) = \exp(\sum_{i} x_{i})$$

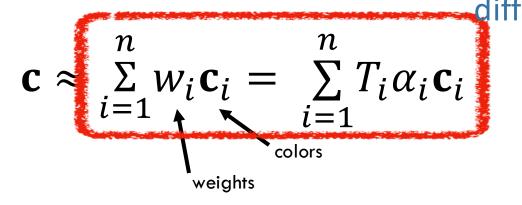
$$\alpha_{i} = 1 - \exp(\sigma_{i} \delta_{i})$$

$$1 - \alpha_{i} = -\exp(\sigma_{i} \delta_{i})$$

where
$$T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$
$$= \prod_{i=1}^{i-1} (1 - \alpha_i)$$

Summary

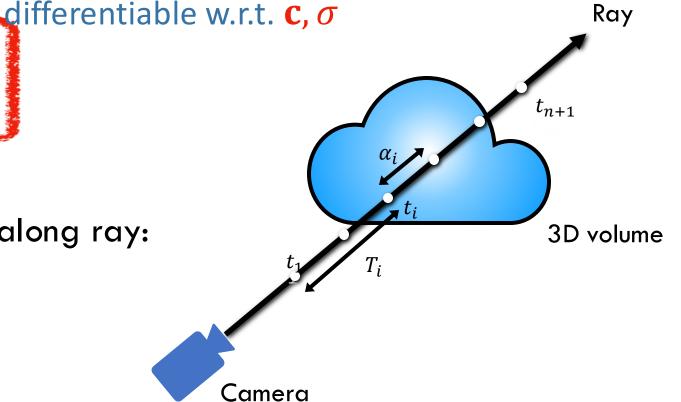
for a ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:

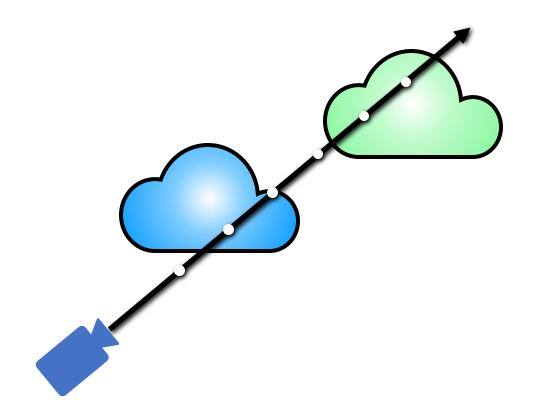


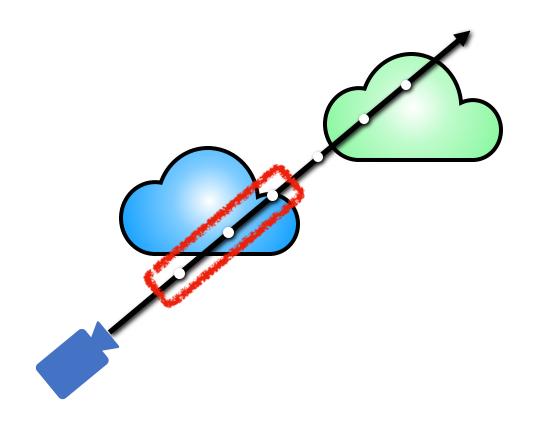
How much light is blocked earlier along ray:

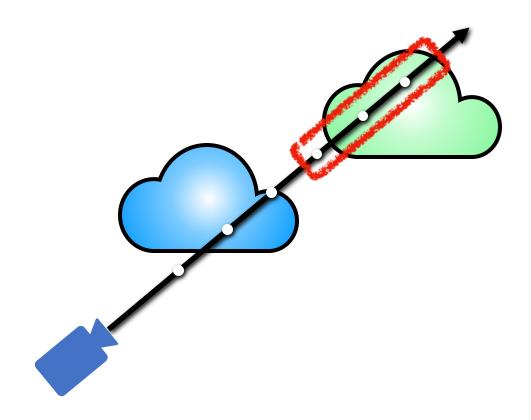
$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$









 $\label{eq:mildenhall*, Srinivasan*, Tancik* et al 2020, NeRF} \\$

Poole et al 2022, DreamFusion

Rendering weight PDF is important

Remember, expected color is equal to

$$\int T(t)\sigma(t)\mathbf{c}(t)dt \approx \sum_{i} T_{i}\alpha_{i}\mathbf{c}_{i} = \sum_{i} w_{i}\mathbf{c}_{i}$$

 $T(t)\sigma(t)$ and $T_i\alpha_i$ are "rendering weights" — <u>probability distribution</u> along the ray (continuous and discrete, respectively)

You can also render entities other than color in 3D, for example it's depth, or any other N-D vector $oldsymbol{v}_i$

Volume rendered "feature"
$$=\sum_i w_i oldsymbol{v}_i$$

Rendering weight PDF is important — depth

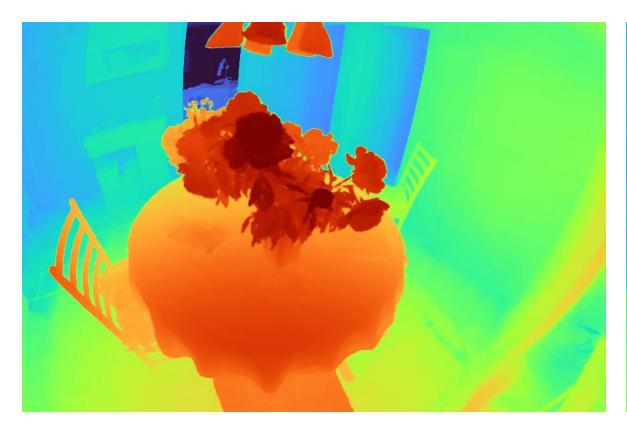
We can use this distribution to compute expectations for other quantities, e.g. "expected depth":

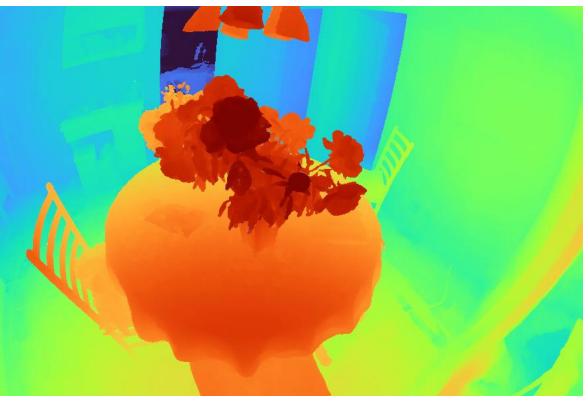
$$\overline{t} = \sum_{i} T_{i} \alpha_{i} t_{i}$$

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.

Rendering weight PDF is important — depth





Mean depth

Median depth

Volume rendering other quantities

This idea can be used for any quantity we want to "volume render" into a 2D image. If **V** lives in 3D space (semantic features, normal vectors, etc.)

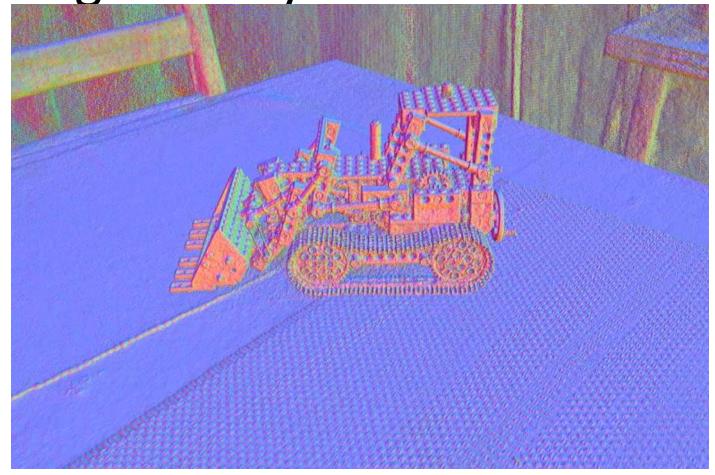
$$\sum_{i} T_{i} \alpha_{i} \mathbf{v}_{i}$$

can be taken per-ray to produce 2D output images.

Volume Rendering CLIP features

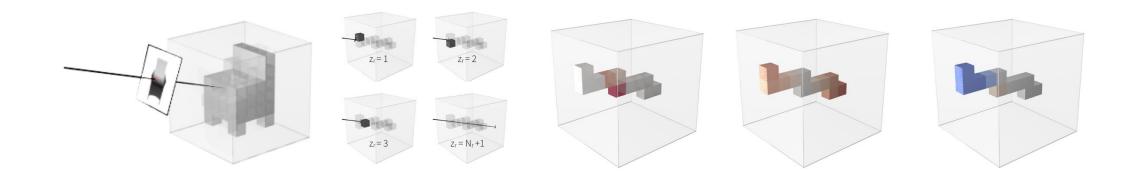
LERF: Language Embedded Radiance Fields, Kerr* and Kim* et al. ICCV 2023

Density as geometry



Normal vectors (from analytic gradient of density)

Previous Papers



Differentiable ray consistency work used a forward model with "probabilistic occupancy" to supervise 3D-from-single-image prediction.

Same rendering model as alpha compositing!

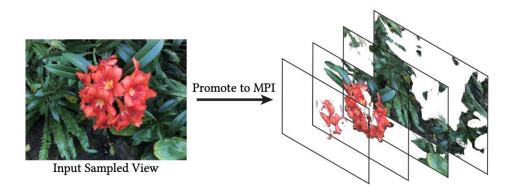
$$p(z_r=i) = egin{cases} (1-x_i^r) \prod_{j=1}^{i-1} x_j^r, & ext{if } i \leq N_r \ \prod_{j=1}^{N_r} x_j^r, & ext{if } i = N_r+1 \end{cases}$$

Similar Ideas before NeRF

Multiplane image methods

Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries... (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

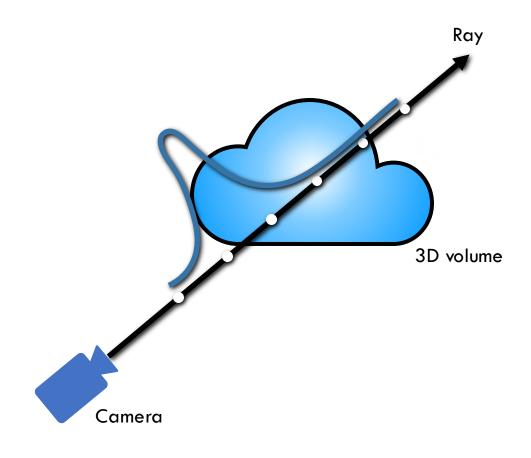
Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out



Neural Volumes (Lombardi et al. 2019) Direct gradient descent to optimize an RGBA volume, regularized by a 3D CNN

Signal Processing Consideration in NeRFs

What is this process?

