< / .\‘ “‘-‘* e

Neural Radiance Fields pt 3

\
4§¢.

v 5 ¥ ’ 24 L = » Wl . : o
: (- YAV S e . e AR £ v . : ki &
b g (G f . : 4 1
T4 . . . & made with

' nerfstudto

[.;’ l' N - A] .) - %
o e ‘ " i ' 3 ;
o 2y ¢ ; M \;' 2 | P ¢~y . .
rJI'L . " .",‘3,"".45 o507 A"’ i L : ¥

C5180/280A Intro to Computer Vision and Computatlonal Photography

Lots of content from Noah Snavely and Ben Angioo Kanazawa and Alexei Efros

Mildenhall, Pratul Srinivasan, and Matt Tancik from
UC Berkeley Fall 2025

ECCV 2022 Tutorial on Neural Vol i Renderi
for C Visi

https://sites.google.com/berkeley.edu/nerf-tutorial/home?pli=1
https://sites.google.com/berkeley.edu/nerf-tutorial/home?pli=1

Where we are

Now we need to render an image from
this 3D representation in a differentiable

manner
Volumetric 3D Differentiable Rendered Image:
Representation 0 Volumetric Rendering ’

“Trdining" Obiecﬁve (CII(CI AnGIYSiS-by-SynfheSiS):

|
m 1 n Rendered Image: | e Observed Image:
k | 2

A Precursor: Multi-plane Images

-~

Layers at
. fixed depths,
each is an
RGBA image.

TS

.
. 3 . . - .
. E . -~ 1 . -
.
- [» o A . .
. .
. .
O O 0
. . - . .
. . * *
. * s
- . .
+ . T
s b .
. I .
* . e " * .
. - * .
. .
. .
- N . N
- .t . . .
N N . . | .
. . + .
. .
L. .-, . * .
. . . * =
. . . . o
L. ., . . .
L. "
.
. . . .
. . . .
. . . .
. . .t .
L. . . " .
.t e

Reference viewpoint v Q Novel viewpoint

Zou et al. Stereo Magnification, SIGGRAPH 2018

Also called front-to-back compositing or “over” operation

Alpha Blending

~ =
=)V(Cb: ab)
for two image case, A and B, both 1\ l
. A g
partially transparent:) |
= = =

(Ca @q)

I=Choa,+ Cya,(1 —ay)
——

How much light is the previous layer lettina through?

'_ layer D
General D layer case: 1Y

‘ __.%oner 2

:'Iclyer 1

Volumetric formulation for NeRF

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral

Volumetric formulation for NeRF

c(t), a(t) Ray r(t) = 0 + td

t

Camera

at a point on the ray r(t) , we can query color ¢(t) and density a(t)

How to integrate all the info along the ray to get a color per ray?

ldea: Expected Color

* Pose probabilistically.
* Each point on the ray has a probability to be the first “hit” : P|first hit at t]

* Color per ray = Expected value of color with this probability of first "hit”

— H tl
for a ray r(t) = o + td: c(r) = f Plfirst hit at t]c(t)dt
t

T ‘
i—1

n
S AN e Ti=J1(-a) @ =1-exp(-0i6)
]:

X
]
S
a
=

Differentiable Volumetric Rendering Formula
for a ray r(t) = o + td:

"y differentiable w.rt. C, 0 Ray

* " colors

weights

How much light is blocked earlier along ray: 3D volume

1—1
T; = [1(1—a)
j=1

How much light is contributed by ray segment i:

‘Cdmerd
a; =1 — exp(—0;0;)

Delta is the length of each segment: §; = t;;1 — t; ?

Visual intuition: rendering weights is specific
to a ray

Ray

3D volume

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

10
10

Visual intuition: rendering weights is specific
to a ray

Camera

N
C ~ E !szﬂz‘}'i
i—1

3D volume

Ray

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

11
11

What’s the point

* Remember, for each pixel or a ray we render a color with this formula
based on the Volumetric 3D Representation

* We use this to supervise the 3D Representation (sigma, RGB volume)

Differentiable Rendered Image:
. . ﬁ ’
Volumetric Rendering |

Volumetric 3D Representation 0

“Training” Objective (aka Analysis-by-Synthesis):

|
m 1 n ‘ ‘ Rendered Image: Observed Image: | ‘
I’ | 2

Connection to alpha compositing

n
Expected Color =), T;c; (1 — exp(—0;0;))
-

[Tewto = e 0

l l
a; = 1-— exp(al-(Sl-)
1— a; = —exp(0;0;)

