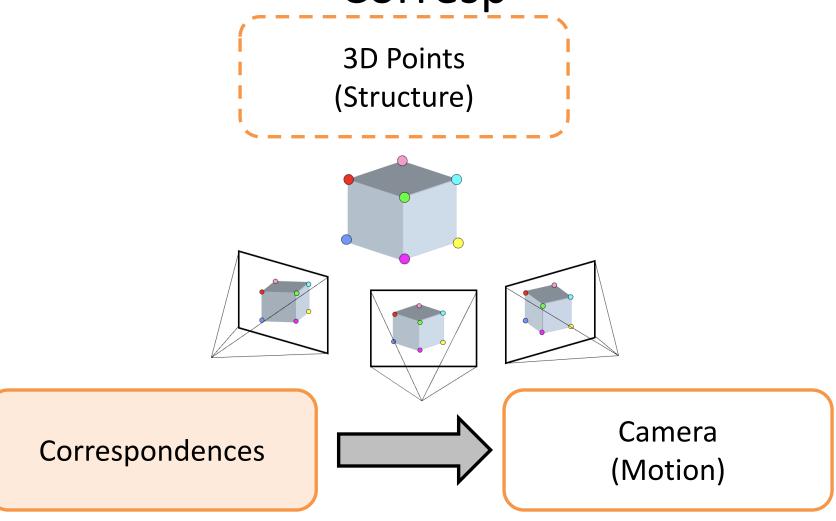
SfM / MVS / NeRF..

A lot of slides from Noah Snavely + Shree Nayar's YT series: First principals of Computer Vision

CS180: Intro to Computer Vision and Comp. Photo Angjoo Kanazawa & Alexei Efros, UC Berkeley, Fall 2025

End of last lecture: Camera from Corresp



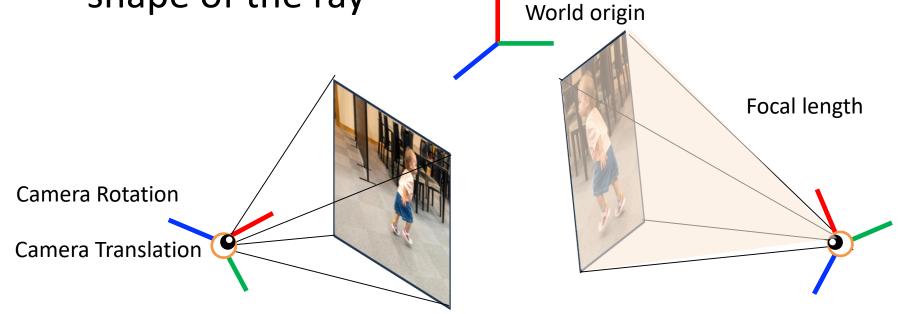
How to estimate the camera?

 1. Estimate the fundamental/essential matrix with correspondences!

2. Another method: Calibration

Problem: Solve for the camera

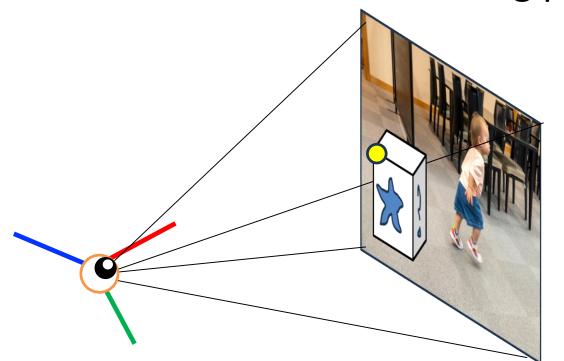
- What are the camerea parameters?
 - Extrinsics (R, T)
 - Intrinsics (K)
- How am I situated in the world + what is the shape of the ray

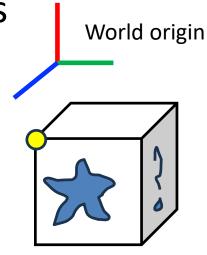


Calibration

- Definition: Solve for camera using a known 3D structure + where it is in the image
- Invasive / active

Can't be done on existing pictures





Only have to do it once if the cameras are static

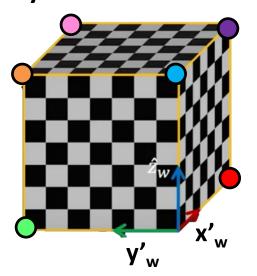
How to calibrate the camera?

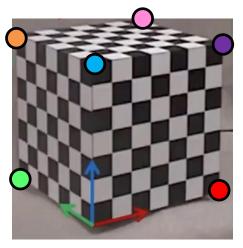
$$x = K[R t]X$$

If we know the points in 3D we can estimate the camera!!