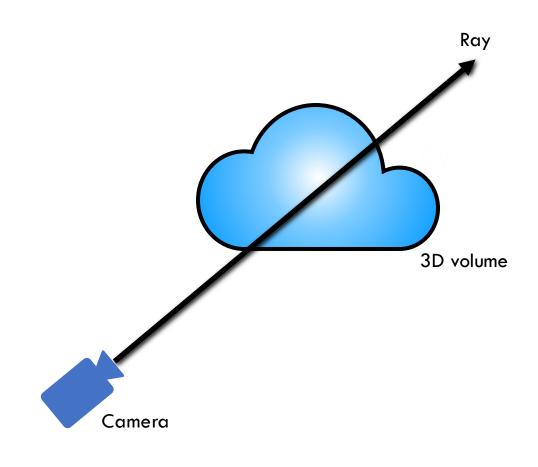


What is happening here?

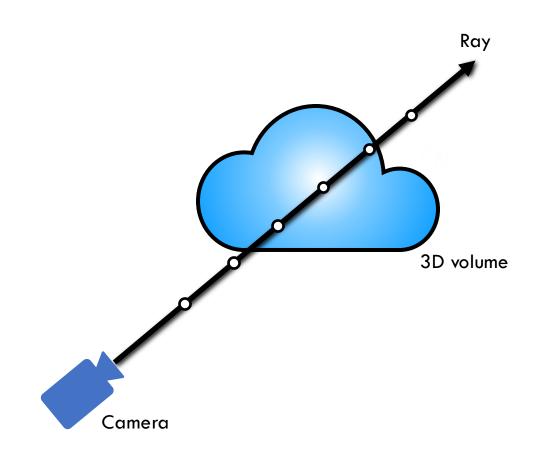
Aliasing!!

Naïve (original) NeRF

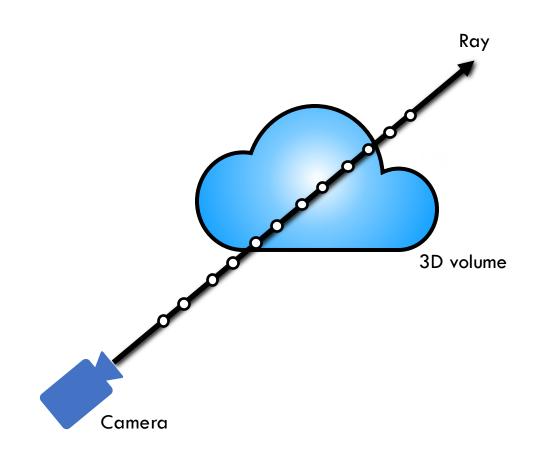
Where to place samples along rays?



How to be more efficient than dense sampling?



How to be more efficient than dense sampling?



Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling vs. Acceleration Structures

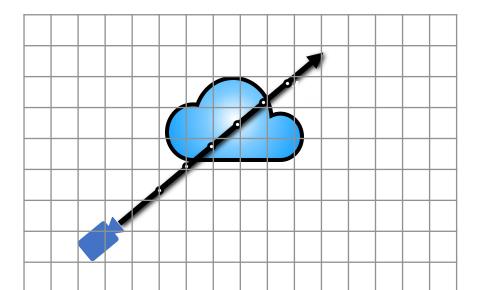
Hierarchical Sampling

Iteratively use samples from NeRF to more efficiently sample visible scene content

Acceleration Structures

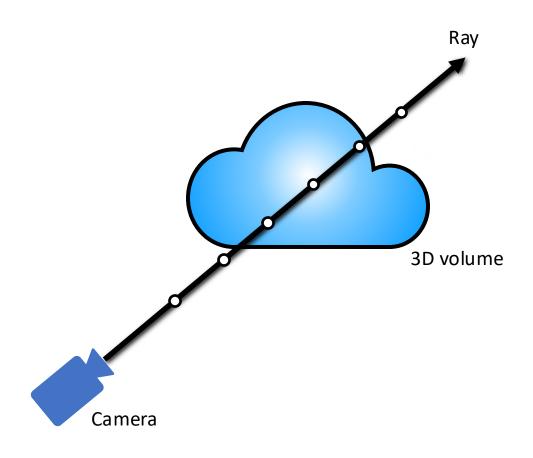
Distill/cache properties of NeRF into a structure that helps generate samples: e.g. Occupancy Grids

Straightforward compute —> storage tradeoff

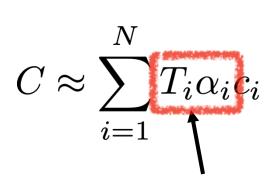


Hierarchical ray sampling

Key Idea: sample points proportionally to expected effect on final rendering

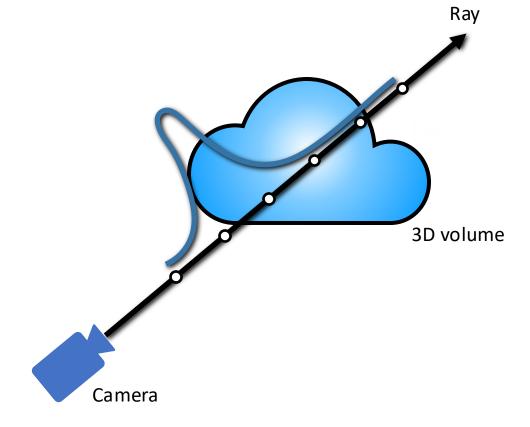


Key Idea: sample points proportionally to expected effect on final rendering

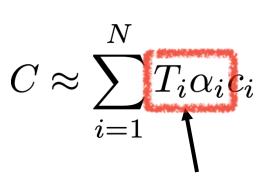


treat weights as probability

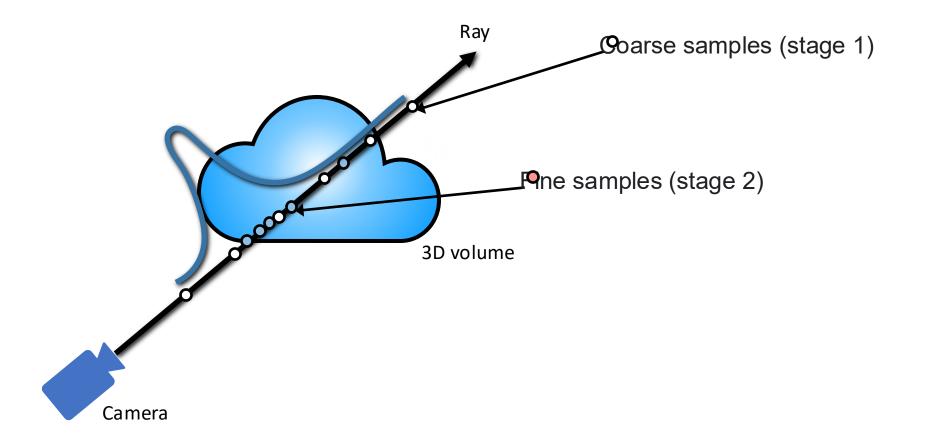
distribution for new samples

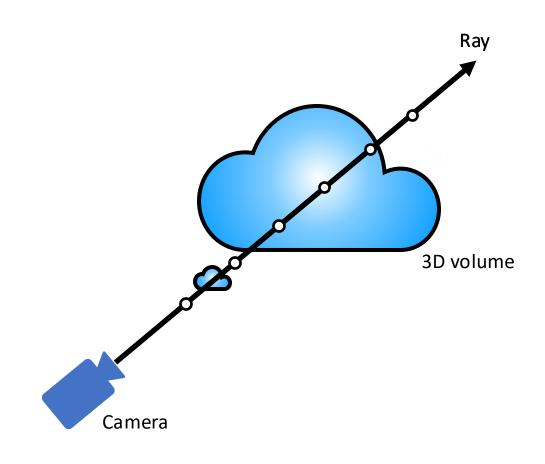


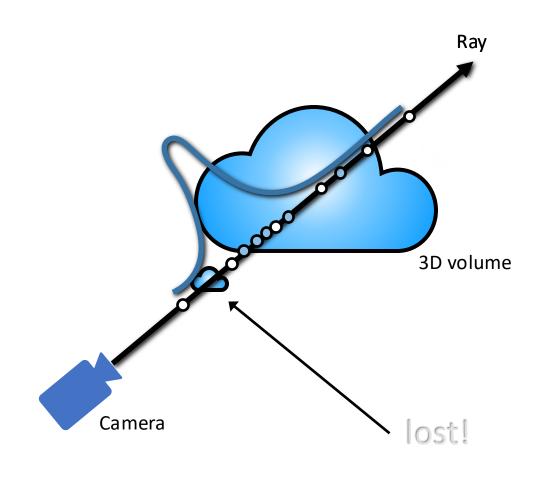
Key Idea: sample points proportionally to expected effect on final rendering



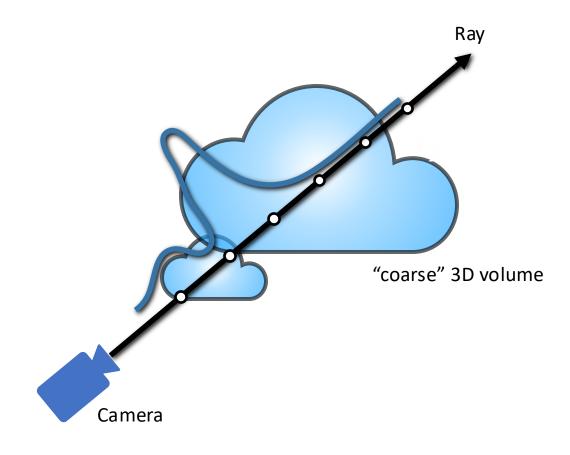
treat weights as probability distribution for new samples



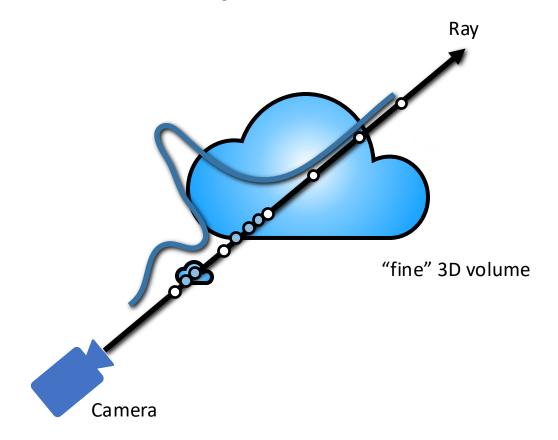




Solution: train two NeRFs! —> lower resolution for first "coarse" level



Solution: train two NeRFs! —> higher resolution for second "fine" level



This strategy is used in the original NeRF paper, you can implement it as an EC.