L \VJ
segment

opacity (;

n
Expected Color =), T;c;q;
i=1

i—1
where T; = exp (— D aj5j>
j=1

i—1
=[1(A—-«a)
j=1

Summary

for a ray r(t) = o + td:
g s e mesmrenmend I {fE€ r€ Ntiable W.rt. €, 0 Ray

n 3
2, Tia;c;
=1 3

colors

weights

How much light is blocked earlier along ray: 3D volume

1—1

T;=111-q)

j=1 ‘
Camera

How much light is contributed by ray segment i:

a; =1 — exp(—0;0;)

Alpha mattes and compositing

Alpha mattes and compositing

Alpha mattes and compositing

Alpha mattes and compositing

Mildenhall*, Srinivasan®, Tancik* et al 2020, NeRF
Poole et al 2022, DreamFusion 44

Tang et al 2022, Compressible-composable NeRF via Rank-residual Decomposition

Rendering weight PDF is important

Remember, expected color is equal to

[TOo(Oc®)dt ~ Z T.ac; = Z wic,

l l

T(t)o(t) and T;«; are “rendering weights” — probability distribution along the ray
(continuous and discrete, respectively)

You can also render entities other than color in 3D, for example it’s depth, or any
other N-D vector v;

Volume rendered "feature” =), w;v;
{

Rendering weight PDF is important — depth

We can use this distribution to compute expectations for other quantities, e.g.
“expected depth”:

t = YT;a;t;
i

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.

Rendering weight PDF is important — depth

Mean depth Median depth

47

Volume rendering other quantities

This idea can be used for any quantity we want to “volume render” into a 2D image. If V lives
in 3D space (semantic features, normal vectors, etc.)

YTia;v;
l

can be taken per-ray to produce 2D output images.

Volume Rendering CLIP features

LERF: Language Embedded Radiance Fields, Kerr* and Kim* et al. ICCV 2023

Density as geometr

Normal vectors (from analytic gradient of density)

51

Previous Papers

r~ —8 .

/ 7= z=2

N—T - e | =

\\\J‘:) 'JJ

e T IRSEgENE
r i—1

Differentiable ray consistency work used a forward (1—af) [[=}, ifi<N,
model with “probabilistic occupancy” to supervise plzr =i)=¢ =
3D-from-single-image prediction. z7, ifi =N, +1
Same rendering model as alpha compositing! v =t

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction via
Differentiable Ray Consistency

52

Similar Ideas before NeRF

Multiplane image methods Neural Volumes

Stereo Magnification (Zhou et al. 2018) (Lombardi et al. 2019)

Pushing the Boundaries... (Srinivasan et al. 2019) Direct gradient descent to optimize an RGBA volume,
Local Light Field Fusion (Mildenhall et al. 2019) regularized by a 3D CNN

DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D
CNN, big RGBA 3D volume comes out

AR
Input Sampled View

53

Signal Processing Consideration
In NeRFs

What is this process?

What is happening here? Aliasing!!

Naive (original) NeRF

Slide Credit: Pratul Srinivasan

Where to place samples along rays?

Ray

3D volume

How to be more efficient than dense sampling?

Ray

3D volume

How to be more efficient than dense sampling?

Ray

3D volume

Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling

lteratively use samples from NeRF to more
efficiently sample visible scene content

Acceleration Structures

Distill /cache properties of NeRF into a structure that
helps generate samples: e.g. Occupancy Grids

Straightforward compute —> storage tradeoff

Hierarchical ray sampling

Key ldea: sample points proportionally to expected
effect on final rendering

Ray

3D volume

63

63

Key ldea: sample points proportionally to expected
effect on final rendering

Ray

3D volume
treat weights as probability

distribution for new samples

64

64

Key ldea: sample points proportionally to expected
effect on final rendering

Ray

arse samples (stage 1)

ne samples (stage 2)

3D volume
treat weights as probability

distribution for new samples

65

65

What about aliasing during coarse sampling?

Ray

3D volume

What about aliasing during coarse sampling?

Ray

3D volume

What about aliasing during coarse sampling?

Solution: train two NeRFs! —> lower resolution for first “coarse” level

Ray

“coarse” 3D volume

What about aliasing during coarse sampling?

