
Pixels and Images

CS180: Intro to Comp. Vision, and Comp. Photo

Efros & Kanazawa, UC Berkeley, Fall 2025

What is an image?

We can think of an image as a function, f, from R2 to

R:
• f(x, y) gives the intensity at position (x, y)

• Realistically, we expect the image only to be defined over a

rectangle, with a finite range:

– f: [a,b]x[c,d]  [0,1]

A color image is just three functions pasted together.

We can write this as a “vector-valued” function:

(,)

(,) (,)

(,)

r x y

f x y g x y

b x y

 
 
 
  

Images as functions

How does a pixel get its value?

Light emitted

Sensor

Lens

Fraction of light

reflects into camera

How does a pixel get its value?

Major factors
• Illumination strength and

direction

• Surface geometry

• Surface material

• Nearby surfaces

• Camera gain/exposure

Light emitted

Sensor

Light reflected

to camera

Basic models of reflection

Specular: light bounces off at the incident

angle
• E.g., mirror

Diffuse: light scatters in all directions
• E.g., brick, cloth, rough wood

incoming lightspecular reflection

ΘΘ

incoming lightdiffuse reflection

Diffuse vs. Specular

Lambertian reflectance model

Some light is absorbed (function of albedo 𝜌)

Remaining light is scattered (diffuse reflection)

Examples: soft cloth, concrete, matte paints

light sourcelight source

absorption

diffuse reflection

(1 − 𝜌)

𝜌

1

2

Intensity and Surface Orientation

Intensity and Surface Orientation

Intensity depends on illumination angle because

less light comes in at oblique angles.

𝜌 = albedo

𝑺 = directional source

𝑵 = surface normal

I = reflected intensity

𝐼 𝑥 = 𝜌 𝑥 𝑺 ⋅ 𝑵(𝑥)

Slide: Forsyth

Recap

When light hits a typical surface
• Some light is absorbed (1-𝜌)

– More absorbed for low albedos

• Some light is reflected diffusely

– Independent of viewing direction

• Some light is reflected specularly

– Light bounces off (like a mirror), depends on

viewing direction

specular

reflection

ΘΘ

diffuse

reflection

absorption

Sampling and Quantization

Image Formation

f(x,y) = reflectance(x,y) * illumination(x,y)
Reflectance in [0,1], illumination in [0,inf]

Problem: Dynamic Range

1500

1

25,000

400,000

2,000,000,000

The real world is

High dynamic range

Long Exposure

10-6 106

10-6 106

Real world

Picture

0 to 255

High dynamic range

Short Exposure

10-6 106

10-6 106

Real world

Picture

0 to 255

High dynamic range

scene

radiance

(W/sr/m)


sensor

irradiance

sensor

exposure

Lens Shutter

2

Dt

analog

voltages

digital

values

pixel

values

CCD ADC Remapping

Image Acquisition Pipeline

Simple Point Processing: Enhancement

Power-law transformations

Basic Point Processing

Negative

Log

Contrast Stretching

Image Histograms

Cumulative Histograms

s = T(r)

Histogram Equalization

Color Transfer [Reinhard, et al, 2001]

Erik Reinhard, Michael Ashikhmin, Bruce Gooch, Peter Shirley, Color Transfer between

Images. IEEE Computer Graphics and Applications, 21(5), pp. 34–41. September 2001.

http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476

Limitations of Point Processing…

Slide by Erik Learned-Miller

Sampling and Reconstruction

© 2006 Steve Marschner • 29

Sampled representations

• How to store and compute with continuous functions?

• Common scheme for representation: samples
– write down the function’s values at many points

[F
v
D

F
H

 f
ig

.1
4

.1
4
b
 /

 W
o
lb

e
rg

]

© 2006 Steve Marschner • 30

Reconstruction

• Making samples back into a continuous function
– for output (need realizable method)

– for analysis or processing (need mathematical method)

– amounts to “guessing” what the function did in between

[F
v
D

F
H

 f
ig

.1
4

.1
4
b
 /

 W
o
lb

e
rg

]

1D Example: Audio

low high

frequencies

© 2006 Steve Marschner • 32

Sampling in digital audio

• Recording: sound to analog to samples to disc

• Playback: disc to samples to analog to sound again
– how can we be sure we are filling in the gaps correctly?