Further Reading on this Topic

- MipNeRF
 - Low-pass filter the positional encoding
- MipNeRF360
 - For 360 scenes
 - Train a "Proposal Network" instead of Coarse & Fine Networks that tells where to sample

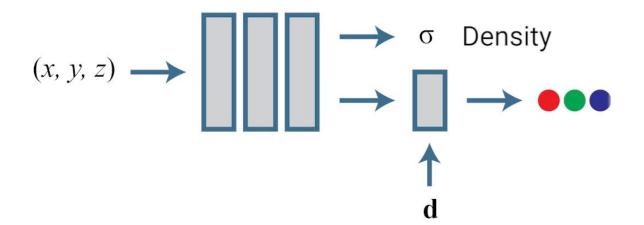
Other Advanced Topics

Compression capability of NeRF

- If Image is 256x256x3, why memorize this with a MLP?
 - 3 layer MLP with 256 neurons $\sim 3*256^{\circ}2$ learnable parameters
- In 3D:
 - if there are 100 input images: $100 * 256 \times 256 \times 3 = 19M$
 - 8 layer MLP with 256 neurons ~ 524K
 - Just 3% of what it takes to hold 100 images
 - MLP size doesn't change even if we have 1000 input images
- Trade off?
 - SPEED!

Why is NeRF Slow?

NeRF



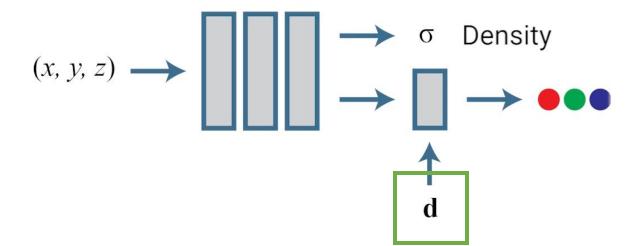
For each image
For each pixel (800, 800)
For each sample (256)
Eval NeRF Network

You have to sample densely in R⁵

~ 163 million network calls

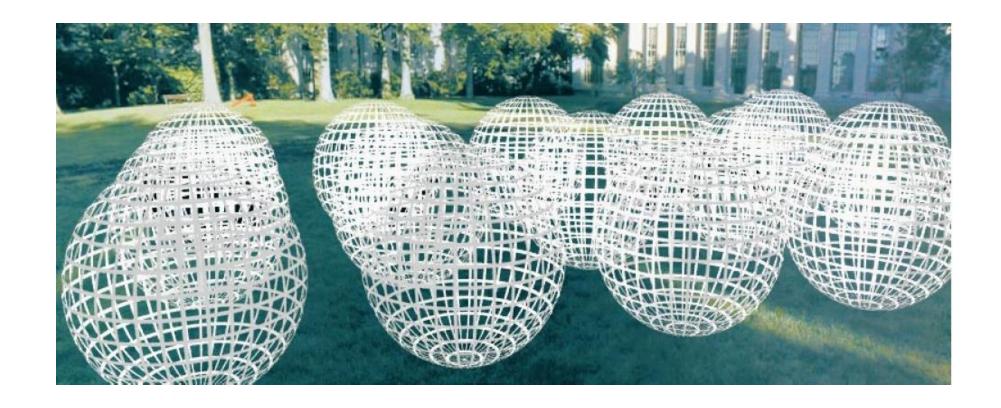
Cache everything?

NeRF



R⁵ is a lot to cache

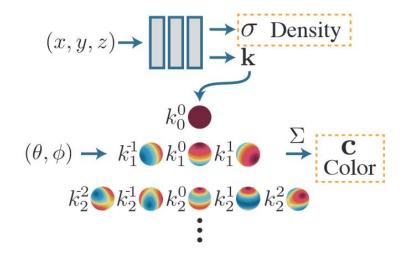
Recall:



We can factorize the location R³ & the view direction R²!

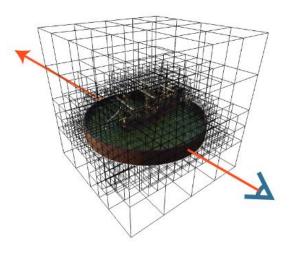
Idea

1. Factor out view-dependent effects



Spherical Harmonics

2. Store density + SH in efficient data structure (Octree)



PlenOctree = View-dependent Octree

Spherical Harmonics to model view dependent Color

• Fourier basis on the sphere

 k_0^0 $k_1^{-1} \qquad k_1^0 \qquad k_1^1$ $k_2^{-2} \qquad k_2^{-1} \qquad k_2^0 \qquad k_2^1 \qquad k_2^2$ $k_3^{-3} \qquad k_3^{-2} \qquad k_3^{-1} \qquad k_3^0 \qquad k_3^1 \qquad k_3^2$

SH models function on a sphere:

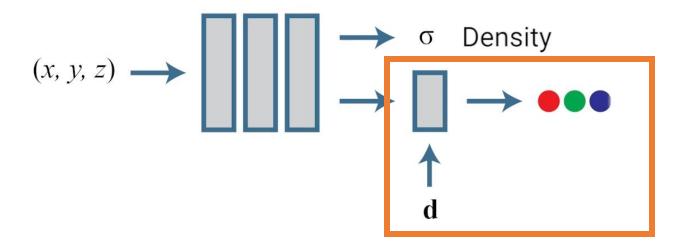
$$f(s) = \sum_{i=0}^{n^2} k_i y_i(s)$$

s – point on a unit sphere, $s = (\varphi, \theta)$ k_i - coefficient of i-th basis $y_i(s)$ - SH basis, analytically computed, as shown on the video

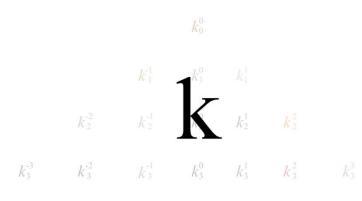
Learn k_i

NeRF with Spherical Functions

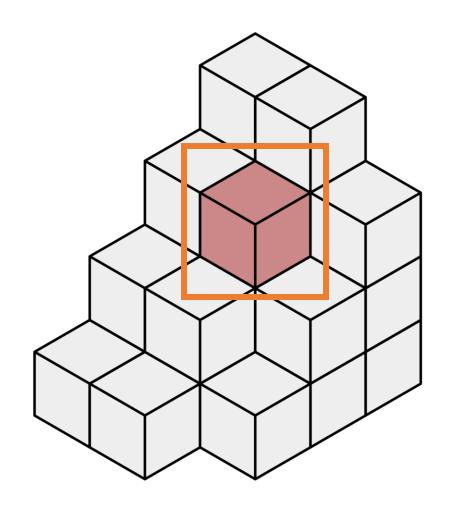
NeRF

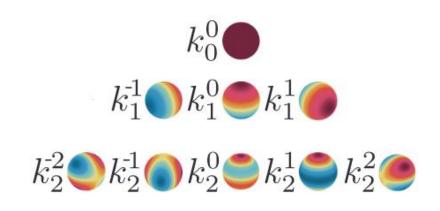


NeRF with Spherical Harmonics (NeRF-SH)



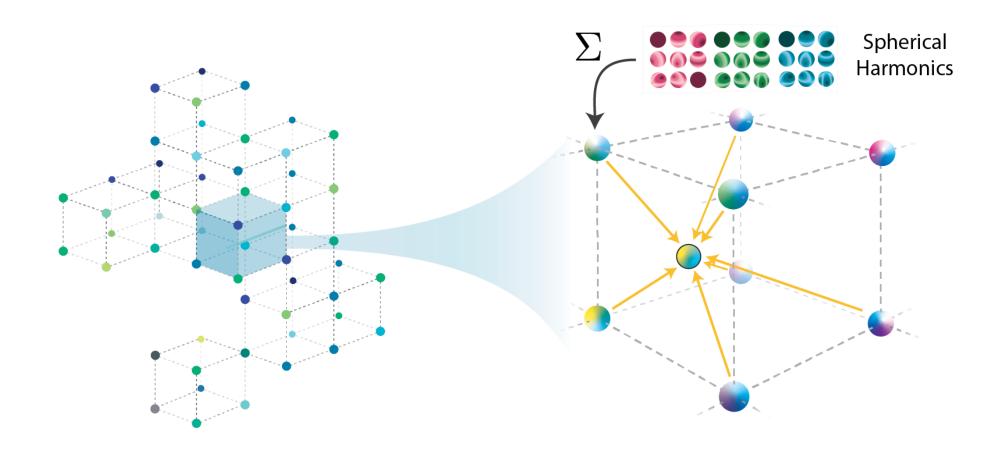
PlenOctree = Sparse Voxels + SH coefficients



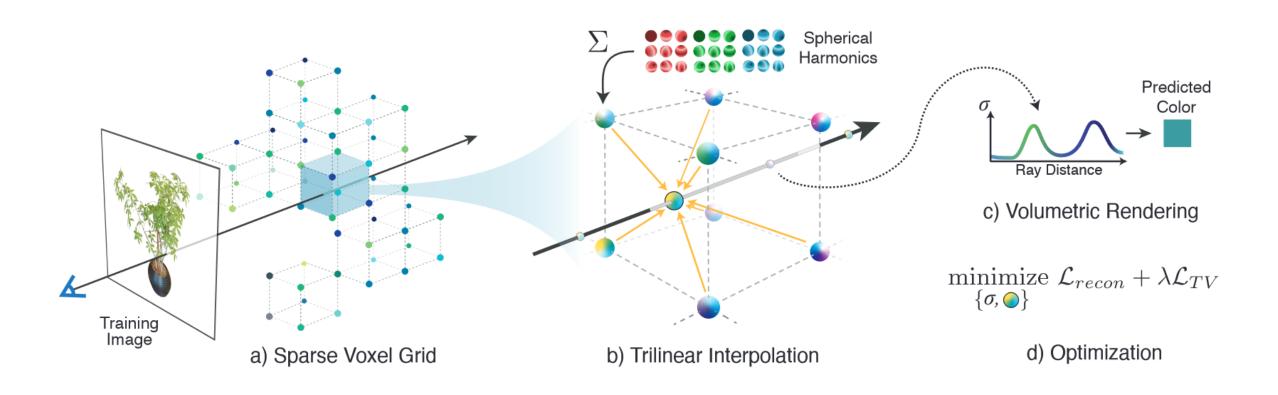


Only stores nonempty voxels

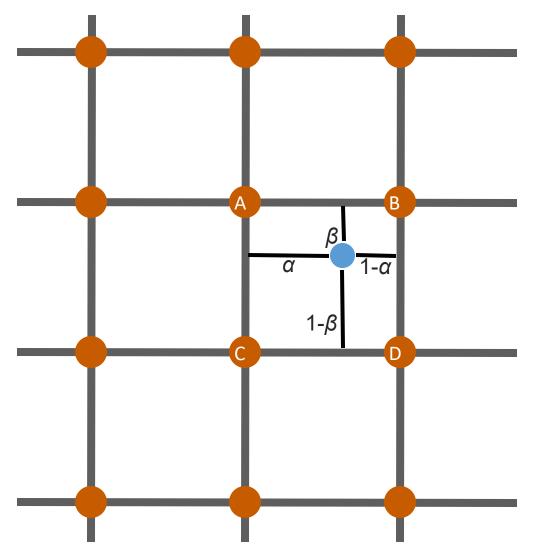
Plenoxel = "Plenoptic Volume Element"



No MLP required..



