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What is an image?

We can think of an image as a function, f, from R2 to 

R:
• f( x, y ) gives the intensity at position ( x, y ) 

• Realistically, we expect the image only to be defined over a 

rectangle, with a finite range:

– f: [a,b]x[c,d]  [0,1]

A color image is just three functions pasted together.  

We can write this as a “vector-valued” function: 
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Images as functions



How does a pixel get its value?

Light emitted

Sensor

Lens

Fraction of light 

reflects into camera



How does a pixel get its value?

Major factors
• Illumination strength and 

direction

• Surface geometry

• Surface material 

• Nearby surfaces

• Camera gain/exposure

Light emitted

Sensor

Light reflected 

to camera



Basic models of reflection

Specular: light bounces off at the incident 

angle
• E.g., mirror

Diffuse: light scatters in all directions
• E.g., brick, cloth, rough wood

incoming lightspecular reflection

ΘΘ

incoming lightdiffuse reflection



Diffuse vs. Specular 



Lambertian reflectance model

Some light is absorbed (function of albedo 𝜌)

Remaining light is scattered (diffuse reflection)

Examples: soft cloth, concrete, matte paints

light sourcelight source

absorption

diffuse reflection

(1 − 𝜌)

𝜌
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Intensity and Surface Orientation



Intensity and Surface Orientation

Intensity depends on illumination angle because 

less light comes in at oblique angles.

𝜌 = albedo

𝑺 = directional source

𝑵 = surface normal

I = reflected intensity

𝐼 𝑥 = 𝜌 𝑥 𝑺 ⋅ 𝑵(𝑥)

Slide: Forsyth



Recap

When light hits a typical surface
• Some light is absorbed (1-𝜌)

– More absorbed for low albedos

• Some light is reflected diffusely

– Independent of viewing direction

• Some light is reflected specularly

– Light bounces off (like a mirror), depends on 

viewing direction

specular 

reflection

ΘΘ

diffuse 

reflection

absorption



Sampling and Quantization



Image Formation

f(x,y) = reflectance(x,y) * illumination(x,y)
Reflectance in [0,1], illumination in [0,inf]



Problem: Dynamic Range
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Long Exposure

10-6 106

10-6 106

Real world

Picture

0 to 255

High dynamic range



Short Exposure
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Real world

Picture

0 to 255

High dynamic range
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Simple Point Processing: Enhancement



Power-law transformations



Basic Point Processing



Negative



Log



Contrast Stretching



Image Histograms

Cumulative Histograms

s = T(r)



Histogram Equalization



Color Transfer [Reinhard, et al, 2001]

Erik Reinhard, Michael Ashikhmin, Bruce Gooch, Peter Shirley, Color Transfer between 

Images. IEEE Computer Graphics and Applications, 21(5), pp. 34–41. September 2001. 

http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476


Limitations of Point Processing…

Slide by Erik Learned-Miller



Sampling and Reconstruction
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Sampled representations

• How to store and compute with continuous functions?

• Common scheme for representation: samples
– write down the function’s values at many points
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Reconstruction

• Making samples back into a continuous function
– for output (need realizable method)

– for analysis or processing (need mathematical method)

– amounts to “guessing” what the function did in between
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1D Example: Audio

low high

frequencies
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Sampling in digital audio

• Recording: sound to analog to samples to disc

• Playback: disc to samples to analog to sound again
– how can we be sure we are filling in the gaps correctly?
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Sampling and Reconstruction

• Simple example: a sign wave
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Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave
– unsurprising result: information is lost
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Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave
– unsurprising result: information is lost

– surprising result: indistinguishable from lower frequency



© 2006 Steve Marschner • 36

Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave
– unsurprising result: information is lost

– surprising result: indistinguishable from lower frequency

– also, was always indistinguishable from higher frequencies

– aliasing: signals “traveling in disguise” as other frequencies



Aliasing in video

Slide by Steve Seitz





Aliasing in images



Aliasing in real images



What’s happening?

Input signal:

x = 0:.05:5;  imagesc(sin((2.^x).*x))

Plot as image:

Alias!

Not enough samples



Antialiasing

What can we do about aliasing?

Sample more often

• Join the Mega-Pixel craze of the photo industry

• But this can’t go on forever

Make the signal less “wiggly” 

• Get rid of some high frequencies

• Will loose information

• But it’s better than aliasing
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Preventing aliasing

• Introduce lowpass filters:
– remove high frequencies leaving only safe, low frequencies

– choose lowest frequency in reconstruction (disambiguate)
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Linear filtering: a key idea

• Transformations on signals; e.g.:
– bass/treble controls on stereo

– blurring/sharpening operations in image editing

– smoothing/noise reduction in tracking

• Key properties
– linearity: filter(f + g) = filter(f) + filter(g)

– shift invariance: behavior invariant to shifting the input

• delaying an audio signal

• sliding an image around

• Can be modeled mathematically by convolution
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Moving Average

• basic idea: define a new function by averaging over a 
sliding window

• a simple example to start off: smoothing
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Moving Average

• Can add weights to our moving average

• Weights […, 0, 1, 1, 1, 1, 1, 0, …]  / 5 
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In 2D: box filter



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

],[],[],[
,

lnkmflkhnmg
lk



[.,.]g[.,.]f

Image filtering
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Cross-correlation

This is called a cross-correlation operation:

Let      be the image,      be the kernel (of 
size 2k+1 x 2k+1), and      be the output 
image

• Can think of as a “dot product” between 
local neighborhood and kernel for each pixel



What does it do?

• Replaces each pixel with 

an average of its 

neighborhood

• Achieve smoothing effect 

(remove sharp features)
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Slide credit: David Lowe (UBC)
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Linear filters: examples

Original
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Blur (with a mean 

filter)

Source: D. Lowe
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Practice with linear filters
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Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Practice with linear filters
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Source: D. Lowe



Back to the box filter