Step 1: With a known 3D object

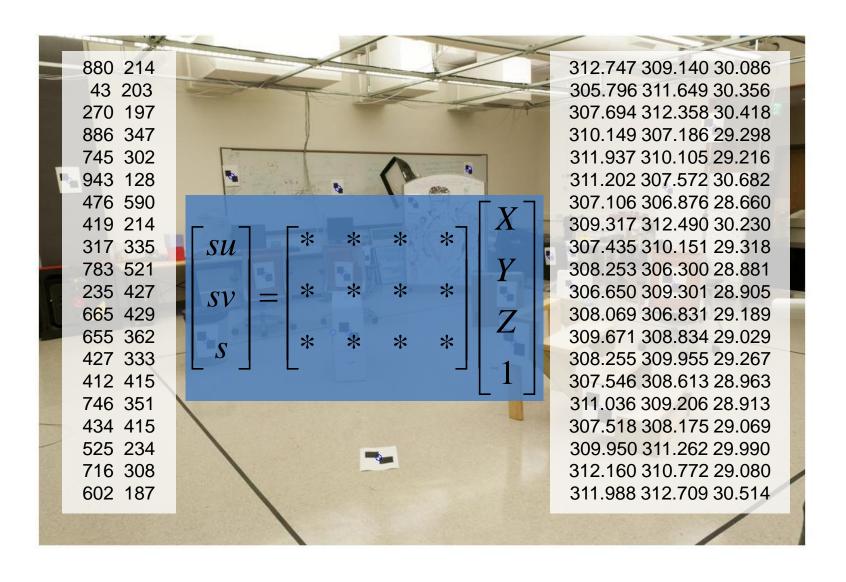
1. Take a picture of an object with known 3D geometry





2. Identify correspondences

How do we calibrate a camera?



Method: Set up a linear system

$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Solve for m's entries using linear least squares

 m_{34}

Similar to how you solved for homography!

Can we factorize M back to K [R | T]?

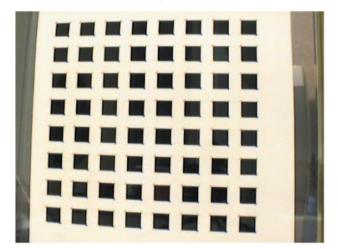
- Yes.
- Why? because K and R have a very special form:

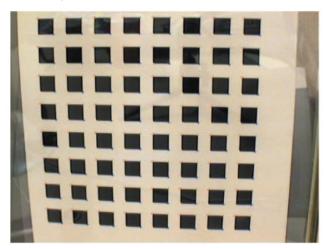
$$egin{bmatrix} f_x & s & o_x \ 0 & f_y & o_y \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

- QR decomposition
- Practically, use camera calibration packages (there is a good one in OpenCV)

Inserting a 3D known object...

- Also called "Tsai'scalibration" requires non-coplanar 3D points, is not very practical...
- Modern day calibration uses a planar calibration target





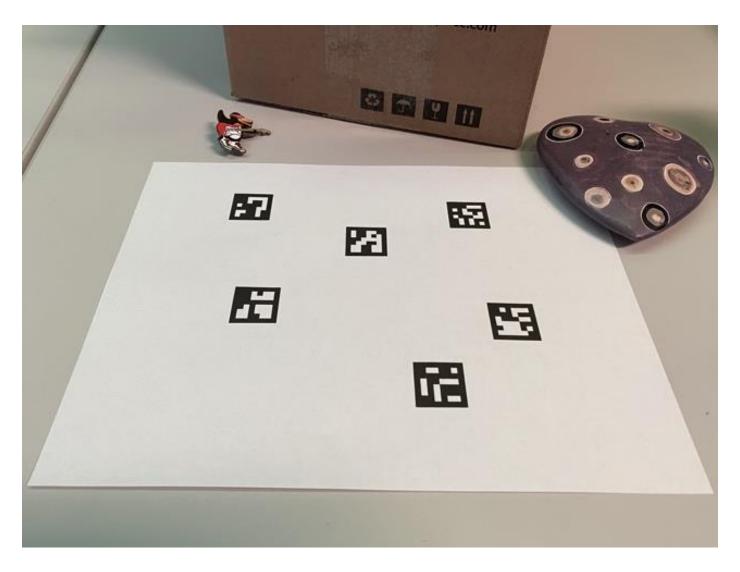
Developed in 2000 by Zhang at Microsoft research

Doesn't plane give you homography?

- Yes! If it's a plane, it's only a homography, so instead of recovering 3x4 matrix, you will recover 3x3 in Zhang's method
- The 3x3 gives first two columns of R and T