Make continuous via tri-linear interpolation



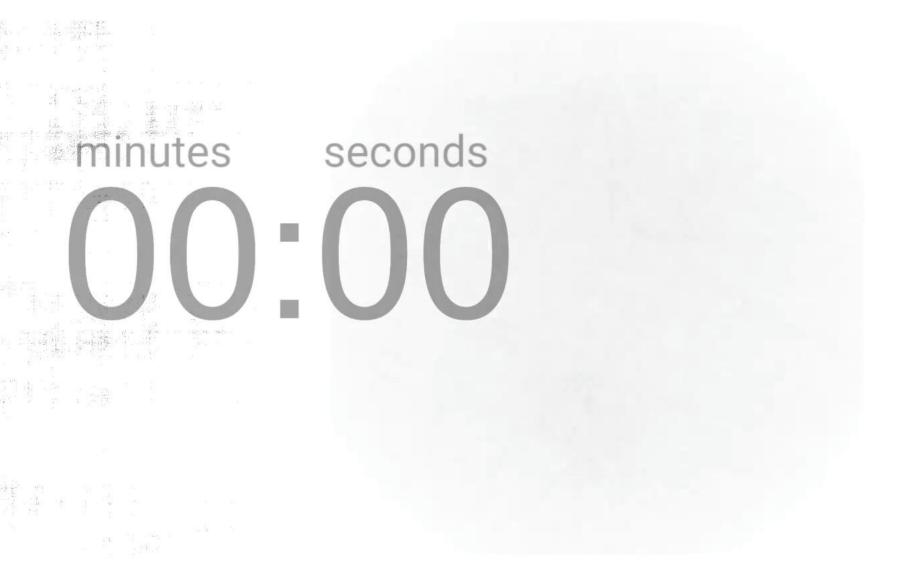
$$= \beta(\alpha A + (1 - \alpha B))$$

$$+(1 - \beta)(\alpha C + (1 - \alpha D))$$

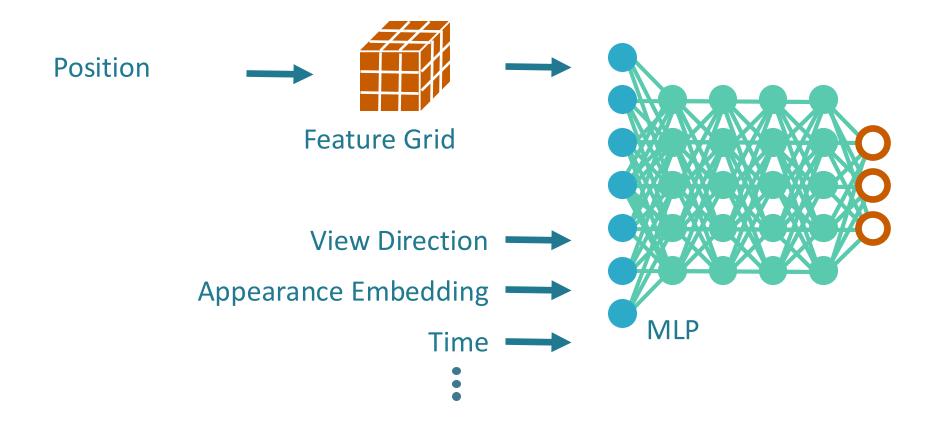
NeRF

[Mildenhall et al. ECCV 2020]

Plenoxels



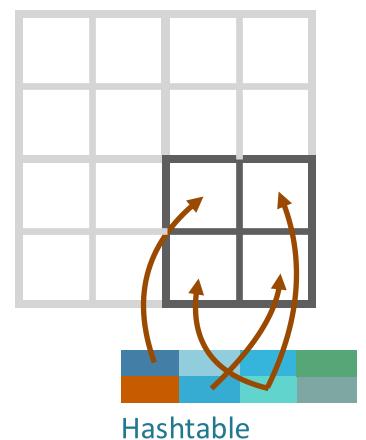
But MLPs are convenient



InstantNGP

- Hybrid approach
- Grid → hashmap → Feature retrieval
- Pass to a small MLP
- Fast and convenient!

Feature Grid



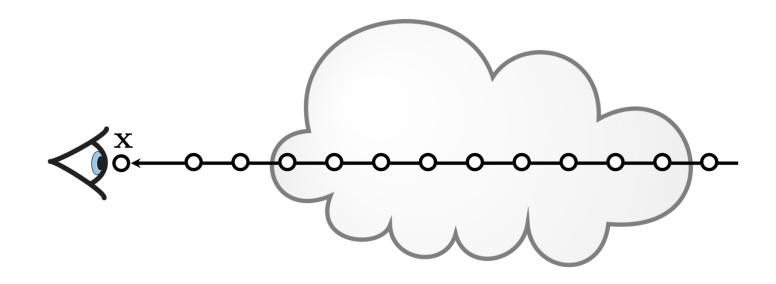
Feature Grid > Hashmap

Mapping with collisions

Latest: Gaussian Splatting

- Approximate with 3D Gaussian points
- Rasterize instead of volrend
- Still alpha-blend
- no MLP + SH like plenoxels

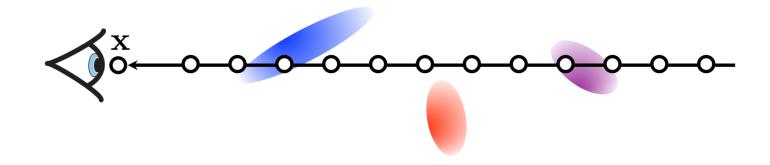
Recap: Rendering Volumes



1. Draw samples along the ray

2. Aggregate their contributions to render

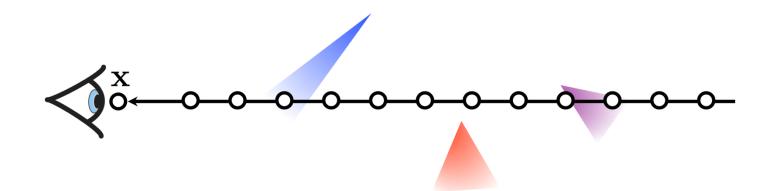
Rendering Primitives (e.g. Gaussians)



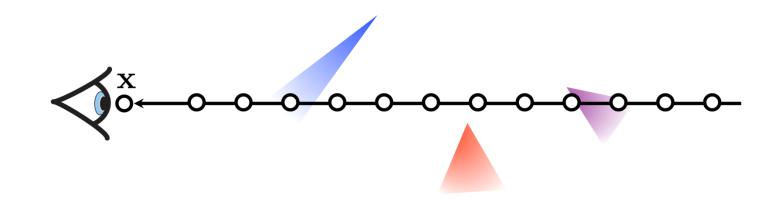
1. Draw samples along the ray

2. Aggregate their contributions to render

Rendering Primitives (e.g. Triangles/Meshes)



Rendering Primitives (e.g. Triangles/Meshes)



1. Draw samples along the ray

(wasteful — we know where the primitives are!)

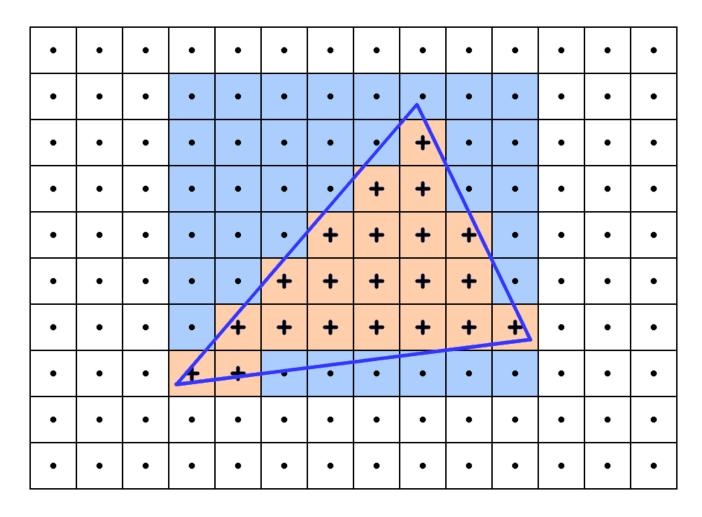
- 1. Find primitives that affect the pixel
- 2. Aggregate their contributions to render

Rendering a mesh via Rasterization

Rasterization = conversion of primitives to pixels (details in CS184)

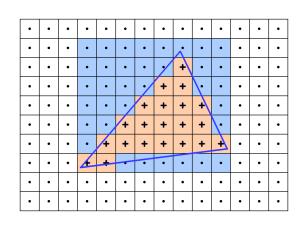
Rasterizat

Blending (+ S



Rendering a mesh via Rasterization

Rasterization = conversion of primitives to pixels (details in CS184)



Rasterization

```
Blending (+ Shading)
```

```
def render(mesh, camera):
    ### some structure to store K triangles
    ### for each pixel
    sorted_k_closest_img = ...
    ### Iterate over all triangles
    for triangle in mesh:
        tri_2d = project(triangle, image)
        # Update closest K img for pixels within tri 2d
    ### Iterate over all pixels
    for pixel in camera.grid:
        ### Iterate over triangles influencing this pixel
        for triangle in sorted_k_closest_img[pixel]:
            # Aggregate appearance
            ########
```

What is the representation of a 3D Gaussian?

How to project to 2D and rasterize?

How to model/aggregate appearance?

```
def render(gaussians, camera):
    ###
    # Initialize a rasterization data structure
    # (records influencing primitives for each pixel)
    ###
    for gaussian in gaussians:
        gauss2d = project(gaussian, camera)
        # Update rasterization data structure
        ###
    for pixel in camera.grid:
        # Aggregate appearance from influencing gaussians
```

Blending

Rasterization

Slides thanks to Ioannis Gkioulekas & Shubham Tulsiani

What is the representation of a 3D Gaussian?

How to project to 2D and rasterize?

How to model/aggregate appearance?

Position
$$\mathbf{p}$$
 $\mathcal{G}_{\mathbf{V}}(\mathbf{x} - \mathbf{p}) = \frac{1}{2\pi |\mathbf{V}|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{p})^T \mathbf{V}^{-1}(\mathbf{x} - \mathbf{p})}$

What is the representation of a 3D Gaussian?

How to project to 2D and rasterize?

How to model/aggregate appearance?

Position
$$\mathbf{p}$$
 $\mathcal{G}_{\mathbf{V}}(\mathbf{x} - \mathbf{p}) = \frac{1}{2\pi |\mathbf{V}|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{p})^T \mathbf{V}^{-1}(\mathbf{x} - \mathbf{p})}$

$$S = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix} \quad \text{Factorize as scale and rotation: } \mathbf{V} = RSS^T R^T$$

$$S = egin{bmatrix} s_x & 0 & 0 \ 0 & s_y & 0 \ 0 & 0 & s_z \end{bmatrix}$$

$$R \in SO(3)$$

What is the representation of a 3D Gaussian?