Solution: train two NeRFs! —> higher resolution for second “fine” level

Ray

“fine” 3D volume

‘ Camera

This strategy is used in the original NeRF paper, you can implement it as an EC.

Further Reading on this Topic

* MipNeRF

* Low-pass filter the positional encoding

* MipNeRF360
* For 360 scenes

* Train a “Proposal Network” instead of Coarse & Fine Networks that tells where
to sample

https://jonbarron.info/mipnerf/
https://jonbarron.info/mipnerf/
https://jonbarron.info/mipnerf360/
https://jonbarron.info/mipnerf360/

Other Advanced Topics

Compression capability of NeRF

* If Image is 256x256x3, why memorize this with a MLP?
* 3 layer MLP with 256 neurons ~ 3*256”2 learnable parameters

* In 3D:
* if there are 100 input images: 100 * 256x256x3 = 19M
* 8 layer MLP with 256 neurons ~ 524K
* Just 3% of what it takes to hold 100 images

* MLP size doesn’t change even if we have 1000 input images

* Trade off?
 SPEED!

Why is NeRF Slow?

NeRF

—» G Density For each image

For each pixel (800, 800)
> D > 000 For each sample (256)

T Eval NeRF Network

d

(X,), z) —>p

You have to sample densely in R> ~ 163 million network calls

Cache everything?

NeRF

(X,), 2) =—

—>» o Density

—>|:|—>ooo
A

d

R° is a lot to cache

Recall:

ll-.-..“
','l v n\‘\'

TaNALE e : ;

- -'l- 'I'v

lq" .“' '. i Pl
-..:hll' : : -..'.'m-rm..v. - LA i YL

= 'l'u
" ", " T IR -h .-.. P Ll N TTT R
v)] |, lnnv s 1
... niive _,,. oM

aTH " .:- —". N“..‘i

S | ',;"h l.l'.-
SRRt T TV

b., 59. .:‘?,:
i"
"- = vl

‘

\,\ ,\\

\:'n ---

We can factorize the location R3 & the view direction R?!

ldea

2. Store density + SH in efficient

1. F r view-dependent effects
actor out P data structure (Octree)

5, 7, _)l:”] —>(7 Density

ko.

>
0.0) > K@M - C
(9, 9) L@@k @ Color

BOL@OHSHSK® L

PlenOctree =

Spherical Harmonics
View-dependent Octree

Spherical Harmonics to model view dependent Color

SH models function on a sphere:
* Fourier basis on the sphere

F8) =) yi(s)
1=0

s — point on a unit sphere, s = (@, 0)
k; - coefficient of i-th basis

y;(s) - SH basis, analytically
computed, as shown on the video

Learn k;

NeRF with Spherical Functions

NeRF
(X,), 2) =— I:
NeRF with Spherica

39— D[

—>» o Density

D—)OCC

:

Harmonics (NeRF-SH)
—3» ¢ Density

—> Kk

Yu et al. ICCV 2021

PlenOctree =
Sparse Voxels + SH coefficients

* 0
k 0

k@K ®k @

k@K @kSk@k;®

Only stores nonempty voxels

Plenoxel = “Plenoptic Volume Element”

E 0290029 029 Spherical

0PSO 00O 00S :
o« e (200 @0p @9p Harmonics
io s -
e o hd g I
o i » ® E '
“_“I___. i. i
@ ® ’
° ¢ *) O
) . ",..
o | &
0
o i ®
o . ¢
o
o -
®

Generalization of PlenOctree — A data structure consisting of Plenoxels Yu et al. CVPR 2022

No MLP required..

D :3! :(9)! :g! Spherical
- .
. 005902988 Hamoncs
g . e foa - Predicted
o e . v o Al Color
e Ray Distance >
/ ® ¢) Volumetric Rendering
| g,
. o - {0, @}

Training H g .

Image . - _ o
a) Sparse Voxel Grid b) Trilinear Interpolation d) Optimization

Make continuous via tri-linear interpolation

® =p(ad+ (1 —aB))
+(1 - pB)(aC + (1 — aD))

NeRF Plenoxels

‘Mildenhall et al. ECCV 2020}

seconds

But MLPs are convenient

”'
.'.

Position — E‘!”

WAWAYAV/AN

Feature Grid .
‘9'(‘\ A\& ')/ A\‘I{’/ A‘ A\\‘

‘u;o

’
M‘M. ‘ ./"

xS N oO I'/

View Direction == .”“ A\\"’//ﬁi/
Appearance Embedding ==
Time w—)

Hybrid approach

InstantNGP

Grid = hashmap = Feature retrieval

Pass to a small MLP

Fast and convenient!