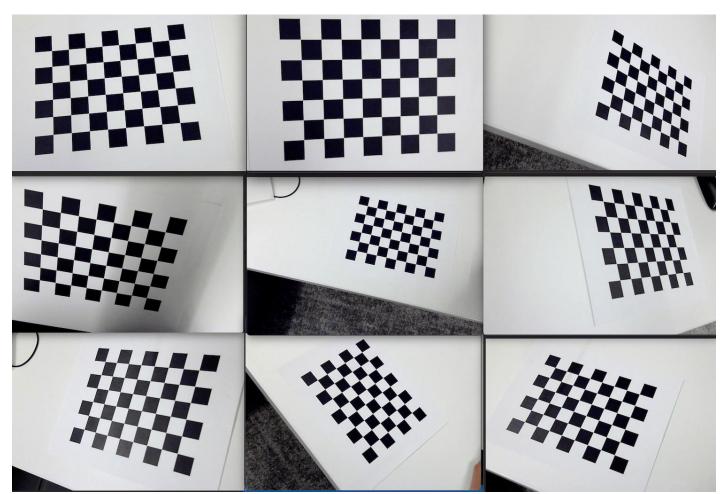
$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & t_1 \\ r_{21} & r_{22} & t_2 \\ r_{31} & r_{32} & t_3 \end{bmatrix}$$

You will use Aruco tags

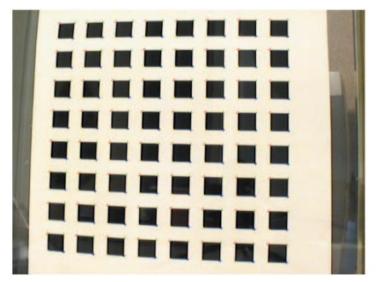


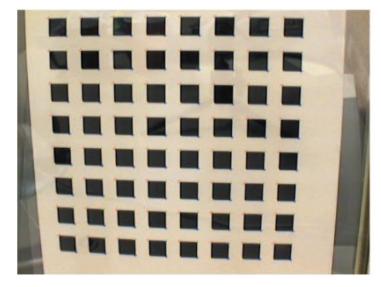
In practice: Step 0

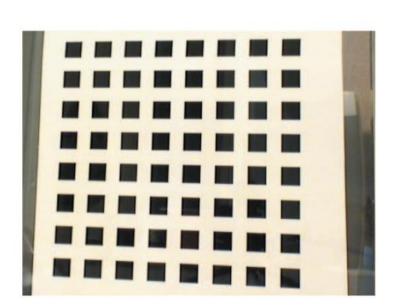
 Calibrate your intrinsics first, also estimates lens distortion (cv2.calibrateCamera)

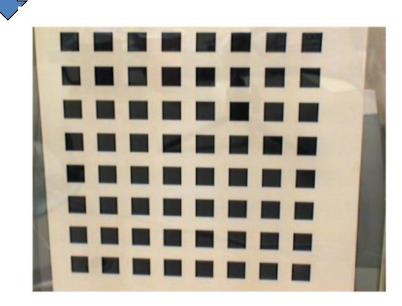


Step 1: Undistort your image









Step 2: Estimate camera with PnP

cv2.solvePnP()

- PnP "Perspective-n-Point" problem:
- Estimate extrinsic parameters given n correspondences

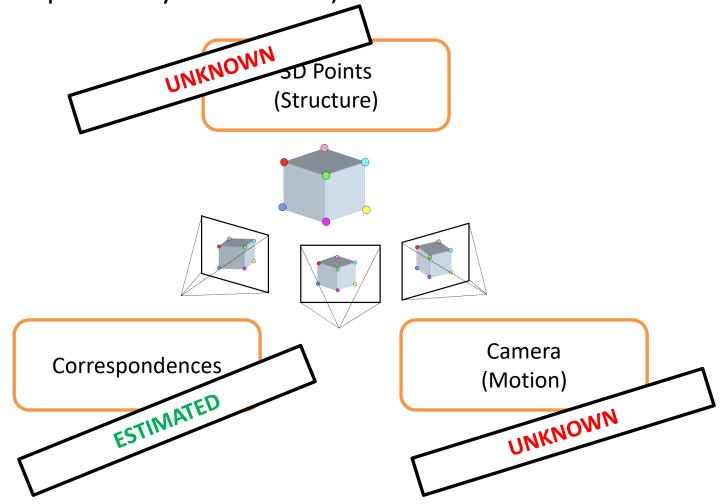
Minimize reprojection loss with non-linear least squares

$$\min_{R,T} \sum ||x_i| - K[RT]X||^2$$

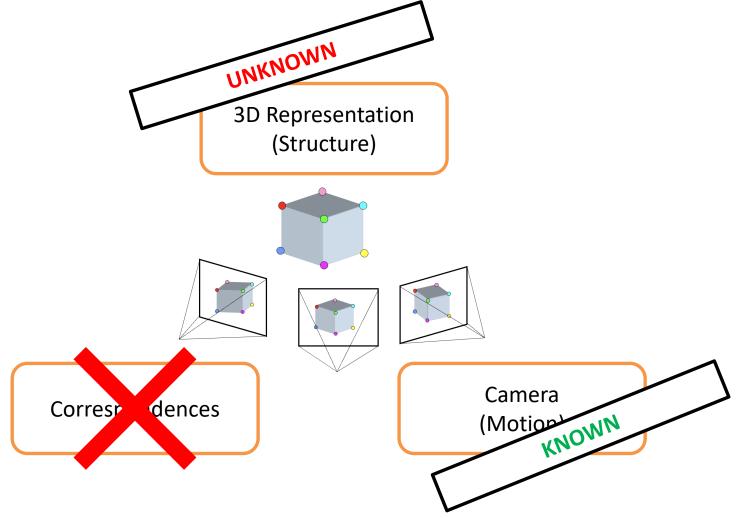
In general you do DLT first (Ax=0), then use that as initialization, or do other algorithms like Efficient PnP