How to project to 2D and rasterize?

How to model/aggregate appearance?

Position
$$\mathbf{p}$$
 $\mathcal{G}_{\mathbf{V}}(\mathbf{x} - \mathbf{p}) = \frac{1}{2\pi |\mathbf{V}|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{p})^T \mathbf{V}^{-1}(\mathbf{x} - \mathbf{p})}$
$$S = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix}$$
 Factorize as scale and rotation: $\mathbf{V} = RSS^TR^T$

$$S = egin{bmatrix} s_x & 0 & 0 \ 0 & s_y & 0 \ 0 & 0 & s_z \end{bmatrix}$$

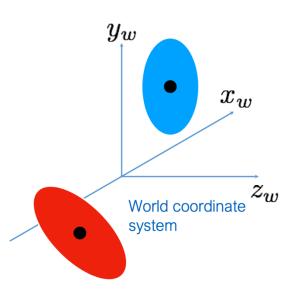
$$R \in SO(3)$$

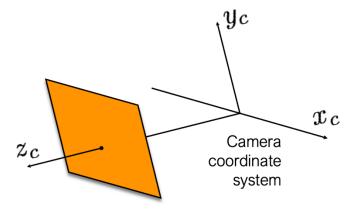
Each Gaussian also has an opacity and view-dependent color (via SH coefficients): α , \mathbf{c}

What is the representation of a 3D Gaussian?

How to project to 2D and rasterize?

How to model/aggregate appearance?





$$\mathbf{p}', R', S$$

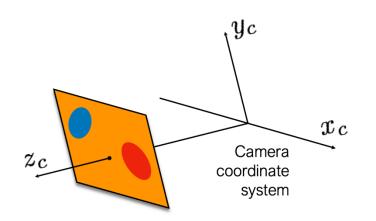
We can use the camera extrinsics to transform each 3D Gaussian to the camera frame

$$J = egin{bmatrix} rac{f_x}{z} & 0 & -f_xrac{x}{z^2} \ 0 & rac{f_y}{z} & -f_yrac{y}{z^2} \end{bmatrix}$$

What is the representation of a 3D Gaussian?

How to project to 2D and rasterize?

How to model/aggregate appearance?



$$\pi(\mathbf{x}) = \mathbf{u}$$
 $z \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$ π : Projection function for

 \mathbf{p}', R', S

Q: What is the image-space projection of a 3D Gaussian?

2D mean: $\mu_{2D}=\pi(\mu_{3D})$

2D covariance:

mapping 3D points to pixels

$$J = \frac{\partial \pi}{\partial \mathbf{x}}(\mu_{3D})$$

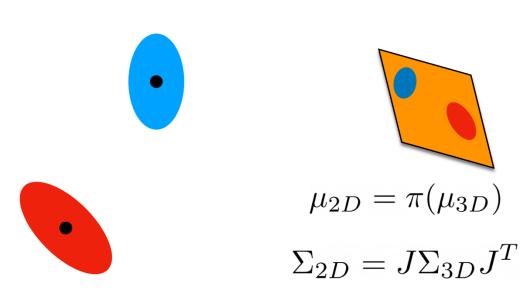
$$\Sigma_{2D} = J \Sigma_{3D} J^T$$

A: Can approximate as a 2D Gaussian!

What is the representation of a 3D Gaussian?

How to project to 2D and rasterize?

How to model/aggregate appearance?



- 1. Sort Gaussians from closest to furthest from the camera
- 2. For each pixel \mathbf{u} , compute opacity for each gaussian \mathcal{G}_k :

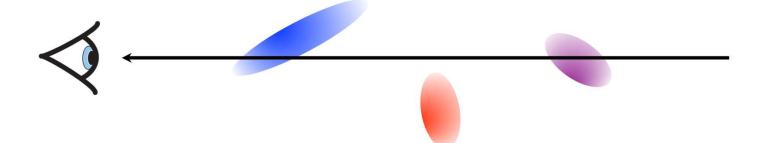
$$\bar{\alpha}_k = \alpha_k \frac{e^{-(\mathbf{u} - \mu_{2D}^k)^T (\Sigma_{2D}^k)^{-1} (\mathbf{u} - \mu_{2D}^k)}}{2\pi |\Sigma_{2D}^k|^{0.5}}$$

Differentiable Gaussian Rendering

What is the representation of a 3D Gaussian?

How to project to 2D and rasterize?

How to model/aggregate appearance?



Compute per-Gaussian weights based on opacities of current and previous Gaussians:

$$w_k = \bar{\alpha}_k \ \Pi_{j=1}^{k-1} (1 - \bar{\alpha}_j)$$

Use per-Gaussian SH coefficients and ray direction to get view-dependent color \mathbf{c}_k

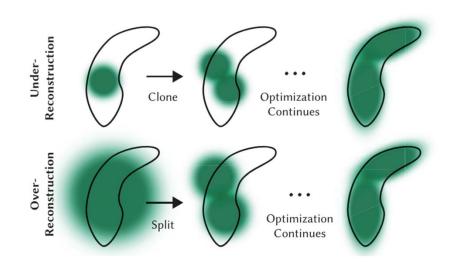
Aggregate to obtain pixel color:

$$\mathbf{c} = \sum_{k} w_k \mathbf{c}_k$$

Gaussian Splatting: Bells and Whistles

+ Lots of efficient GPU optimization strategies

Initialize with sparse point cloud from SfM



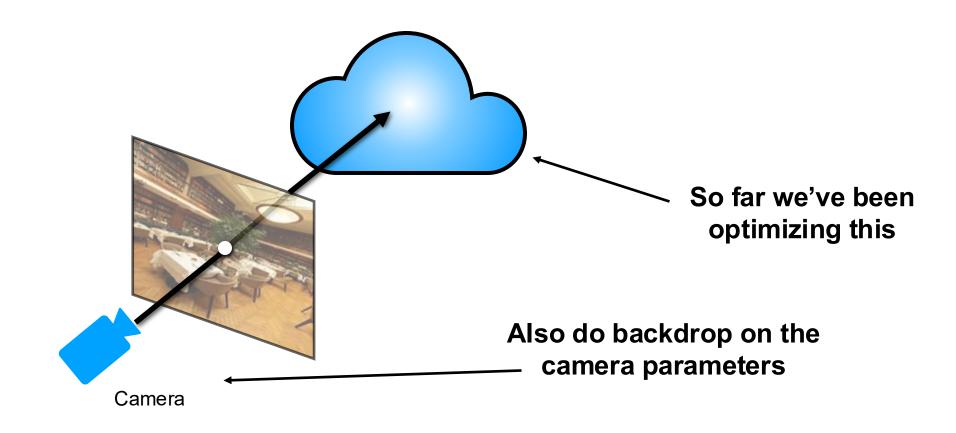
Split/clone
Gaussians based on
heuristics

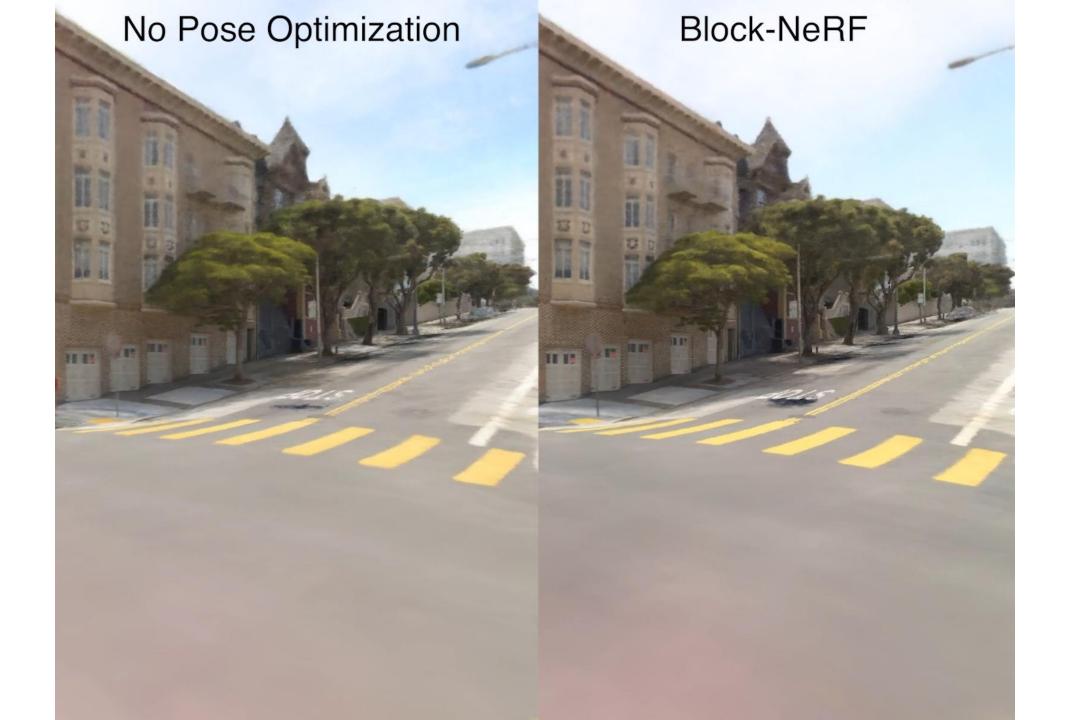
Bottom line

- Gaussian Splats still estimate volumetric rendering (same alphacompositing, just with gaussians)
- MUCH faster because no sampling, no neural nets, rasterization
- From 30 sec / frame for 800x800 image original NeRF
 - Plenoxels/InstantNGP: 10-30FPS 1920x1080 image
 - GS: ~100-200+ FPS at 1920×1080
- Best balance of quality and speed current status quo

Camera Quality

Small noise in the camera can be made robust by also optimizing the camera





Camera Optimization

Small noise in the results can be improved

Starting from scratch is still an active area of research [Barf Lin et al. 2021, NeRF— ...]

Noisy Camera from IMU/Lidar

Result with Camera Optimization

The Dynamic World

Holy grail

- Dynamic Novel View Synthesis from Monocular Camera
- Very difficult! Extremely under constrained problem

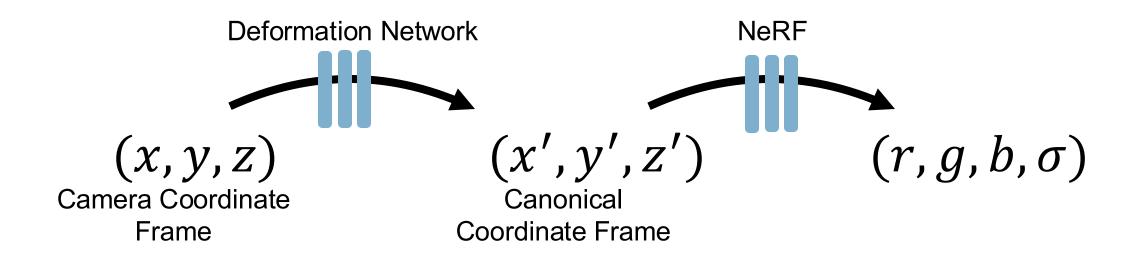
Simple baseline for adding time

$$(x, y, z, \theta, \phi, t)$$

$$F_{\Omega}$$
 (r, g, b, σ)

Hard without simultaneous multiple view!

