< / .\‘ “‘-‘* e

Neural Radiance Fields pt 3

\
4§¢.

v 5 ¥ ’ 24 L = » Wl . : o
: (- YAV S e . e AR £ v . : ki &
b g (G f . : 4 1
T4 . . . & made with

' nerfstudto

[ .;’ l' N - A ] . ) - %
o e ‘ " i ' 3 ;
o 2y ¢ ; M \;' 2 | P ¢~y . .
rJI'L . " .",‘3,"".45 o507 A"’ i L : ¥

C5180/280A Intro to Computer Vision and Computatlonal Photography

Lots of content from Noah Snavely and Ben Angioo Kanazawa and Alexei Efros

Mildenhall, Pratul Srinivasan, and Matt Tancik from
UC Berkeley Fall 2025

ECCV 2022 Tutorial on Neural Vol i Renderi
for C Visi


https://sites.google.com/berkeley.edu/nerf-tutorial/home?pli=1
https://sites.google.com/berkeley.edu/nerf-tutorial/home?pli=1




Where we are

Now we need to render an image from
this 3D representation in a differentiable

manner
Volumetric 3D Differentiable Rendered Image:
Representation 0 Volumetric Rendering ’

“Trdining" Obiecﬁve (CII(CI AnGIYSiS-by-SynfheSiS):

|
m 1 n Rendered Image: | e Observed Image:
k | 2




A Precursor: Multi-plane Images
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Zou et al. Stereo Magnification, SIGGRAPH 2018



Also called front-to-back compositing or “over” operation

Alpha Blending

~ =
= )V(Cb: ab)
for two image case, A and B, both 1\ l
. A g
partially transparent: ) |
= = =

(Ca @q)

I=Choa,+ Cya,(1 —ay)
——

How much light is the previous layer lettina through?

'_ layer D
General D layer case: 1Y
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Volumetric formulation for NeRF

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral



Volumetric formulation for NeRF

c(t), a(t) Ray r(t) = 0 + td

t

Camera

at a point on the ray r(t) , we can query color ¢(t) and density a(t)

How to integrate all the info along the ray to get a color per ray?



ldea: Expected Color

* Pose probabilistically.
* Each point on the ray has a probability to be the first “hit” : P|first hit at t]

* Color per ray = Expected value of color with this probability of first "hit”

— H tl
for a ray r(t) = o + td: c(r) = f Plfirst hit at t]c(t)dt
t

T ‘
i—1

n
S AN e Ti=J1(-a) @ =1-exp(-0i6)
]:

X
]
S
a
=



Differentiable Volumetric Rendering Formula
for a ray r(t) = o + td:

"y differentiable w.rt. C, 0 Ray

* " colors

weights

How much light is blocked earlier along ray: 3D volume

1—1
T; = [1(1—a)
j=1

How much light is contributed by ray segment i:

‘Cdmerd
a; =1 — exp(—0;0;)

Delta is the length of each segment: §; = t;;1 — t; ?



Visual intuition: rendering weights is specific
to a ray

Ray

3D volume

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

10
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Visual intuition: rendering weights is specific
to a ray

Camera

N
C ~ E !szﬂz‘}'i
i—1

3D volume

Ray

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!
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What’s the point

* Remember, for each pixel or a ray we render a color with this formula
based on the Volumetric 3D Representation

* We use this to supervise the 3D Representation (sigma, RGB volume)

Differentiable Rendered Image:
. . ﬁ ’
Volumetric Rendering |

Volumetric 3D Representation 0

“Training” Objective (aka Analysis-by-Synthesis):

|
m 1 n ‘ ‘ Rendered Image: Observed Image: | ‘
I’ | 2




Connection to alpha compositing

n
Expected Color = ), T;c; (1 — exp(—0;0;))
-

[Tewto = e 0

l l
a; = 1-— exp(al-(Sl-)
1— a; = —exp(0;0;)