Putting it all together

• Structure-from-Motion: You know nothing! (except ok maybe intrinsics)

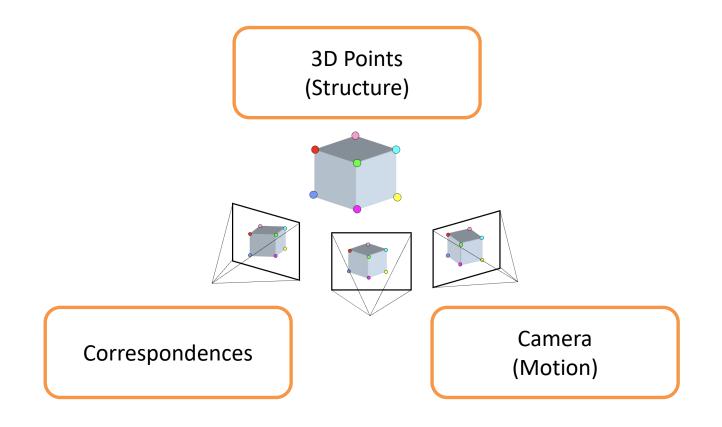


(after that): Neural Rendering

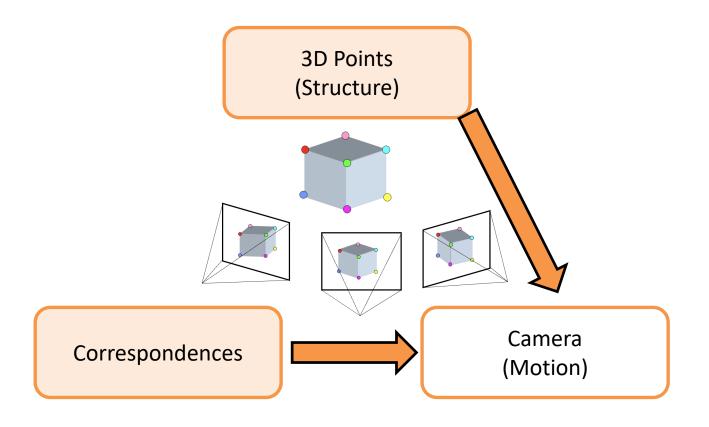


A form of multi-view stereo, more on this in the NeRF lecture.

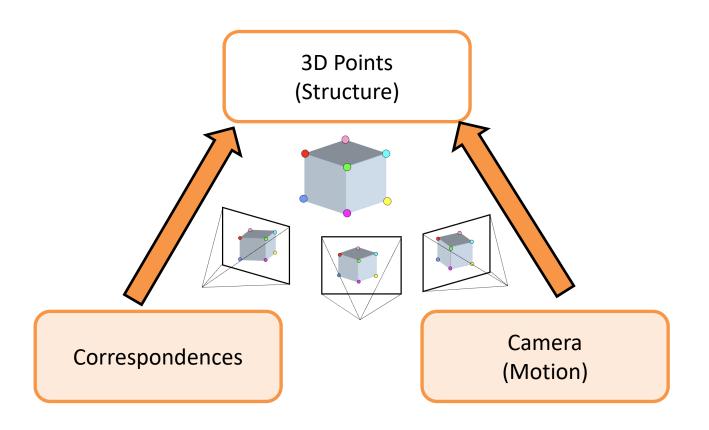
if you know 2 you get the other:



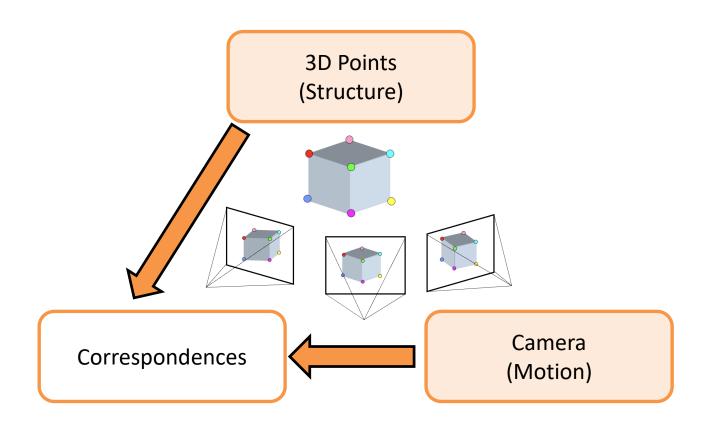
Camera Calibration; aka Perspective-n-Point



