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End of last lecture: Camera from 
Corresp

Camera 
(Motion)

Correspondences

3D Points 
(Structure)



How to estimate the camera?

• 1. Estimate the fundamental/essential matrix 
with correspondences!

• 2. Another method: Calibration



Problem: Solve for the camera

• What are the camerea parameters? 

– Extrinsics (R, T)

– Intrinsics (K)

• How am I situated in the world + what is the 
shape of the ray

Camera Translation

Camera Rotation

World origin

Focal length



Calibration
• Definition: Solve for camera using a known 3D 

structure + where it is in the image

• Invasive / active

• Can’t be done on existing pictures
World origin

Only have to do it once if 
the cameras are static



How to calibrate the camera?
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If we know the points in 3D we can estimate the camera!!



Step 1: With a known 3D object

1. Take a picture of an object with known 3D 
geometry

Slide from Shree Nayar

2. Identify correspondences

y’w
x’w



How do we calibrate a camera?
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Method: Set up a linear system

• Solve for m’s entries using linear least squares

Ax=0 form
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Similar to how you 
solved for 
homography!



Can we factorize M back to K [R | T]?
• Yes. 

• Why? because K and R have a very special form:

• QR decomposition

• Practically, use camera calibration packages 
(there is a good one in OpenCV)



Inserting a 3D known object…

• Also called “Tsai’scalibration” requires non-coplanar 3D 
points, is not very practical…

• Modern day calibration uses a planar calibration target

• Developed in 2000 by Zhang at Microsoft research

Zhang, A flexible new technique for camera calibration, IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 2000



Doesn’t plane give you homography?

• Yes! If it’s a plane, it’s only a homography, so 
instead of recovering 3x4 matrix, you will 
recover 3x3 in Zhang’s method

• The 3x3 gives first two columns of R and T



You will use Aruco tags



In practice: Step 0
• Calibrate your intrinsics first, also estimates 

lens distortion (cv2.calibrateCamera)



Step 1: Undistort your image
Cv2.undistort()



Step 2: Estimate camera with PnP

• PnP – “Perspective-n-Point” problem:

• Estimate extrinsic parameters given n 
correspondences

min
𝑅,𝑇

෍ 𝑥𝑖 − 𝐾[𝑅 𝑇]𝑋 2

Minimize reprojection loss with non-linear least squares

In general you do DLT first (Ax=0), then use that as 
initialization, or do other algorithms like Efficient PnP

cv2.solvePnP()



Putting it all together
• Structure-from-Motion: You know nothing! 

(except ok maybe intrinsics)

Camera 
(Motion)

Correspondences

3D Points 
(Structure)



(after that): Neural Rendering

Camera 
(Motion)

Correspondences

3D Representation
(Structure)

A form of multi-view stereo, more on this in the NeRF lecture.



if you know 2 you get the other:

Camera 
(Motion)

Correspondences

3D Points 
(Structure)



Camera Calibration; aka
Perspective-n-Point

Camera 
(Motion)

Correspondences

3D Points 
(Structure)



Stereo (w/2 cameras); aka
Triangulation

Camera 
(Motion)

Correspondences

3D Points 
(Structure)



You can easily get correspondence via 
projection from 3D points + Camera

Camera 
(Motion)

3D Points 
(Structure)

Correspondences



Ultimate: Structure-from-Motion

Camera 
(Motion)

Correspondences

3D Points 
(Structure)

Start from nothing known (except maybe intrinsics), exploit the 
relationship to slowly get the right answer



Photo Tourism

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring 

photo collections in 3D," SIGGRAPH 2006

https://youtu.be/mTBPGuPLI5Y

http://phototour.cs.washington.edu/Photo_Tourism.pdf
https://youtu.be/mTBPGuPLI5Y


Structure from motion

• Input: images with points in correspondence      
pi,j = (ui,j,vi,j)

• Output
• structure: 3D location xi for each point pi
• motion: camera parameters Rj , tj possibly Kj

• Objective function: minimize reprojection error

Reconstruction (side)
(top)



Large-scale structure from motion

Dubrovnik, Croatia.  4,619 images (out of an initial  57,845).
Total reconstruction time: 23 hours
Number of cores: 352

Building Rome in a Day, Agarwal et al. ICCV 2009



Large-scale structure from motion

Rome’s Colosseum

Building Rome in a Day, Agarwal et al. ICCV 2009



First step: Correspondence

• Feature detection and matching



Feature detection
Detect features using SIFT [Lowe, IJCV 2004]



Feature detection
Detect features using SIFT [Lowe, IJCV 2004]



Feature matching
Match features between each pair of images



Feature matching
Refine matching using RANSAC to estimate fundamental 

matrix between each pair



Correspondence estimation

• Link up pairwise matches to form connected components of 
matches across several images

Image 1 Image 2 Image 3 Image 4



The story so far…

Feature detection

Matching + track generation

Input images

Images with feature correspondence



Review: Points and cameras

• Point: 3D position in space (      )

• Camera (     ): 

– A 3D position (     )

– A 3D orientation (      )

– Intrinsic parameters                                                 
(focal length, aspect ratio, …)

– 7 parameters (3+3+1) in total



Structure from motion

Camera 1

Camera 2

Camera 3

R1,t1

R2,t2

R3,t3

X1

X4

X3

X2

X5

X6

X7

minimize

g(R,T,X)

p1,1

p1,2

p1,3

non-linear least squares



Structure from motion

• Minimize sum of squared reprojection errors:

• Minimizing this function is called bundle 
adjustment
– Optimized using non-linear least squares, 

e.g. Levenberg-Marquardt

predicted
image location

observed
image location

indicator variable:
is point i visible in image j ?