L \VJ
segment

opacity (;

n
Expected Color = ), T;c;q;
i=1

i—1
where T; = exp (— D aj5j>
j=1

i—1
=[1(A—-«a)
j=1



Summary

for a ray r(t) = o + td:
g s e mesmrenmend I {fE€ r€ Ntiable W.rt. €, 0 Ray

n 3
2, Tia;c;
=1 3

colors

weights

How much light is blocked earlier along ray: 3D volume

1—1

T;=111-q)

j=1 ‘
Camera

How much light is contributed by ray segment i:

a; =1 — exp(—0;0;)



Alpha mattes and compositing




Alpha mattes and compositing




Alpha mattes and compositing




Alpha mattes and compositing

Mildenhall*, Srinivasan®, Tancik* et al 2020, NeRF
Poole et al 2022, DreamFusion 44

Tang et al 2022, Compressible-composable NeRF via Rank-residual Decomposition



Rendering weight PDF is important

Remember, expected color is equal to

[TOo(Oc®)dt ~ Z T.ac; = Z wic,

l l

T(t)o(t) and T;«; are “rendering weights” — probability distribution along the ray
(continuous and discrete, respectively)

You can also render entities other than color in 3D, for example it’s depth, or any
other N-D vector v;

Volume rendered "feature” = ), w;v;
{



Rendering weight PDF is important — depth

We can use this distribution to compute expectations for other quantities, e.g.
“expected depth”:

t = YT;a;t;
i

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.



Rendering weight PDF is important — depth

Mean depth Median depth

47



Volume rendering other quantities

This idea can be used for any quantity we want to “volume render” into a 2D image. If V lives
in 3D space (semantic features, normal vectors, etc.)

YTia;v;
l

can be taken per-ray to produce 2D output images.



Volume Rendering CLIP features

LERF: Language Embedded Radiance Fields, Kerr* and Kim* et al. ICCV 2023



Density as geometr

Normal vectors (from analytic gradient of density)

51



Previous Papers

r~ —8 .

/ 7= z=2

N—T - e | =

\\\J‘: ) 'JJ

e T IRSEgENE
r i—1

Differentiable ray consistency work used a forward (1—af) [[ =}, ifi<N,
model with “probabilistic occupancy” to supervise plzr =i)=¢ =
3D-from-single-image prediction. z7, ifi =N, +1
Same rendering model as alpha compositing! v =t

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction via
Differentiable Ray Consistency
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Similar Ideas before NeRF

Multiplane image methods Neural Volumes

Stereo Magnification (Zhou et al. 2018) (Lombardi et al. 2019)

Pushing the Boundaries... (Srinivasan et al. 2019) Direct gradient descent to optimize an RGBA volume,
Local Light Field Fusion (Mildenhall et al. 2019) regularized by a 3D CNN

DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D
CNN, big RGBA 3D volume comes out

AR
Input Sampled View

53



Signal Processing Consideration
In NeRFs



What is this process?




What is happening here? Aliasing!!

Naive (original) NeRF

Slide Credit: Pratul Srinivasan



Where to place samples along rays?

Ray

3D volume




How to be more efficient than dense sampling?

Ray

3D volume




How to be more efficient than dense sampling?

Ray

3D volume




Hierarchical Sampling vs. Acceleration Structures



Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling

lteratively use samples from NeRF to more
efficiently sample visible scene content

Acceleration Structures

Distill /cache properties of NeRF into a structure that
helps generate samples: e.g. Occupancy Grids

Straightforward compute —> storage tradeoff



Hierarchical ray sampling



Key ldea: sample points proportionally to expected
effect on final rendering

Ray

3D volume

63
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Key ldea: sample points proportionally to expected
effect on final rendering

Ray

3D volume
treat weights as probability

distribution for new samples

64
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Key ldea: sample points proportionally to expected
effect on final rendering

Ray

arse samples (stage 1)

ne samples (stage 2)

3D volume
treat weights as probability

distribution for new samples

65
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What about aliasing during coarse sampling?

Ray

3D volume




What about aliasing during coarse sampling?

Ray

3D volume



What about aliasing during coarse sampling?