Feature Grid

Feature Grid > Hashmap

Mapping with collisions

Hashtable Miiller et al. SIGGRAPH 2022

Latest: Gaussian Splatting

* Approximate with 3D
Gaussian points

* Rasterize instead of volrend
Still alpha-blend

* no MLP + SH like plenoxels

Kerbl and Kopanas et al. SIGGRAPH 2023

Recap: Rendering Volumes

<§€§

1. Draw samples along the ray

2. Aggregate their contributions to render

Slides thanks to loannis Gkioulekas & Shubham Tulsiani

Rendering Primitives (e.g. Gaussians)

X—o—o—do—o—o—o—o—o—o—o—o—
<§o

N
\

1. Draw samples along the ray

2. Aggregate their contributions to render

Slides thanks to loannis Gkioulekas & Shubham Tulsiani

Rendering Primitives (e.g. Triangles/Meshes)

Qé‘

Rendering Primitives (e.g. Triangles/Meshes)

7 (wasteful — we know where
y the primitives are!)

1. Find primitives that affect the pixel

2. Aggregate their contributions to render

Rendering a mesh via Rasterization

Rasterization = conversion of

primitives to pixels (details in

CS184) T T AN

A+ 1+ N\

//-I- + |+ |+ -
Rasterizat |]| " //l- + |+ |+ |+ |\ |
-/A + |+ |+ +_:_A .

Blending (+ SI

Rendering a mesh via Rasterization

Rasterization = conversion of
primitives to pixels (details in
CS184)

Ve |+

+ |+ |+ |+ |+

-\ + |+ |+ +\\\ .

Blending (+ Shading’

Rasterization

def render(mesh, camera):

some structure to store K triangles
for each pixel
sorted_k_closest_img = ...

Iterate over all triangles
for triangle in mesh:
tri_2d = project(triangle, image)
by
Update closest_K_img for pixels within tri_2d
e

Iterate over all pixels
for pixel in camera.grid:
Iterate over triangles influencing this pixel
for triangle in sorted_k_closest_img[pixell]:
B e
Aggregate appearance
]

Qlidec thanke to loannic Gkiolilekas & Shiibham Tiilsiani

Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
def render(gaussians, camera):
R

Initialize a rasterization data structure
(records influencing primitives for each pixel)
e

for gaussian in gaussians:
. . gauss2d = project(gaussian, camera)
Rasterization
#H##
Update rasterization data structure
e

for pixel in camera.grid:
_ #H##
Blendlng # Aggregate appearance from influencing gaussians

HH#
Slides thanks to loannis Gkioulekas & Shubham Tulsiani

Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
1 —le-p)TV™l(x-p)

Positonp 9v(x—p) =

N\

Slide adapted from Vincent Sitzmann. Slides thanks to loannis Gkioulekas & Shubham Tulsiani

Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
I 1-p)TV ™ i(x—p)
gv(x—p) = re 2 P i
27|V |2

Slide adapted from Vincent Sitzmann. Slides thanks to loannis Gkioulekas & Shubham Tulsiani

Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
1 1 T~r—1
" G) — 1 —5(x=p)" V7 (x-p)
Positonp 9v(x—p) T e

Sy 0
S = [0 s, 0] Factorize as scale and rotation: V = RSSTRT
0

Each Gaussian also has an opacity and view-dependent
color (via SH coefficients). «, C

Slide adapted from Vincent Sitzmann. Slides thanks to loannis Gkioulekas & Shubham Tulsiani

Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
Ye

We can use the camera
extrinsics to transform each 3D
Gaussian to the camera frame

Camera
coordinate
system

Zc

World coordinate
system

paR7S p’,R’,S

Slides thanks to loannis Gkioulekas & Shubham Tulsiani

E o £z
| | | | | | | J — z Zy
Differentiable Gaussian Rendering “ I * !
What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
U _X_
Ye W(X) — u zlv| =K g
1T: Projection function for L e
mapping 3D points to pixels
Tc
Zc sze;a 2D] . ()
Coogygzri mean: U2p = T(U3D
2D covariance:
Q: What is the image-space om
o . J = — (M3D)
projection of a 3D Gaussian? 0X
p, RS A: Can approximate as a 2D Gaussian! Yop = JZSD JT

(EWA Volume Splatting. Zwicker et. al. 2001)Slides thanks to loannis Gkioulekas & Shubham Tulsiani

Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?