Solving structure from motion

• Challenges:

– Large number of parameters (1000’s of cameras, 
millions of points)

– Very non-linear objective function

Inputs: feature tracks Outputs: 3D cameras and points



Solving structure from motion

Inputs: feature tracks Outputs: 3D cameras and points

• Important tool: Bundle Adjustment [Triggs et al. ’00]
– Joint non-linear optimization of both cameras and points

– Very powerful, elegant tool

• The bad news:
– Starting from a random initialization is very likely to give the 

wrong answer

– Difficult to initialize all the cameras at once



Solving structure from motion

Inputs: feature tracks Outputs: 3D cameras and points

• The good news:

– Structure from motion with two cameras is (relatively) easy

– Once we have an initial model, it’s easy to add new cameras

• Idea:

– Start with a small seed reconstruction, and grow



Incremental SfM

• Automatically select an initial pair of images



1. Picking the initial pair
• We want a pair with many matches, but which 

has as large a baseline as possible

lots of matches
small baseline

very few matches
large baseline

lots of matches
large baseline



Incremental SfM: Algorithm 

1. Pick a strong initial pair of images

2. Initialize the model using two-frame SfM

3. While there are connected images remaining:

a. Pick the image which sees the most existing 3D points

b. Estimate the pose of that camera

c. Triangulate any new points

d. Run bundle adjustment



Visual Simultaneous Localization and 
Mapping (V-SLAM)

• Main differences with SfM:

– Continuous visual input from sensor(s) over time

– Gives rise to problems such as loop closure

– Often the goal is to be online / real-time

Video from Daniel Cremer’s Lab



Now what, are we done?

• What does SfM give you

Sparse points!!! Why?



What if we want solid models?

Slide credit: Noah Snavely



Multi-View Stereo
(after SfM), i.e. known camera



Multi-view Stereo (Lots of calibrated images)

• Input: calibrated images from several viewpoints 
(known camera: intrinsics and extrinsics)

• Output: 3D Model

Figures by Carlos Hernandez

Slide credit: Noah Snavely

In general, conducted in a controlled environment with 
multi-camera setup that are all calibrated





Multi-view Stereo

Binocular Stereo Multi-view stereo

Problem formulation: given several images of the 

same object or scene, compute a representation of 

its 3D shape

Slide credit: Noah Snavely



reference view neighbor views

Source: Y.

Furukawa

Is this a 
surface 
point?

Multi-view stereo: Basic idea



Source: Y.

Furukawa

reference view neighbor views

Multi-view stereo: Basic idea

Patch from 
reference View

Corresponding 
patches at depth 

guess in other views

Evaluate the likelihood of geometry at a particular depth 
for a particular reference patch:

?



reference view neighbor views

Source: Y.

Furukawa

Multi-view stereo: Basic idea

Photometric 
error across 

different 
depths



reference view neighbor views

Source: Y.

Furukawa

Photometric 
error across 

different 
depths

Multi-view stereo: Basic idea



reference view neighbor views

Source: Y.

Furukawa

In this manner, solve for a depth map 
over the whole reference view

Photometric 
error across 

different 
depths

Multi-view stereo: Basic idea



Multi-view stereo: advantages over 
2 view

• Can match windows using more than 1 other 
image, giving a stronger match signal

• If you have lots of potential images, can 
choose the best subset of images to match 
per reference image

• Can reconstruct a depth map for each 
reference frame, and the merge into a 
complete 3D model

Source: Y. Furukawa



width of 

a pixel

Choosing the baseline

•What’s the optimal baseline?
– Too small:  large depth error
– Too large:  difficult search problem

Large Baseline Small Baseline

all of these

points project

to the same 

pair of pixels

Slide credit: Noah Snavely



Single depth map often isn’t 
enough

Source: N. Snavely



Really want full coverage

Source: N. Snavely



Idea: Combine many depth maps

Source: N. Snavely



Volumetric stereo

Discretized 

Scene Volume

Input Images

(Calibrated)

Goal:  Assign RGB values to voxels in V
photo-consistent with images



Space Carving

•Space Carving Algorithm

Image 1 Image N

…...

• Initialize to a volume V containing the true scene

• Repeat until convergence

• Choose a voxel on the outside of the volume

• Carve if not photo-consistent

• Project to visible input images

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999

http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf


Space Carving Results

Input Image (1 of 45) Reconstruction

ReconstructionReconstruction Source: S. Seitz



Tool for you: COLMAP

https://github.com/colmap/colmap

A general SfM + MVS pipeline

https://github.com/colmap/colmap


Multi-View Stereo

Camera 
(Motion)

Correspondences

3D Points 
(Structure)



Volumetric “Neural” 
Rendering

Camera 
(Motion)

Correspondences

3D Points 
(Structure)

Does not use explicit correspondences, 
relies on reconstruction loss (Analysis-by-Synthesis)



Neural Radiance Fields

Video from the original ECCV’20 paper