Through a deformation network



Still very under constrained

Dynamic View Synthesis: Monocular is hard

D-NeRF [Pumarola et al. CVPR 2021].NSFF [Li et al., CVPR 2021],HyperNeRF[Park et al. SIGASia 2021]...

But performance on in-the-wild monocular capture still far [Gao et al. NeurlPS 2022]

What if we knew how they deform?

HMMR, Kanazawa et al. CVPR 2019

Other kinds of dynamic changes

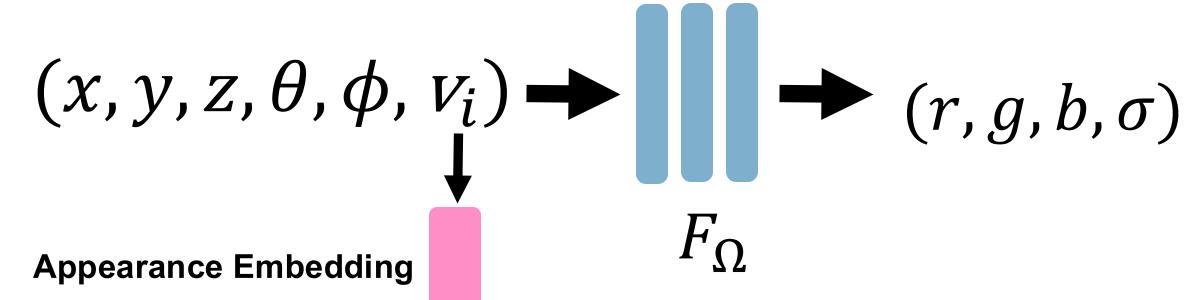
Appearance Changes

Exposure differences

Lighting changes (day, night)...

Clouds passing by..

Appearance Embedding: Pretty Robust Solution



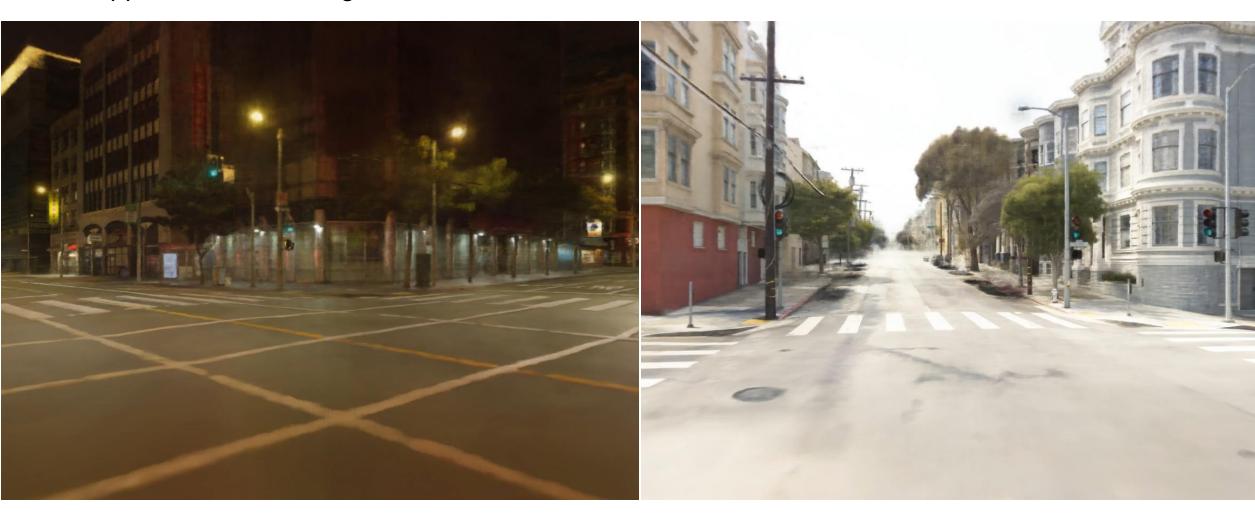
N-dim vector

Optimized *per* image: "Auto-Decoding"

ie GLO: Generative Latent Optimization [Bojanowski et al. ICML 2018]

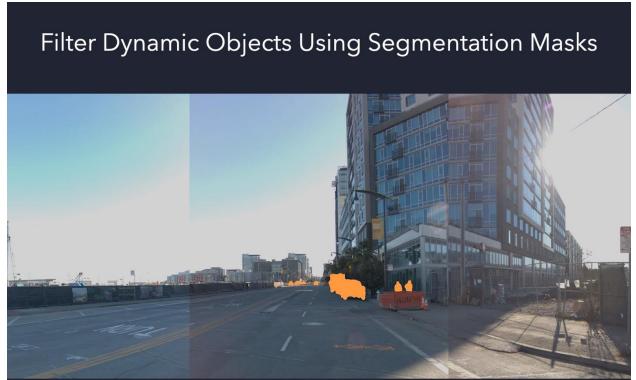
Appearance Changes

Appearance Encoding is Effective



Transient objects

- Happens all the time! People moving around, interacting with the world
- Difficult! Problem of Grouping
 - how do you know which part is connected or
 - Can use two NeRFs, one global, one per-image, but this often leads to degenerate solutions



Current solution: Ignore (mask out)

Why is dynamic scenes hard?

- Unless you have a light dome
- Essentially you only have a single-view

Building & Reusing Prior Knowledge

Machine Learning

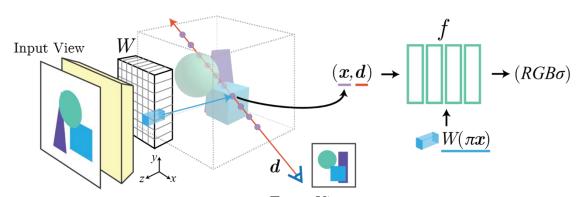
NeRF is per-scene optimization

- We need lots of images to get good view synthesis!!
- Also there's no knowledge reused from prior scene reconstructions

How to bring learning in the picture?

Few-shot NeRF

One-shot (single-view): pixelNeRF [Yu et al. CVPR'19]



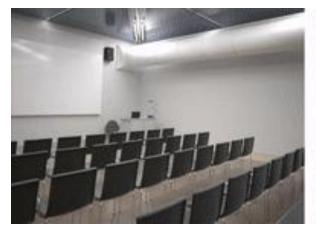
- Few-shot (3~10 views): pixelNeRF,I BRNet [Wang et al. CVPR'21], MVSNet [Chen et al. ICCV'21], etc...
- Challenging for predicting completely unseen real scenes

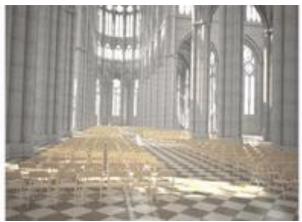
 How to deal with the multi-modal nature of the problem??

IBRNet

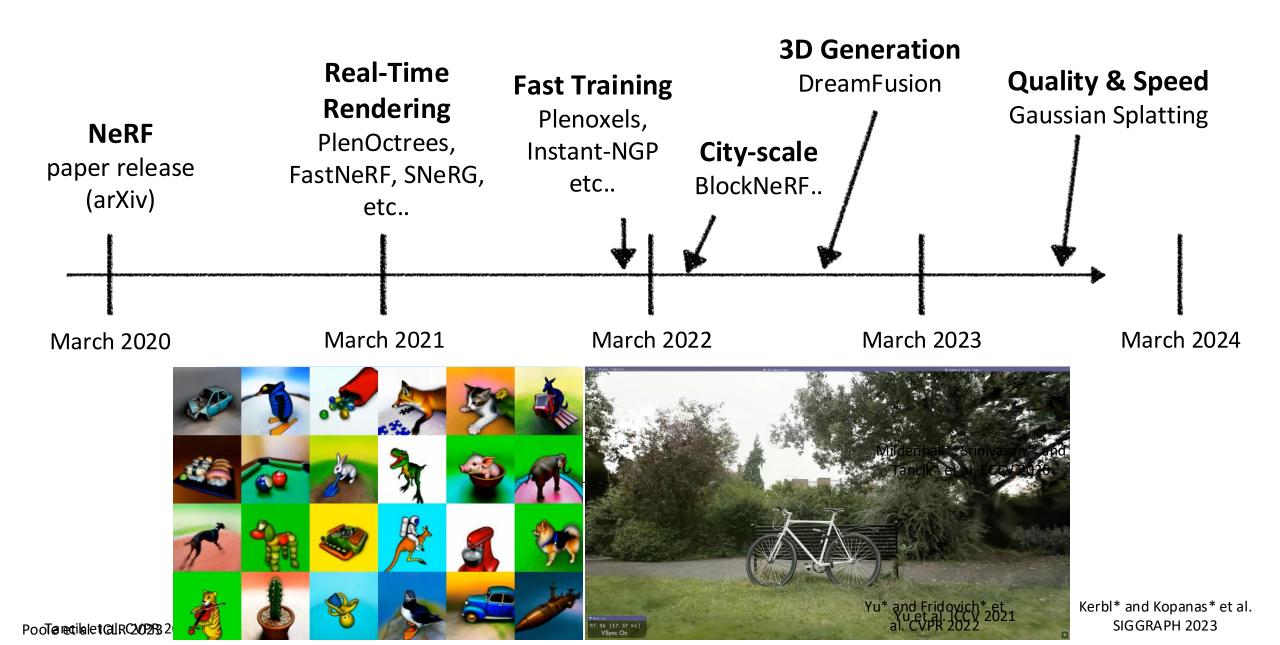
Data is the bottleneck

- Large-scale Real-World Multi-view Data is hard to collect:
 CO3D [Reizenstein ICCV 2021]
- A lot to learn from other single-view 3D prediction models:

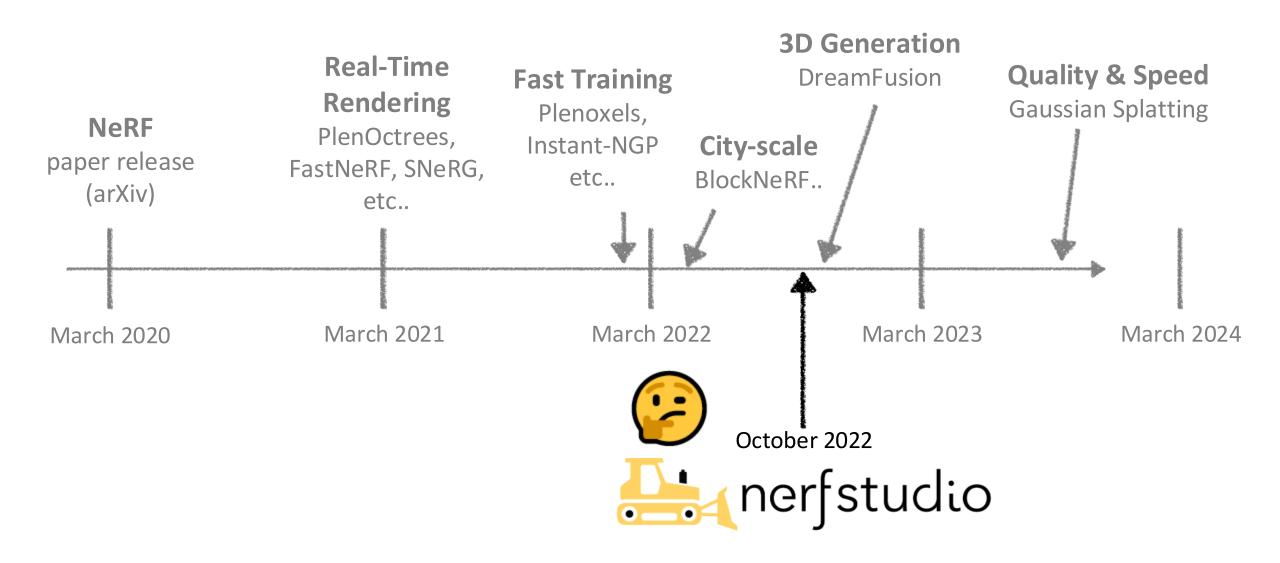




Time Line



Time Line



A Modular Framework for NeRF Development

Matthew Tancik*, Ethan Weber*, Evonne Ng*, Ruilong Li, Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, Angjoo Kanazawa

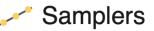
+143 additional Github collaborators
SIGGRAPH 2023

Design Goals

Easy to:

Use Develop Learn

An End-to-End Framework



Fields

Uniform Occupancy PDF Proposal Fused MLP Voxel Grid

Desktop

COLMAP Metashape RealityCapture

Encoders

Renderers

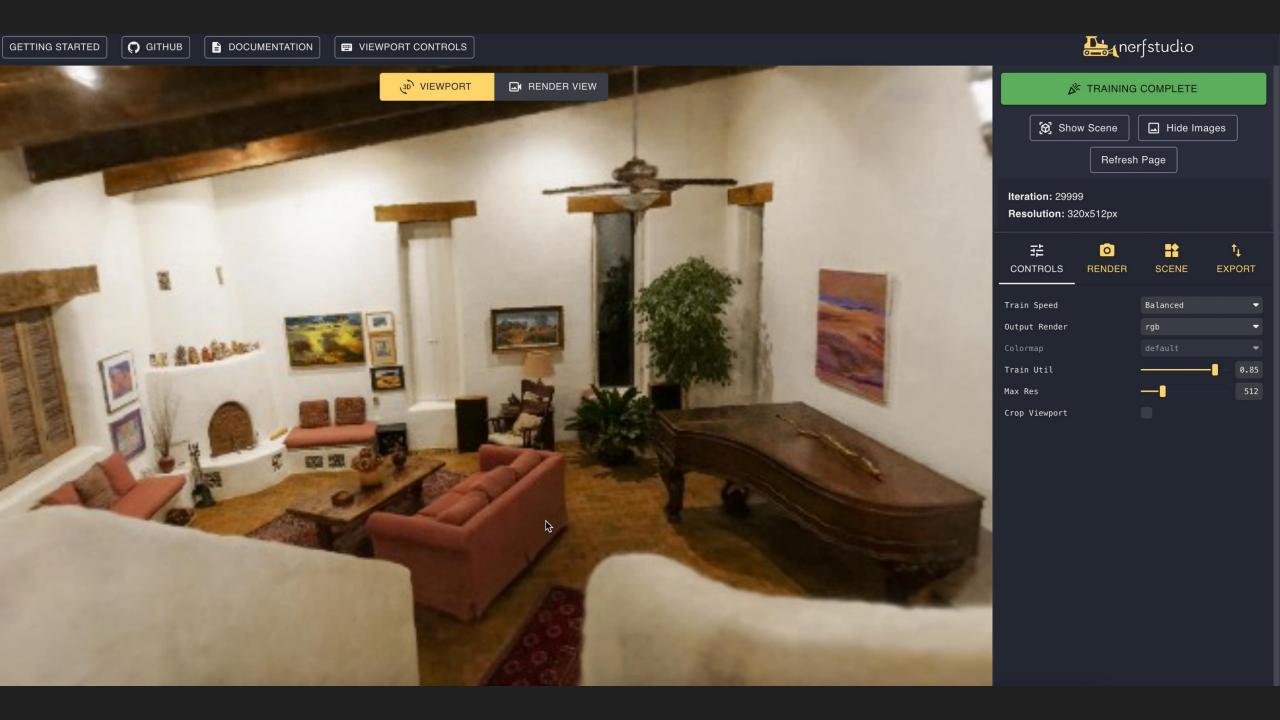
Positional Encoding Fourier Features Hash Encoding Spherical Harmonics Matrix Decomposition RGB RGB-SH Depth Accumulation Normals

Input

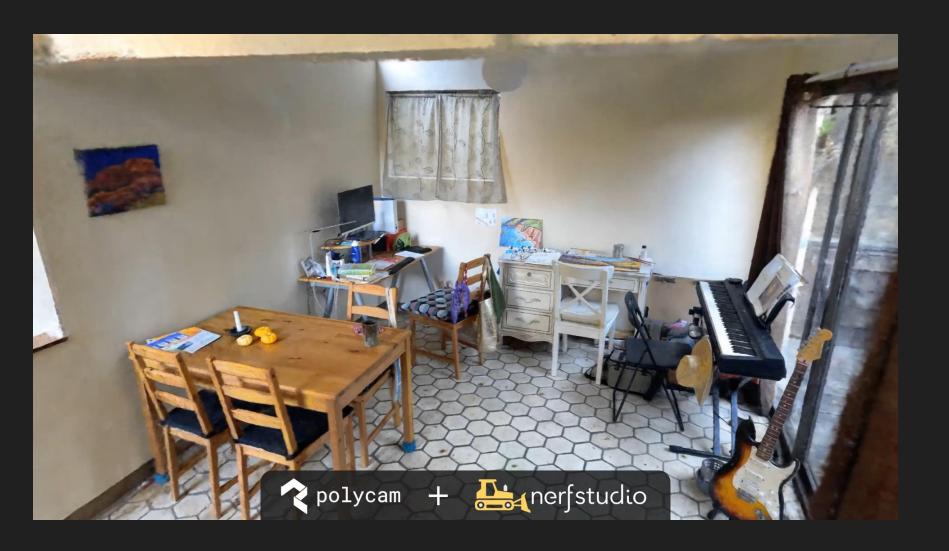
Modular Components

Real-time web viewer

Export



Data Pipelines



Onboarding Pipelines

- COLMAP
- Polycam
- Record3D
- MetaShape
- RealityCapture
- Kiri Engine

Easy to Develop

Sampling

Fields & Encoders

Volumetric Rendering

Pythonic and Modular

Easy to Develop

Sampling

Fields & Encoders

Volumetric Rendering

- Uniform
- Occupancy
- PDF
- Proposal
- Spacing Fn

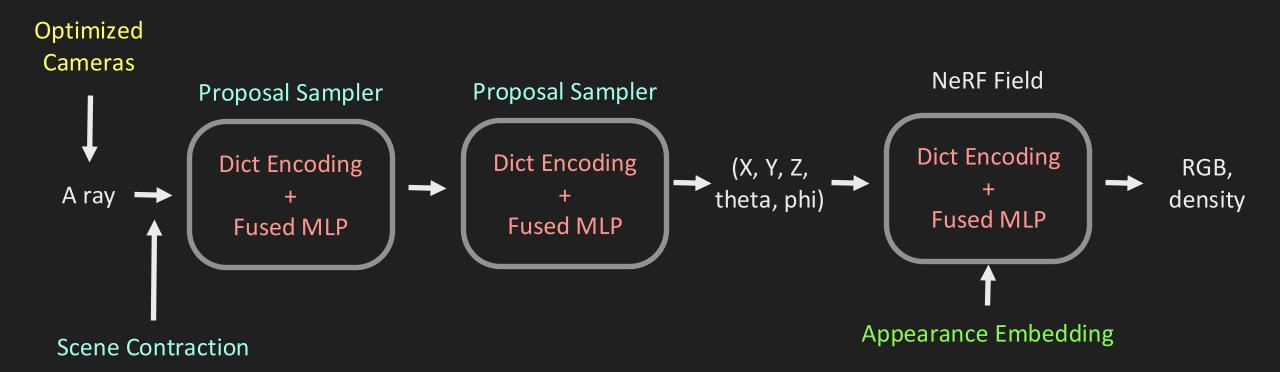
- Positional Encoding
- Fourier Features
- Hash Encoding
- Spherical Harmonics
- Matrix Decomposition
- Fused MLP
- Voxel Grid