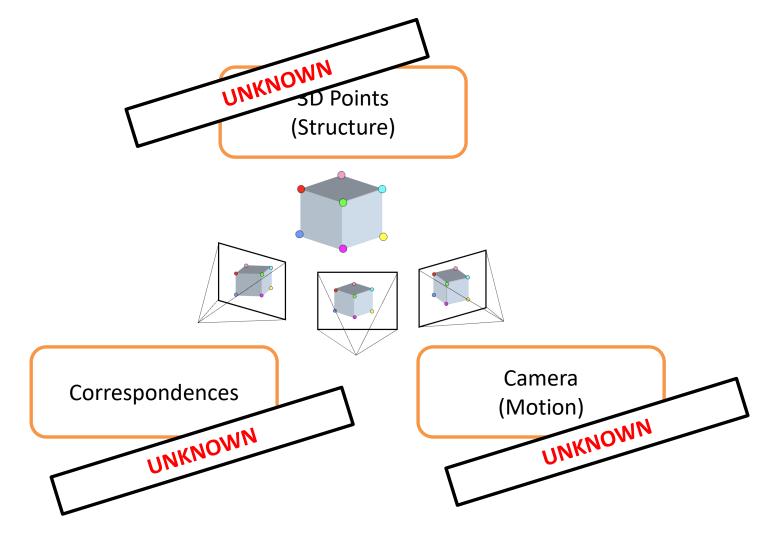
Stereo (w/2 cameras); aka Triangulation



You can easily get correspondence via projection from 3D points + Camera



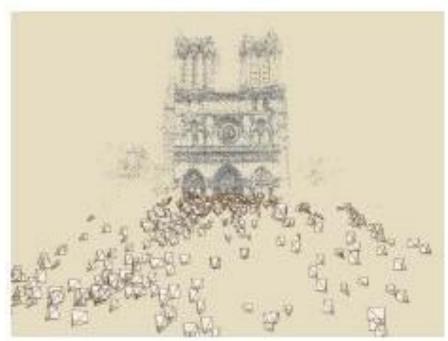
Ultimate: Structure-from-Motion



Start from nothing known (except maybe intrinsics), exploit the relationship to slowly get the right answer

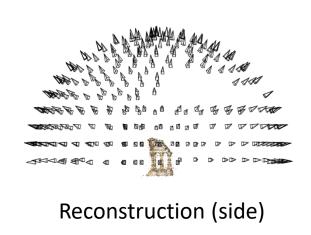
Photo Tourism

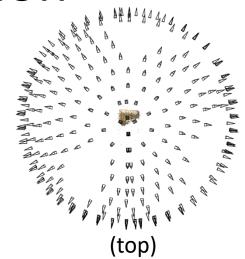
Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," SIGGRAPH 2006



https://youtu.be/mTBPGuPLI5Y

Structure from motion





- Input: images with points in correspondence $p_{i,j} = (u_{i,j}, v_{i,j})$
- Output
 - structure: 3D location \mathbf{x}_i for each point p_i
 - motion: camera parameters \mathbf{R}_{j} , \mathbf{t}_{j} possibly \mathbf{K}_{j}
- Objective function: minimize reprojection error

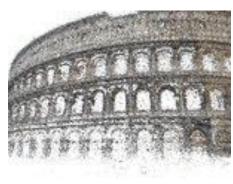
Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).

Total reconstruction time: 23 hours

Number of cores: 352

Large-scale structure from motion



Rome's Colosseum

First step: Correspondence

Feature detection and matching

Feature detection

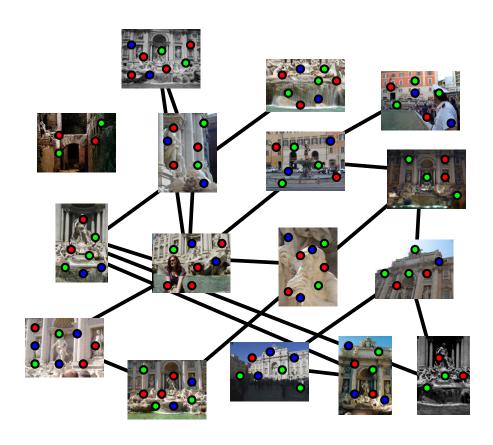
Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