Solution: train two NeRFs! —> lower resolution for first “coarse” level

Ray

“coarse” 3D volume



What about aliasing during coarse sampling?

Solution: train two NeRFs! —> higher resolution for second “fine” level

Ray

“fine” 3D volume

‘ Camera

This strategy is used in the original NeRF paper, you can implement it as an EC.



Further Reading on this Topic

* MipNeRF

* Low-pass filter the positional encoding

* MipNeRF360
* For 360 scenes

* Train a “Proposal Network” instead of Coarse & Fine Networks that tells where
to sample



https://jonbarron.info/mipnerf/
https://jonbarron.info/mipnerf/
https://jonbarron.info/mipnerf360/
https://jonbarron.info/mipnerf360/

Other Advanced Topics



Compression capability of NeRF

* If Image is 256x256x3, why memorize this with a MLP?
* 3 layer MLP with 256 neurons ~ 3*256”2 learnable parameters

* In 3D:
* if there are 100 input images: 100 * 256x256x3 = 19M
* 8 layer MLP with 256 neurons ~ 524K
* Just 3% of what it takes to hold 100 images

* MLP size doesn’t change even if we have 1000 input images

* Trade off?
 SPEED!



Why is NeRF Slow?

NeRF

—» G Density For each image

For each pixel (800, 800)
> D > 000 For each sample (256)

T Eval NeRF Network

d

(X, ), z) —>p

You have to sample densely in R> ~ 163 million network calls




Cache everything?

NeRF

(X, ), 2) =—

—>» o Density

—>|:|—>ooo
A

d

R° is a lot to cache
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ldea

2. Store density + SH in efficient

1. F r view-dependent effects
actor out P data structure (Octree)

5, 7, _)l:”] —>(7 Density

ko.

>
0.0) > K@M - C
(9, 9) L@@k @ Color

BOL@OHSHSK® L

PlenOctree =

Spherical Harmonics
View-dependent Octree



Spherical Harmonics to model view dependent Color

SH models function on a sphere:
* Fourier basis on the sphere

F8) = ) yi(s)
1=0

s — point on a unit sphere, s = (@, 0)
k; - coefficient of i-th basis

y;(s) - SH basis, analytically
computed, as shown on the video

Learn k;



NeRF with Spherical Functions

NeRF
(X, ), 2) =— I:
NeRF with Spherica

39— D[

—>» o Density

D—)OCC

:

Harmonics (NeRF-SH)
—3» ¢ Density

—> Kk



Yu et al. ICCV 2021

PlenOctree =
Sparse Voxels + SH coefficients

* 0
k 0

k@K ®k @

k@K @kSk@k;®

Only stores nonempty voxels




Plenoxel = “Plenoptic Volume Element”

E 0290029 029 Spherical

0PSO 00O 00S :
o« e ( 200 @0p @9p Harmonics
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e o hd g I
o i » ® E '
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Generalization of PlenOctree — A data structure consisting of Plenoxels Yu et al. CVPR 2022



No MLP required..

D :3! :(9)! :g! Spherical
- .
. 005902988 Hamoncs
g . e foa - Predicted
o e . v o Al Color
e Ray Distance >
/ ® ¢) Volumetric Rendering
| g,
. o - {0, @}

Training H g .

Image . - _ o
a) Sparse Voxel Grid b) Trilinear Interpolation d) Optimization



Make continuous via tri-linear interpolation

® =p(ad+ (1 —aB))
+(1 - pB)(aC + (1 — aD))




NeRF Plenoxels

‘Mildenhall et al. ECCV 2020}

seconds




But MLPs are convenient

”'
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Position — E‘!”

WAWAYAV/AN

Feature Grid .
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View Direction == .”“ A\\"’//ﬁi/
Appearance Embedding ==
Time w—)




Hybrid approach

InstantNGP

Grid = hashmap = Feature retrieval

Pass to a small MLP

Fast and convenient!