© 2006 Steve Marschner • 33

Sampling and Reconstruction

• Simple example: a sign wave

© 2006 Steve Marschner • 34

Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave
– unsurprising result: information is lost

© 2006 Steve Marschner • 35

Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave
– unsurprising result: information is lost

– surprising result: indistinguishable from lower frequency

© 2006 Steve Marschner • 36

Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave
– unsurprising result: information is lost

– surprising result: indistinguishable from lower frequency

– also, was always indistinguishable from higher frequencies

– aliasing: signals “traveling in disguise” as other frequencies

Aliasing in video

Slide by Steve Seitz

Aliasing in images

Aliasing in real images

What’s happening?

Input signal:

x = 0:.05:5; imagesc(sin((2.^x).*x))

Plot as image:

Alias!

Not enough samples

Antialiasing

What can we do about aliasing?

Sample more often

• Join the Mega-Pixel craze of the photo industry

• But this can’t go on forever

Make the signal less “wiggly”

• Get rid of some high frequencies

• Will loose information

• But it’s better than aliasing

© 2006 Steve Marschner • 43

Preventing aliasing

• Introduce lowpass filters:
– remove high frequencies leaving only safe, low frequencies

– choose lowest frequency in reconstruction (disambiguate)

© 2006 Steve Marschner • 44

Linear filtering: a key idea

• Transformations on signals; e.g.:
– bass/treble controls on stereo

– blurring/sharpening operations in image editing

– smoothing/noise reduction in tracking

• Key properties
– linearity: filter(f + g) = filter(f) + filter(g)

– shift invariance: behavior invariant to shifting the input

• delaying an audio signal

• sliding an image around

• Can be modeled mathematically by convolution

© 2006 Steve Marschner • 45

Moving Average

• basic idea: define a new function by averaging over a
sliding window

• a simple example to start off: smoothing

© 2006 Steve Marschner • 46

Moving Average

• Can add weights to our moving average

• Weights […, 0, 1, 1, 1, 1, 1, 0, …] / 5

111

111

111

Slide credit: David Lowe (UBC)

],[h

In 2D: box filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

],[],[],[
,

lnkmflkhnmg
lk



[.,.]g[.,.]f

Image filtering

111

111

111

],[h

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]g[.,.]f

Image filtering

111

111

111

],[h

Credit: S. Seitz

],[],[],[
,

lnkmflkhnmg
lk



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]g[.,.]f

Image filtering

111

111

111

],[h

Credit: S. Seitz

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]g[.,.]f

Image filtering

111

111

111

],[h

Credit: S. Seitz

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]g[.,.]f

Image filtering

111

111

111

],[h

Credit: S. Seitz

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]g[.,.]f

Image filtering

111

111

111

],[h

Credit: S. Seitz

?

0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]g[.,.]f

Image filtering

111

111

111

],[h

Credit: S. Seitz

?

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]g[.,.]f

Image filtering
111

111

111],[h

Credit: S. Seitz

Cross-correlation

This is called a cross-correlation operation:

Let be the image, be the kernel (of
size 2k+1 x 2k+1), and be the output
image

• Can think of as a “dot product” between
local neighborhood and kernel for each pixel

What does it do?

• Replaces each pixel with

an average of its

neighborhood

• Achieve smoothing effect

(remove sharp features)

111

111

111

Slide credit: David Lowe (UBC)

],[h

Box Filter

Linear filters: examples

Original

111

111

111

Blur (with a mean

filter)

Source: D. Lowe

=

Practice with linear filters

000

010

000

Original

?

Source: D. Lowe

Practice with linear filters

000

010

000

Original Filtered

(no change)

Source: D. Lowe

Practice with linear filters

000

100

000

Original

?

Source: D. Lowe

Practice with linear filters

000

100

000

Original Shifted left

By 1 pixel

Source: D. Lowe

Back to the box filter