1. Sort Gaussians from closest to
furthest from the camera

. 2. For each pixel u, compute opacity
for each gaussian Gy,:
p2p = m(13D)
T 6_(u_N§D)T(ZgD)_1(u_H’§D)
29p = J23pJ ap = Qg

27T|212€D‘0'5

(In practice, can rasterize ‘blocks’ instead of entire image as

not all Gaussians influence all blocks
Slides thanks to loannis Gkioulekas & Shubham Tulsiani

Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
<§ : o <
v

Compute per-Gaussian weights based on opacities of current and previous Gaussians:
. k—1 .
Use per-Gaussian SH coefficients and ray direction to get view-dependent color €,

Aggregate to obtain pixel color:

C = E WECE
k

Slides thanks to loannis Gkioulekas & Shubham Tulsiani

Gaussian Splatting: Bells and Whistles

+ Lots of efficient GPU optimization strategies

.. .. ° Q‘
@ o: . ——¥ | Initialization | —»]
St Faiits 3D Gaussians

3D Gaussian Splatting for Real-Time Radiance Field Rendering. Kerbl et. al.

Initialize with sparse
point cloud from SfM

Split/clone
Gaussians based on
heuristics

Slides thanks to loannis Gkioulekas & Shubham Tulsiani

Bottom line

Gaussian Splats still estimate volumetric rendering (same alpha-
compositing, just with gaussians)

MUCH faster because no sampling, no neural nets, rasterization
From 30 sec / frame for 800x800 image original NeRF
* Plenoxels/InstantNGP: 10-30FPS 1920x1080 image

* GS: ~100-200+ FPS at 1920x1080

Best balance of quality and speed — current status quo

-
a

.
P o Ry o>
= “ary £ ‘;.-..'_ ‘.‘"‘y - 4,‘" ~ Sty 3

e

y -
.
>

.

Py :’-.“ -,/:.. ;'Cv
-..‘- ?';./‘.,,,.4 v
%

Camera Quality

Small noise in the camera can be made robust by also optimizing the
camera

\ So far we’ve been

optimizing this

Also do backdrop on the
camera parameters

Camera

No Pose Optimization | Block-NeRF

-
-

Camera Optimization

Small noise in the results can be improved

Starting from scratch is still an active area of research [Barf Lin et
al. 2021, NeRF— ...]

Noisy Camera from IMU/Lidar Result with Camera Optimization

The Dynamic World

Memories of Australia —Andrew S. Hamilton

Holy grail

* Dynamic Novel View Synthesis from Monocular Camera

* Very difficult! Extremely under constrained problem

Simple baseline for adding time

(x,v,2,0,0, 9% | | =¥ (r,9,b,0)
Faq

Hard without simultaneous multiple view!

Through a deformation network

Deformation Network NeRF
(x,y,2) x",y',z") (r,9,b,0)

Camera Coordinate Canonical
Frame Coordinate Frame

Still very under constrained

D-NeRF [Pumarola et al. CVPR 2021], Nerfies [Park et al. ICCV 2021], HyperNeRF, NR-NeRF, efc..

Dynamic View Synthesis: Monocular is hard

D-NeRF [Pumarola et al. CVPR 2021] NSFF [Li et al., CVPR 2021],HyperNeRF[Park et al. SIGASia 2021]...
* But performance on in-the-wild monocular capture still far [Gao et al. NeurlPS 2022]

train view Nerfies

train view

What if we knew how they deform??

HMMR, Kanazawa et al.
CVPR 2019

HumanNeRF Weng et al. CVPR 2022

Other kinds of dynamic changes

Appearance Changes

Exposure differences

Lighting changes (day, night)..

Clouds passing by..

Nerf-W [Martin-Brualla et al. CVPR 2021]

Appearance Embedding: Pretty Robust
Solution

(X,y,Z,9,¢, Vl)-> = (T,g,b,O')
'

Fq

Appearance Embedding

N-dim vector
Optimized perimage: “Auto-Decoding”
ie GLO: Generative Latent Optimization [Bojanowski et al. ICML 2018]

Nerf-W [Martin-Brualla et al. CVPR 2021]

https://arxiv.org/search/stat?searchtype=author&query=Bojanowski%2C+P

Appearance Changes

Appearance Encoding is Effective

Transient objects

* Happens all the time! People
moving around, interacting with the
world

* Difficult! Problem of Grouping

* how do you know which part is
connected or

* Can use two NeRFs, one global,
one per-image, but this often
leads to degenerate solutions

* Current solution: Ignore (mask out)

Why is dynamic scenes hard?