Feature Grid

Feature Grid > Hashmap

Mapping with collisions

Hashtable Miiller et al. SIGGRAPH 2022



Latest: Gaussian Splatting

* Approximate with 3D
Gaussian points

* Rasterize instead of volrend
Still alpha-blend

* no MLP + SH like plenoxels

Kerbl and Kopanas et al. SIGGRAPH 2023



Recap: Rendering Volumes

<§€§

1. Draw samples along the ray

2. Aggregate their contributions to render

Slides thanks to loannis Gkioulekas & Shubham Tulsiani



Rendering Primitives (e.g. Gaussians)

X—o—o—do—o—o—o—o—o—o—o—o—
<§o

N
\

1. Draw samples along the ray

2. Aggregate their contributions to render

Slides thanks to loannis Gkioulekas & Shubham Tulsiani



Rendering Primitives (e.g. Triangles/Meshes)

Qé‘



Rendering Primitives (e.g. Triangles/Meshes)

7 (wasteful — we know where
y the primitives are!)

1. Find primitives that affect the pixel

2. Aggregate their contributions to render



Rendering a mesh via Rasterization

Rasterization = conversion of

primitives to pixels (details in

CS184) T T AN

A+ 1+ N\

//-I- + |+ |+ -
Rasterizat | ]| " //l- + |+ |+ |+ |\ |
-/A + |+ |+ +_:_A .

Blending (+ SI




Rendering a mesh via Rasterization

Rasterization = conversion of
primitives to pixels (details in
CS184)

Ve |+

+ |+ |+ |+ |+

-\ + |+ |+ +\\\ .

Blending (+ Shading’

Rasterization

def render(mesh, camera):

### some structure to store K triangles
### for each pixel
sorted_k_closest_img = ...

### Iterate over all triangles
for triangle in mesh:
tri_2d = project(triangle, image)
by
# Update closest_K_img for pixels within tri_2d
e

### Iterate over all pixels
for pixel in camera.grid:
### Iterate over triangles influencing this pixel
for triangle in sorted_k_closest_img[pixell]:
B e
# Aggregate appearance
]

Qlidec thanke to loannic Gkiolilekas & Shiibham Tiilsiani



Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
def render(gaussians, camera):
R

# Initialize a rasterization data structure
# (records influencing primitives for each pixel)
e

for gaussian in gaussians:
. . gauss2d = project(gaussian, camera)
Rasterization
#H##
# Update rasterization data structure
e

for pixel in camera.grid:
_ #H##
Blendlng # Aggregate appearance from influencing gaussians

HH#
Slides thanks to loannis Gkioulekas & Shubham Tulsiani



Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
1 —le-p)TV™l(x-p)

Positonp 9v(x—p) =

N\

Slide adapted from Vincent Sitzmann. Slides thanks to loannis Gkioulekas & Shubham Tulsiani



Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
I 1-p)TV ™ i(x—p)
gv(x—p) = re 2 P i
27|V |2

Slide adapted from Vincent Sitzmann. Slides thanks to loannis Gkioulekas & Shubham Tulsiani



Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
1 1 T~r—1
" G ) — 1 —5(x=p)" V7 (x-p)
Positonp 9v(x—p) T e

Sy 0
S = [0 s, 0] Factorize as scale and rotation: V = RSSTRT
0

Each Gaussian also has an opacity and view-dependent
color (via SH coefficients). «, C

Slide adapted from Vincent Sitzmann. Slides thanks to loannis Gkioulekas & Shubham Tulsiani



Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
Ye

We can use the camera
extrinsics to transform each 3D
Gaussian to the camera frame

Camera
coordinate
system

Zc

World coordinate
system

paR7S p’,R’,S

Slides thanks to loannis Gkioulekas & Shubham Tulsiani



E o £z
| | | | | | | J — z Zy
Differentiable Gaussian Rendering “ I * !
What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
U _X_
Ye W(X) — u zlv| =K g
1T: Projection function for L e
mapping 3D points to pixels
Tc
Zc sze;a 2D ] . ( )
Coogygzri mean: U2p = T(U3D
2D covariance:
Q: What is the image-space om
o . J = — (M3D)
projection of a 3D Gaussian? 0X
p, RS A: Can approximate as a 2D Gaussian! Yop = JZSD JT

(EWA Volume Splatting. Zwicker et. al. 2001)Slides thanks to loannis Gkioulekas & Shubham Tulsiani



Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?