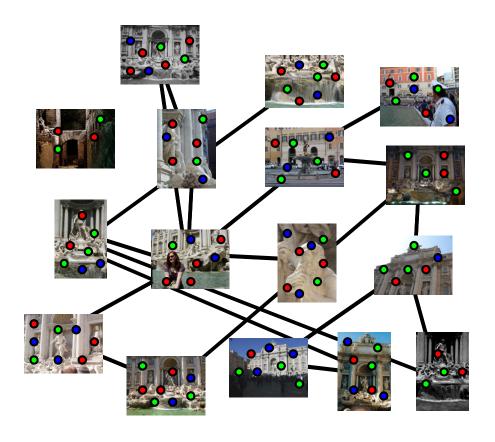
Feature matching

Match features between each pair of images



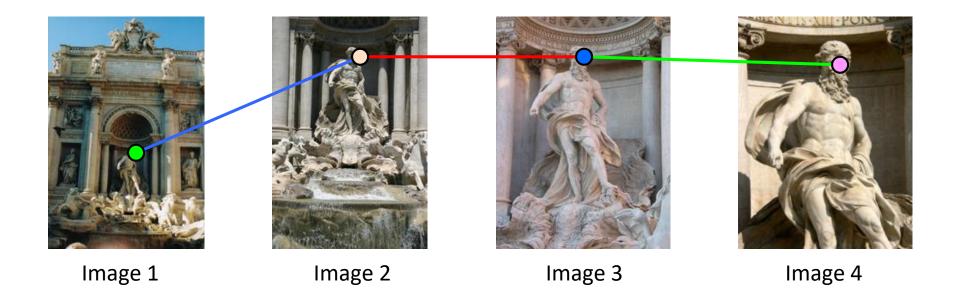
Feature matching

Refine matching using RANSAC to estimate fundamental matrix between each pair

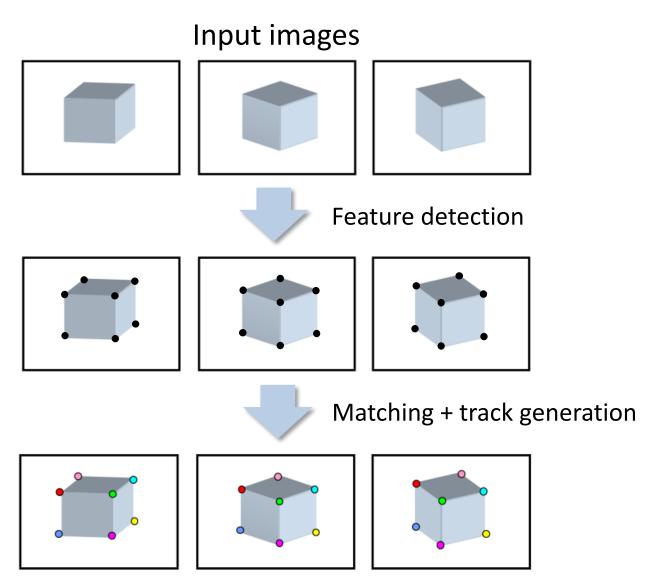


Correspondence estimation

 Link up pairwise matches to form connected components of matches across several images



The story so far...

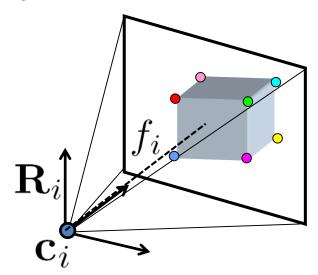


Images with feature correspondence

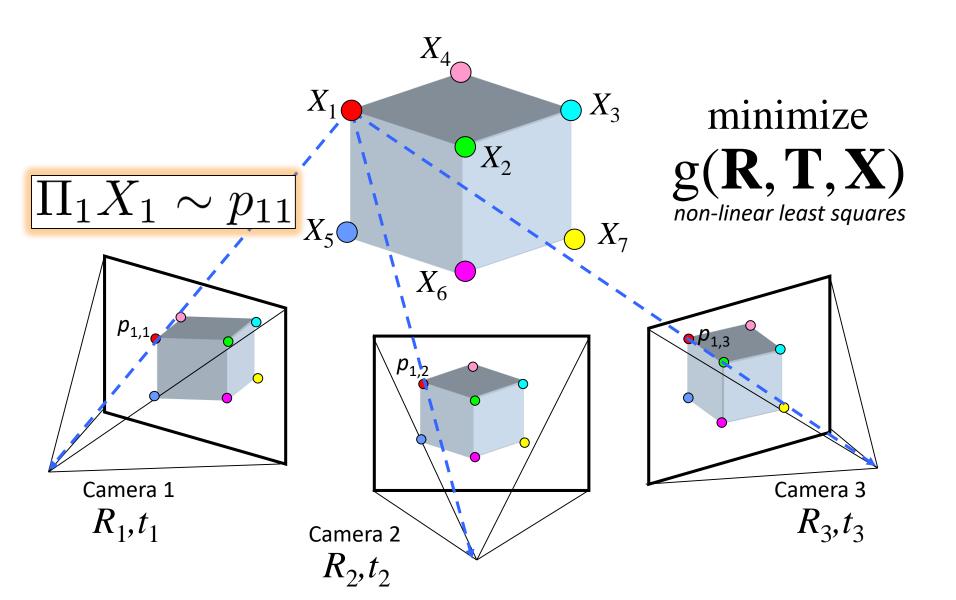
Review: Points and cameras

• Point: 3D position in space (\mathbf{X}_j)

- Camera (C_i):
 - A 3D position (\mathbf{c}_i)
 - A 3D orientation (\mathbf{R}_i)
 - Intrinsic parameters(focal length, aspect ratio, ...)
 - 7 parameters (3+3+1) in total