* Unless you have a light dome

* Essentially you only have a single-view

Building & Reusing
Prior Knowledge

Machine Learning

NeRF Is per-scene optimization

* We need lots of images to get good view synthesis!!

* Also there’s no knowledge reused from prior scene reconstructions

* How to bring learning in the picture?

Few-shot NeRF

* One-shot (single-view): pixeINeRF [Yu ~ °* How to deal with the multi-modal

et al. CVPR’'19] nature of the problem??
Input View \ f
ﬁ"?] (z.d) - I:":II:“:' — (RGBo)
- e—
2 1
- q v " W(nx)

CNN Encoder

* Few-shot (3~10 V|ews) pixelNeRF,|
BRNet [Wang et al. CVPR'21], MVSNet
[Chen et al. ICCV’21], efc...

* Challenging for predicting completely
unseen real scenes

IBRNet

Data 1s the bottleneck

* Large-scale Real-World Multi-view Data is hard to collect:
CO3D [Reizenstein ICCV 2021]

* Alot to learn from other single-view 3D prediction models:

Gkioxari et al. CVPR 2022

https://gkioxari.github.io/

Time Line

] 3D Generation
Real-Time

_ Fast Training DreamFusion Quality & Speed
NeRE Rendering Plenoxels, Gaussian Splatting
paper release ienctrees, . InstantNGP - City-scale '
astNeRF, SNeRgG, .
(arXiv) cte. etc.. BlockNeRF..
*l Y . R

March 2020 March 2021 March 2022 March 2023 March 2024

=£ AR < - R A e - Kerbl* and Kopanas* et al.
PoolertikletGURQVS 2 g , i SIGGRAPH 2023

Time Line

3D Generation

Quality & Speed
Gaussian Splatting

ReaI-Tlr-ne Fast Training DreamFusion
NeRE Rendering Plenoxels,
e .
PlenOctrees, Instant-NGP City-scale
paper release FastNeRF, SNeRG, otc.. BlockNeRF
(arXiv) etc.. .
March 2020 March 2021 March 2022 March 2023

@ October 2022
[

nerfstudio

March 2024

A Modular Framework for NeRF Development

Matthew Tancik*, Ethan Weber*, Evonne Ng*, Ruilong Li, Brent Yi, Justin Kerr,
Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja,
David McAllister, Angjoo Kanazawa

+143 additional Github collaborators
SIGGRAPH 2023

Design Goals

Easy to:

Use
Develop
Learn

An End-to-End Framework

-~~~ Samplers @ Fields

Uniform Fused MLP
: Occupancy Voxel Grid
Mobile PDF
Polycam Proposal
Record3D
KIRI Engine 3y, —
n /\. Encoders (@) Renderers
Positional Encoding RGB
Deskto Fourier Features RGB-SH
COLMAP Hash Encoding Depth
Metashape Spherical Harmonics Accumulation
RealityCapture: Matrix Decomposition Normals

Input Modular Components Real-time web viewer

[GETTING STARTED] [O GITHUB] [B DOCUMENTATION } {E VIEWPORT CONTROLS } %ﬁtnerfStUdi.O

‘ @ VIEWPORT [E RENDER VIEW

L% TRAINING COMPLETE

[©. Show Scene } [[Z Hide Images J

Refresh Page
Iteration: 29999

Resolution: 320x512px

= 0] 1)
CONTROLS RENDER SCENE EXPORT
Train Speed Balanced v
Output Render rgb -
Colormap default v
Train Util — @ o.85
Max Res — 512

Crop Viewport

Data Pipelines

Onboarding Pipelines

e COLMAP

e Polycam

e Record3D

e MetaShape

e RealityCapture
e Kiri Engine

onlycam -+ @4& nerfstudio

Easy to Develop

Sampling Fields & Encoders

Volumetric
Rendering

Pythonic and Modular

Easy to Develop

Volumetric

Sampling Fields & Encoders Sanerie

e Uniform e Positional Encoding « RGB
e Occupancy e Fourier Features e« RGB-SH
« PDF e Hash Encoding e Depth
e Proposal Spherical Harmonics e Accumulation
e Spacing Fn e Matrix Decomposition e Normals
e Fused MLP
« Voxel Grid