1. Sort Gaussians from closest to
furthest from the camera

. 2. For each pixel u, compute opacity
for each gaussian Gy,:
p2p = m(13D)
T 6_(u_N§D)T(ZgD)_1(u_H’§D)
29p = J23pJ ap = Qg

27T|212€D‘0'5

(In practice, can rasterize ‘blocks’ instead of entire image as

not all Gaussians influence all blocks
Slides thanks to loannis Gkioulekas & Shubham Tulsiani



Differentiable Gaussian Rendering

What is the representation How to project to How to model/aggregate
of a 3D Gaussian? 2D and rasterize? appearance?
<§ : o <
v

Compute per-Gaussian weights based on opacities of current and previous Gaussians:
. k—1 .
Use per-Gaussian SH coefficients and ray direction to get view-dependent color €,

Aggregate to obtain pixel color:

C = E WECE
k

Slides thanks to loannis Gkioulekas & Shubham Tulsiani



Gaussian Splatting: Bells and Whistles

+ Lots of efficient GPU optimization strategies

.. .. ° Q‘
@ o: . ——¥ | Initialization | —» ]
St Faiits 3D Gaussians

3D Gaussian Splatting for Real-Time Radiance Field Rendering. Kerbl et. al.

Initialize with sparse
point cloud from SfM

Split/clone
Gaussians based on
heuristics

Slides thanks to loannis Gkioulekas & Shubham Tulsiani



Bottom line

Gaussian Splats still estimate volumetric rendering (same alpha-
compositing, just with gaussians)

MUCH faster because no sampling, no neural nets, rasterization
From 30 sec / frame for 800x800 image original NeRF
* Plenoxels/InstantNGP: 10-30FPS 1920x1080 image

* GS: ~100-200+ FPS at 1920x1080

Best balance of quality and speed — current status quo
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Camera Quality

Small noise in the camera can be made robust by also optimizing the
camera

\ So far we’ve been

optimizing this

Also do backdrop on the
camera parameters

Camera



No Pose Optimization | Block-NeRF

-
-




Camera Optimization

Small noise in the results can be improved

Starting from scratch is still an active area of research [Barf Lin et
al. 2021, NeRF— ... ]

Noisy Camera from IMU/Lidar Result with Camera Optimization




The Dynamic World

Memories of Australia —Andrew S. Hamilton



Holy grail

* Dynamic Novel View Synthesis from Monocular Camera

* Very difficult! Extremely under constrained problem



Simple baseline for adding time

(x,v,2,0,0, 9% | | =¥ (r,9,b,0)
Faq

Hard without simultaneous multiple view!



Through a deformation network

Deformation Network NeRF
(x,y,2) x",y',z") (r,9,b,0)

Camera Coordinate Canonical
Frame Coordinate Frame

Still very under constrained

D-NeRF [Pumarola et al. CVPR 2021], Nerfies [Park et al. ICCV 2021], HyperNeRF, NR-NeRF, efc..



Dynamic View Synthesis: Monocular is hard

D-NeRF [Pumarola et al. CVPR 2021] NSFF [Li et al., CVPR 2021],HyperNeRF[Park et al. SIGASia 2021]...
* But performance on in-the-wild monocular capture still far [Gao et al. NeurlPS 2022]

train view Nerfies

train view




What if we knew how they deform??

HMMR, Kanazawa et al.
CVPR 2019

HumanNeRF Weng et al. CVPR 2022



Other kinds of dynamic changes



Appearance Changes

Exposure differences

Lighting changes (day, night)..

Clouds passing by..