- RGB
- RGB-SH
- Depth
- Accumulation
- Normals

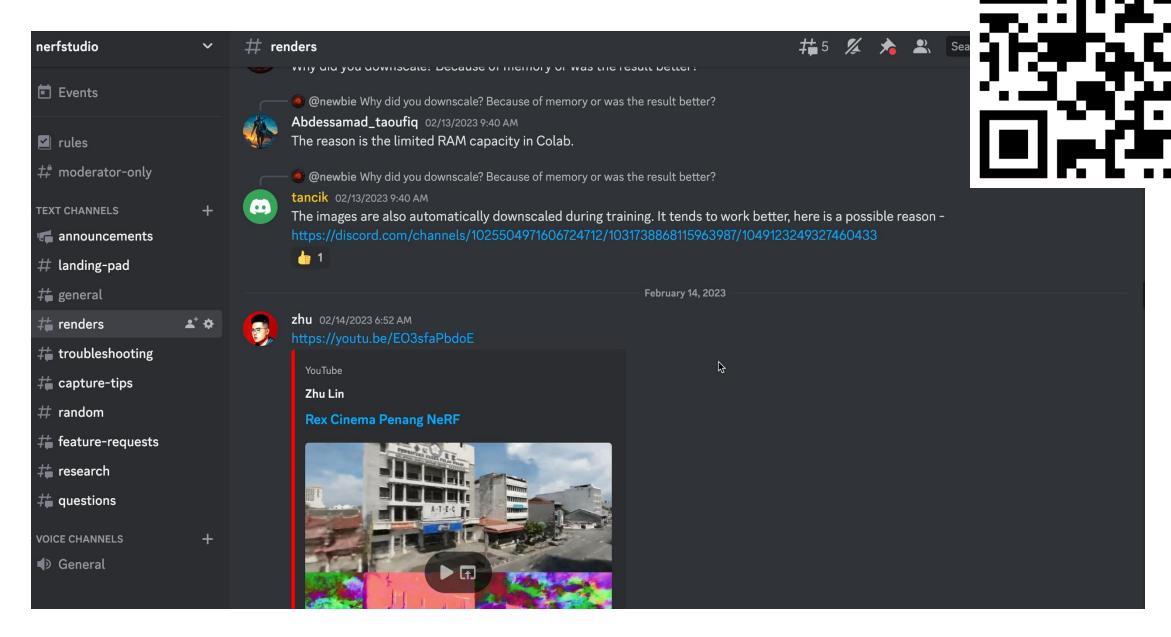
Pythonic and Modular

Nerfacto

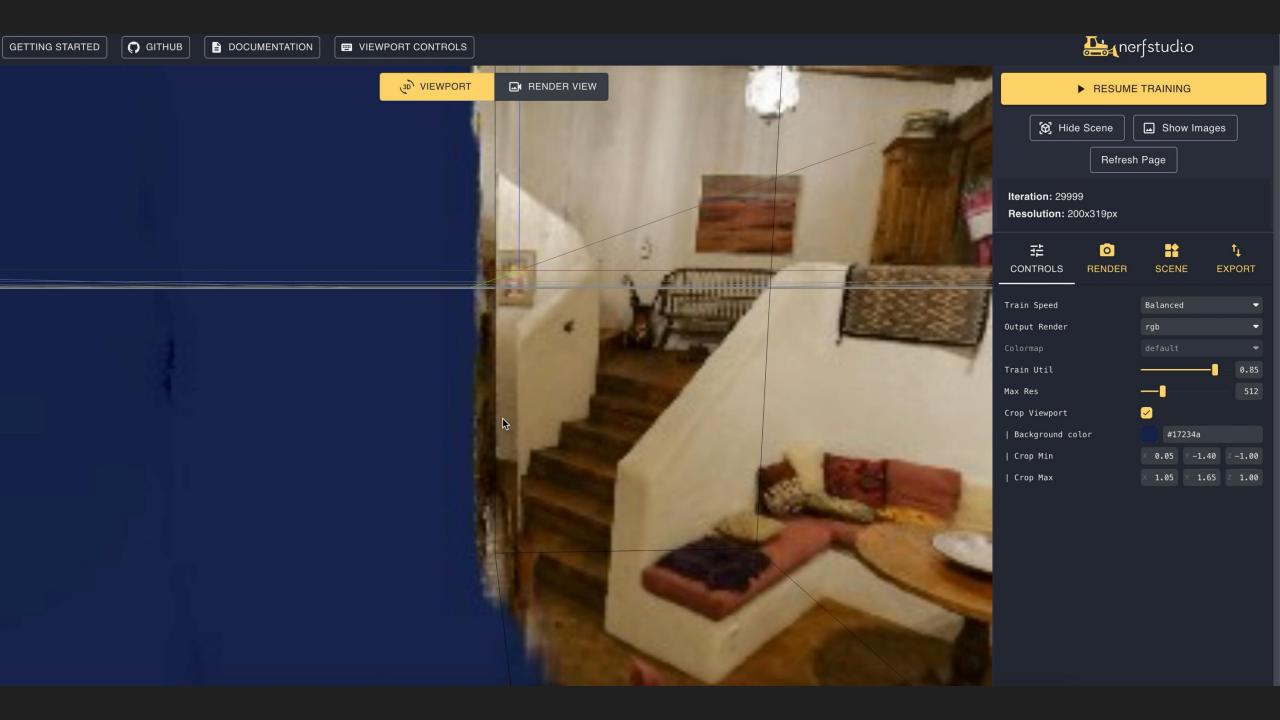
Striking the balance between performance & easy development

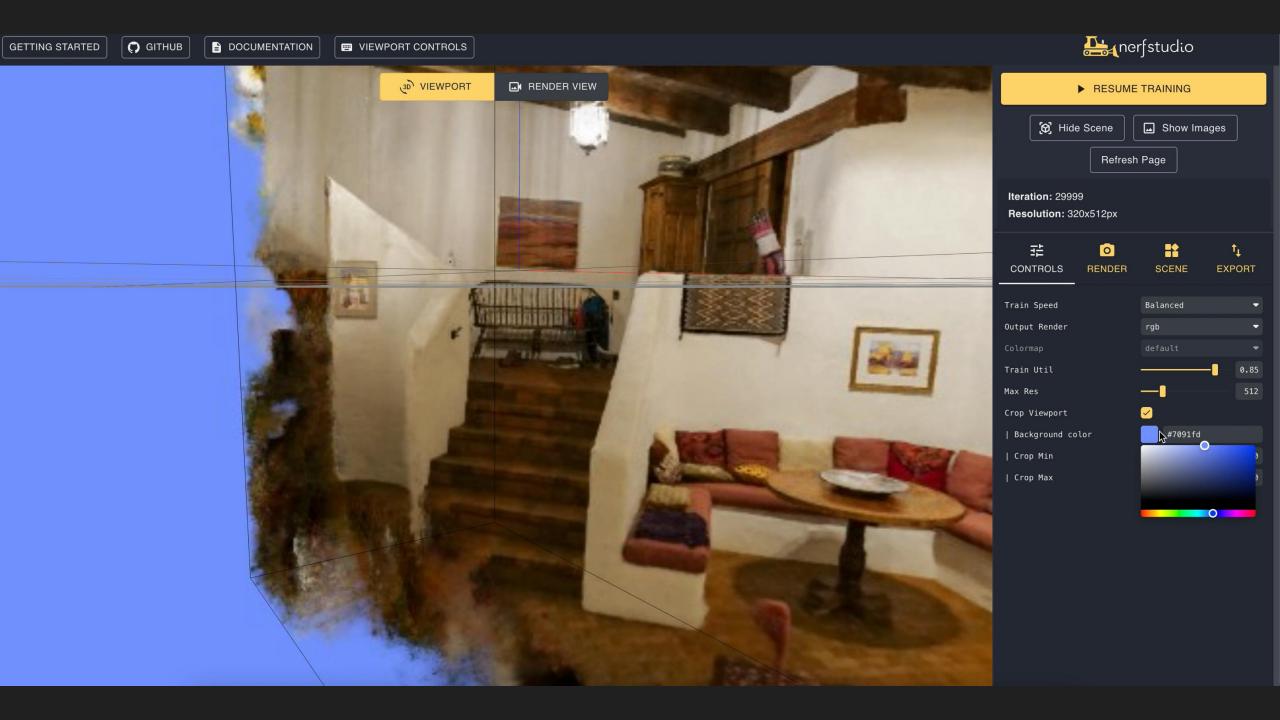


An Active Discord Commun



Viewer

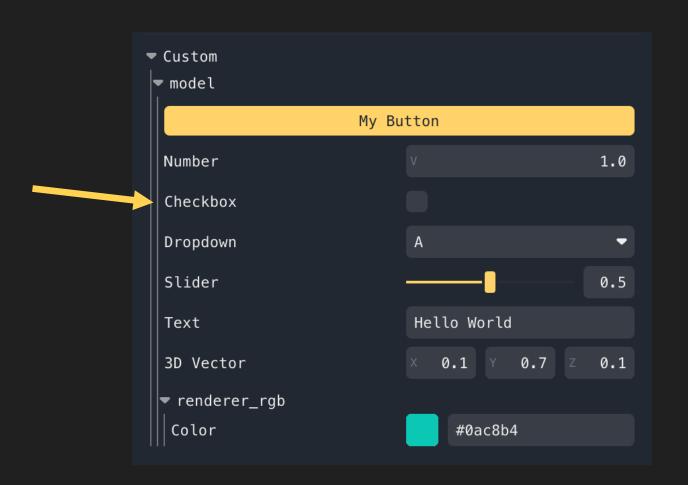




Custom Interactivity

self.checkbox = ViewerCheckbox(name="Checkbox", default_value=False)
:

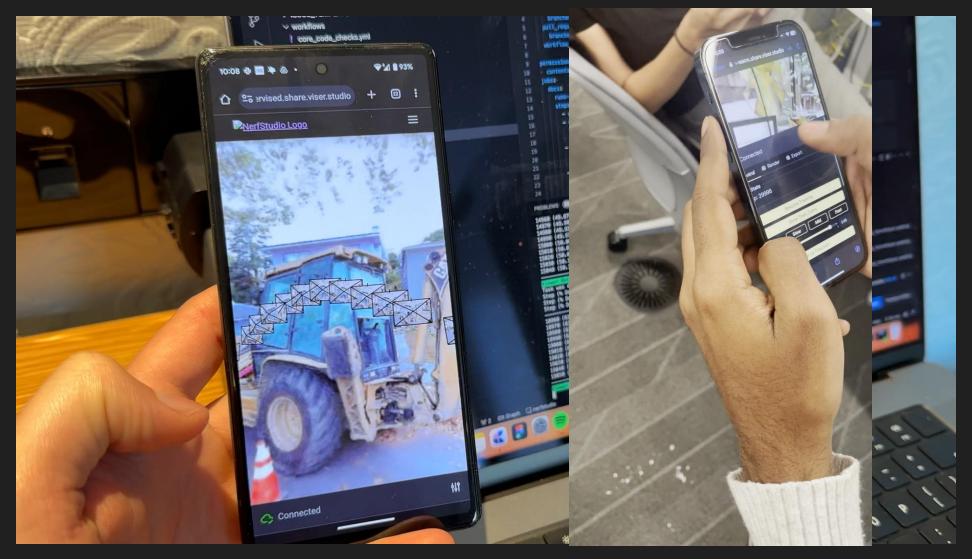
current_value = self.checkbox.value



viser.studio

Coming Soon: Viser Integration

Python library for web-based 3D visualization

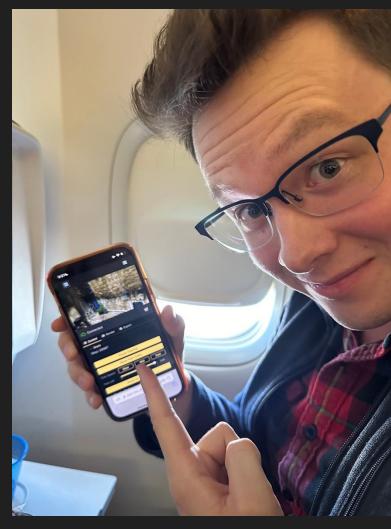


Shareable Links

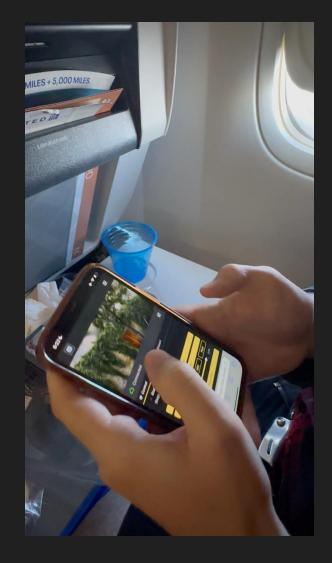
Mobile Support

Coming Soon: Viser Integration

Python library for web-based 3D visualization



Shareable Links



Mobile Support

Export Options

Geometry Conversion

Camera Effects

VFX: Blender Integration