Pythonic and Modular

Nerfacto

Striking the balance between performance & easy development

Optimized
Cameras CeRE Fiold
1 Proposal Sampler Proposal Sampler € 1€
Dict Encoding Dict Encoding (X,Y, Z, Dict Encoding RGB,

—
* + theta, phi) +

Fused MLP Fused MLP

density

Fused MLP

t

Scene Contraction Appearance Embedding

mip-NeRF 360, NeRF-W,

C t Model
urrent iviode NeRF--/BaRF, InstantNGP

An Active Discord CommurE| =]

nerfstudio renders

VVIlYy UIW yUU UUWIIOLALT: WUTLAUOT VI HTITIHTHIVIE Yy VI VWdAO LT I CouLlL WG LLTl ¢

Events
@newbie Why did you downscale? Because of memory or was the result better?

. Abdessamad_taoufiq 02/13/2023 9:40 AM
rules a4 The reason is the limited RAM capacity in Colab.

moderator-only @newbie Why did you downscale? Because of memory or was the result better?

tancik 02/13/2023 9:40 AM
TEXT CHANNEL . . ; . _ .
© 3 The images are also automatically downscaled during training. It tends to work better, here is a possible reason -

announcements

landing-pad &

general February 14, 2023

renders zhu 02/14/2023 6:52 AM

troubleshooting
YouTube
capture-tips

Zhu Lin
random

feature-requests

research

questions

VOICE CHANNELS

General

*ﬂ(ﬁgﬁ; i &Ew\os

ékik

@

/

o)/
/

»
,‘,Vxln«. I R P S
..I.v l Un' ’gnlt'

¢ 108 ..z)..n,oa... .ans.s»:.
. -

455

“

gy & #wy o
| e e

.
” z

’ £ s

» B . "
. e
= pr 2 3. «
42 > (0
; e s
2 t v Fe g7
. _—) A P i 2
" ’ y i s &
’ v e P s
¥ . o & § , By
pis - .
- " L4
: L' .
. i

Viewer

GETTING STARTED] [Q GITHUB] [B DOCUMENTATION } [E VIEWPORT CONTROLS m

&&= (nerfstudio

\35\ VIEWPORT [} RENDER VIEW » RESUME TRAINING

[©. Hide Scene

‘ [Show Images ’

Refresh Page
Iteration: 29999

Resolution: 200x319px

3= O] 1 'L

CONTROLS RENDER SCENE EXPORT
Train Speed Balanced v
Output Render rgb -
Colormap default -

Train Util —fB o.85

Max Res —10 512

Crop Viewport

| Background color #17234a

| Crop Min X 0.05 Y-1.40 Z-1.00

| Crop Max X 10a58 AE12650 Z3NIt 00

GETTING STARTED] [o GITHUB] [B DOCUMENTATION } [B VIEWPORT CONTROLS m

&&= (nerfstudio
_—

\35\ VIEWPORT [} RENDER VIEW » RESUME TRAINING

[©. Hide Scene

[[Show Images ’

Refresh Page

Iteration: 29999
Resolution: 320x512px

—r
= O] 1 H
CONTROLS RENDER SCENE EXPORT
Pt Tt ” Train Speed Balanced -
| |
- '!'.l!l.lu“' Output Render rgb -
f—_— L E Colormap default -
Train Util — @ 0.8
Max Res —10 512
Crop Viewport
| Background color .[}#mglfd
| Crop Min)
| Crop Max L)

self.checkbox = ViewerCheckbox(name="Checkbox", default_value=False)

current_value = self.checkbox.value

Custom Interactivity

* Custom

N

* model

My Button

Number v 1.0
Checkbox

Dropdown A -
Slider ! | 0.5
Text Hello World

3D Vector e v 8.7 - 0.1

¥ renderer_rgb

Color . #0ac8b4

Coming Soon: Viser Integration

Python library for web-based 3D visualization

mmmmm

1 “; :::::::::::::: -
ot |

XX

LT

Shareable Links Mobile Support

Coming Soon: Viser Integration

Python library for web-based 3D visualization

viser.studio

Shareable Links Mobile Support

Export
Options

Geometry Conversion

LT
)
w

8 MOVING SERVICES

Point Cloud

Camera Effects

VFX: Blender Integration

Grade eterna

Grade eterna

	Default Section
	Slide 1: Neural Radiance Fields pt 3
	Slide 2: Perceiving the 4D World