Nerf-W [Martin-Brualla et al. CVPR 2021]



Appearance Embedding: Pretty Robust
Solution

(X,y,Z,9,¢, Vl)-> = (T,g,b,O')
'

Fq

Appearance Embedding

N-dim vector
Optimized perimage: “Auto-Decoding”
ie GLO: Generative Latent Optimization [Bojanowski et al. ICML 2018]

Nerf-W [Martin-Brualla et al. CVPR 2021]


https://arxiv.org/search/stat?searchtype=author&query=Bojanowski%2C+P

Appearance Changes

Appearance Encoding is Effective




Transient objects

* Happens all the time! People
moving around, interacting with the
world

* Difficult! Problem of Grouping

* how do you know which part is
connected or

* Can use two NeRFs, one global,
one per-image, but this often
leads to degenerate solutions

* Current solution: Ignore (mask out)



Why is dynamic scenes hard?

* Unless you have a light dome

* Essentially you only have a single-view



Building & Reusing
Prior Knowledge

Machine Learning



NeRF Is per-scene optimization

* We need lots of images to get good view synthesis!!

* Also there’s no knowledge reused from prior scene reconstructions

* How to bring learning in the picture?




Few-shot NeRF

* One-shot (single-view): pixeINeRF [Yu ~ °* How to deal with the multi-modal

et al. CVPR’'19] nature of the problem??
Input View \ f
ﬁ"? ] (z.d) - I:":II:“:' — (RGBo)
- e—
2 1
- q v " W(nx)

CNN Encoder

* Few-shot (3~10 V|ews) pixelNeRF,|
BRNet [Wang et al. CVPR'21], MVSNet
[Chen et al. ICCV’21], efc...

* Challenging for predicting completely
unseen real scenes

IBRNet



Data 1s the bottleneck

* Large-scale Real-World Multi-view Data is hard to collect:
CO3D [Reizenstein ICCV 2021]

* Alot to learn from other single-view 3D prediction models:

Gkioxari et al. CVPR 2022


https://gkioxari.github.io/

Time Line

] 3D Generation
Real-Time

_ Fast Training DreamFusion Quality & Speed
NeRE Rendering Plenoxels, Gaussian Splatting
paper release  ienctrees, . InstantNGP - City-scale '
astNeRF, SNeRgG, .
(arXiv) cte. etc.. BlockNeRF..
*l Y . R

March 2020 March 2021 March 2022 March 2023 March 2024

=£ AR < - R A e - Kerbl* and Kopanas* et al.
PoolertikletGURQVS 2 g , i SIGGRAPH 2023



Time Line

3D Generation
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PlenOctrees, Instant-NGP  City-scale
paper release FastNeRF, SNeRG, otc.. BlockNeRF
(arXiv) etc.. .
March 2020 March 2021 March 2022 March 2023
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nerfstudio
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A Modular Framework for NeRF Development

Matthew Tancik*, Ethan Weber*, Evonne Ng*, Ruilong Li, Brent Yi, Justin Kerr,
Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja,
David McAllister, Angjoo Kanazawa

+143 additional Github collaborators
SIGGRAPH 2023



Design Goals

Easy to:

Use
Develop
Learn



An End-to-End Framework

-~~~ Samplers @ Fields

Uniform Fused MLP
: Occupancy Voxel Grid
Mobile PDF
Polycam Proposal
Record3D
KIRI Engine 3y, —
n /\. Encoders (@) Renderers
Positional Encoding RGB
Deskto Fourier Features RGB-SH
COLMAP Hash Encoding Depth
Metashape Spherical Harmonics Accumulation
RealityCapture: Matrix Decomposition Normals

Input Modular Components Real-time web viewer



[ GETTING STARTED ] [O GITHUB ] [ B DOCUMENTATION } {E VIEWPORT CONTROLS } %ﬁtnerfStUdi.O
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@newbie Why did you downscale? Because of memory or was the result better?

. Abdessamad_taoufiq 02/13/2023 9:40 AM
rules a4 The reason is the limited RAM capacity in Colab.
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self.checkbox = ViewerCheckbox(name="Checkbox", default_value=False)

current_value = self.checkbox.value
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