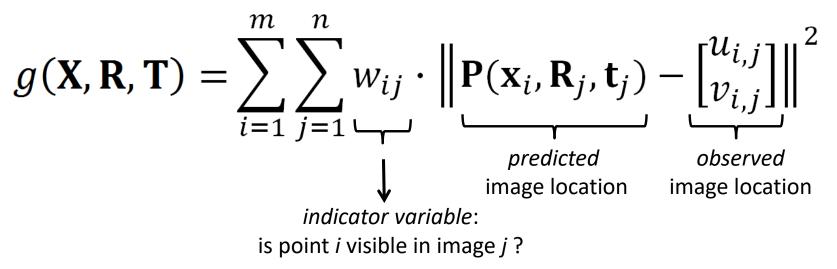


Structure from motion



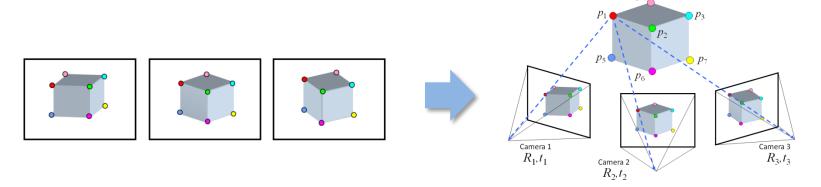
Structure from motion

Minimize sum of squared reprojection errors:



- Minimizing this function is called bundle adjustment
 - Optimized using non-linear least squares,
 e.g. Levenberg-Marquardt

Solving structure from motion



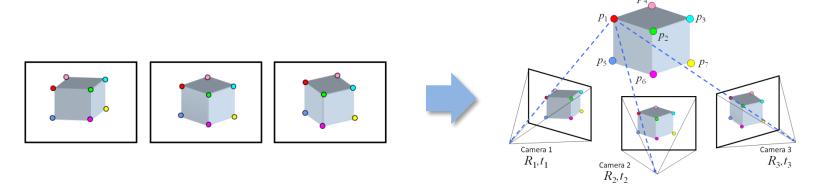
Inputs: feature tracks

Outputs: 3D cameras and points

Challenges:

- Large number of parameters (1000's of cameras, millions of points)
- Very non-linear objective function

Solving structure from motion

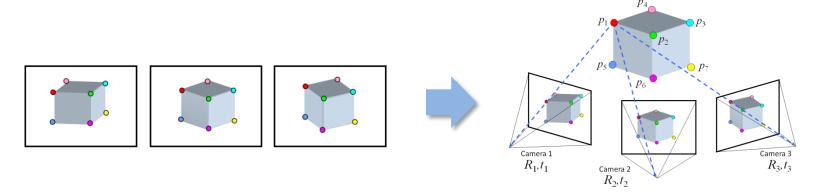


Inputs: feature tracks

Outputs: 3D cameras and points

- Important tool: Bundle Adjustment [Triggs et al. '00]
 - Joint non-linear optimization of both cameras and points
 - Very powerful, elegant tool
- The bad news:
 - Starting from a random initialization is very likely to give the wrong answer
 - Difficult to initialize all the cameras at once

Solving structure from motion



Inputs: feature tracks

Outputs: 3D cameras and points

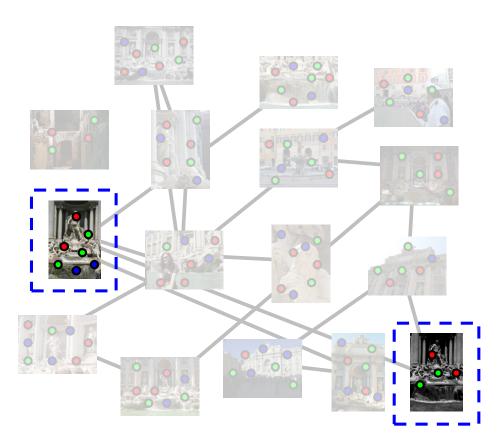
The good news:

- Structure from motion with two cameras is (relatively) easy
- Once we have an initial model, it's easy to add new cameras

• Idea:

Start with a small seed reconstruction, and grow

Incremental SfM



Automatically select an initial pair of images

1. Picking the initial pair

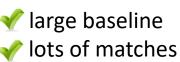
 We want a pair with many matches, but which has as large a baseline as possible

✓ lots of matches

X small baseline

✓ large baseline

X very few matches

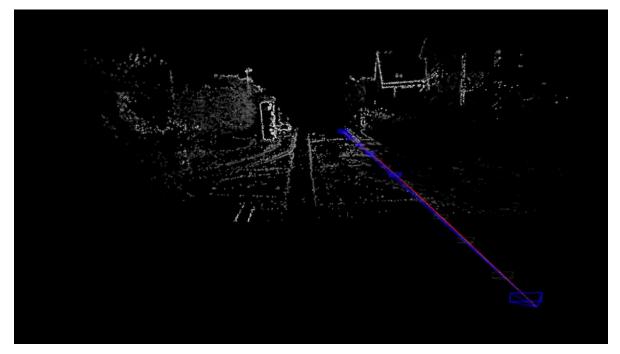


Incremental SfM: Algorithm

- 1. Pick a strong initial pair of images
- 2. Initialize the model using two-frame SfM
- 3. While there are connected images remaining:
 - a. Pick the image which sees the most existing 3D points
 - b. Estimate the pose of that camera
 - c. Triangulate any new points
 - d. Run bundle adjustment