	Volumetric Rendering
	Slide 3: Where we are
	Slide 4: A Precursor: Multi-plane Images
	Slide 5: Alpha Blending
	Slide 6: Volumetric formulation for NeRF
	Slide 7: Volumetric formulation for NeRF
	Slide 8: Idea: Expected Color
	Slide 9: Differentiable Volumetric Rendering Formula
	Slide 10: Visual intuition: rendering weights is specific to a ray
	Slide 11: Visual intuition: rendering weights is specific to a ray
	Slide 12: What’s the point

	Untitled Section
	Slide 39: Connection to alpha compositing
	Slide 40: Summary
	Slide 41: Alpha mattes and compositing
	Slide 42: Alpha mattes and compositing
	Slide 43: Alpha mattes and compositing
	Slide 44: Alpha mattes and compositing
	Slide 45: Rendering weight PDF is important
	Slide 46: Rendering weight PDF is important — depth
	Slide 47: Rendering weight PDF is important — depth
	Slide 48: Volume rendering other quantities
	Slide 49: Volume Rendering CLIP features
	Slide 51: Density as geometry
	Slide 52: Previous Papers
	Slide 53: Similar Ideas before NeRF

	Sampling
	Slide 54: Signal Processing Consideration in NeRFs
	Slide 55: What is this process?
	Slide 56: What is happening here?
	Slide 57: Where to place samples along rays?
	Slide 58: How to be more efficient than dense sampling?
	Slide 59: How to be more efficient than dense sampling?
	Slide 60: Hierarchical Sampling vs. Acceleration Structures
	Slide 61: Hierarchical Sampling vs. Acceleration Structures
	Slide 62: Hierarchical ray sampling
	Slide 63: Key Idea: sample points proportionally to expected effect on final rendering
	Slide 64: Key Idea: sample points proportionally to expected effect on final rendering
	Slide 65: Key Idea: sample points proportionally to expected effect on final rendering
	Slide 66: What about aliasing during coarse sampling?
	Slide 67: What about aliasing during coarse sampling?
	Slide 68: What about aliasing during coarse sampling?
	Slide 69: What about aliasing during coarse sampling?
	Slide 70: Further Reading on this Topic

	Advanced
	Slide 71: Other Advanced Topics
	Slide 72: Compression capability of NeRF
	Slide 73: Why is NeRF Slow?
	Slide 74: Cache everything?
	Slide 75: Recall:
	Slide 76: Idea
	Slide 77: Spherical Harmonics to model view dependent Color
	Slide 78: NeRF with Spherical Functions
	Slide 79: PlenOctree = Sparse Voxels + SH coefficients
	Slide 80: Plenoxel = “Plenoptic Volume Element”
	Slide 81: No MLP required..
	Slide 82: Make continuous via tri-linear interpolation
	Slide 83
	Slide 84: But MLPs are convenient
	Slide 85: InstantNGP
	Slide 86: Latest: Gaussian Splatting
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Rendering a mesh via Rasterization
	Slide 92: Rendering a mesh via Rasterization
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 100
	Slide 101
	Slide 102
	Slide 103: Bottom line
	Slide 104
	Slide 105: Camera Quality
	Slide 106
	Slide 107: Camera Optimization
	Slide 108: The Dynamic World
	Slide 109: Holy grail
	Slide 110: Simple baseline for adding time
	Slide 111: Through a deformation network
	Slide 112: Dynamic View Synthesis: Monocular is hard
	Slide 113: What if we knew how they deform?
	Slide 114: Other kinds of dynamic changes
	Slide 115: Appearance Changes
	Slide 116: Appearance Embedding: Pretty Robust Solution
	Slide 117: Appearance Changes
	Slide 118: Transient objects
	Slide 119: Why is dynamic scenes hard?
	Slide 120: Building & Reusing Prior Knowledge
	Slide 121: NeRF is per-scene optimization
	Slide 122: Few-shot NeRF
	Slide 123: Data is the bottleneck
	Slide 124: Time Line
	Slide 125: Time Line
	Slide 126
	Slide 127: Design Goals
	Slide 128: An End-to-End Framework
	Slide 129
	Slide 130
	Slide 131
	Slide 132: Easy to Develop
	Slide 133: Easy to Develop
	Slide 134
	Slide 135: An Active Discord Community
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141: Viewer
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147: Export Options
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154