Visual Simultaneous Localization and Mapping (V-SLAM)

- Main differences with SfM:
 - Continuous visual input from sensor(s) over time
 - Gives rise to problems such as loop closure
 - Often the goal is to be online / real-time

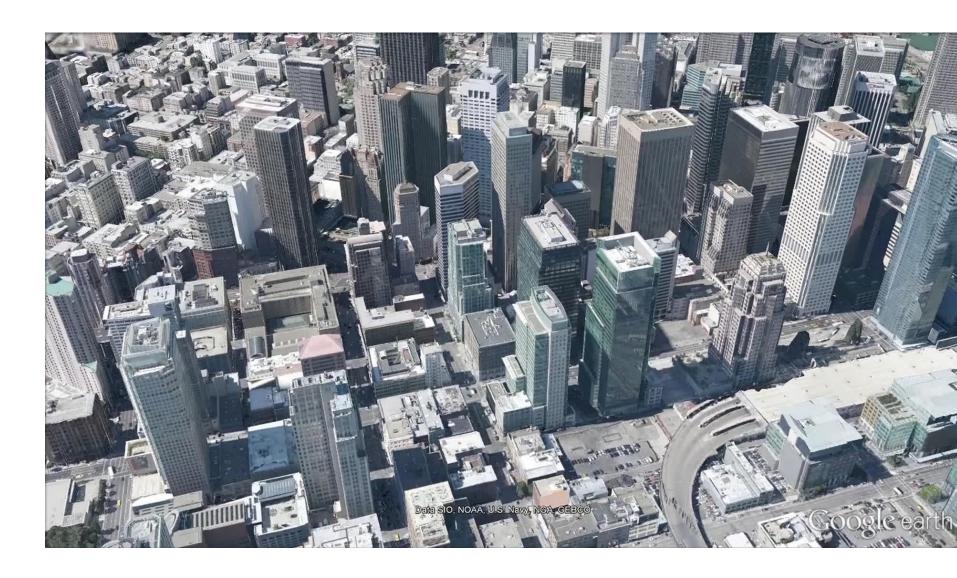


Now what, are we done?

What does SfM give you

Sparse points!!! Why?

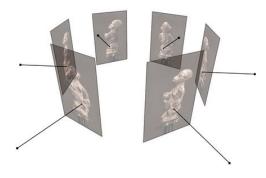
What if we want solid models?



Multi-View Stereo (after SfM), i.e. known camera

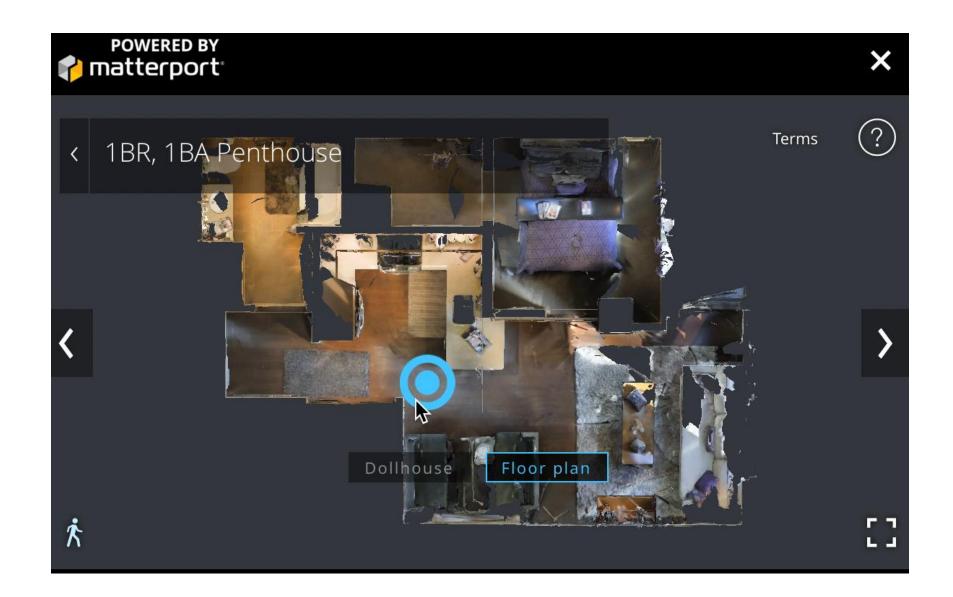
Multi-view Stereo (Lots of calibrated images)

- Input: calibrated images from several viewpoints (known camera: intrinsics and extrinsics)
- Output: 3D Model



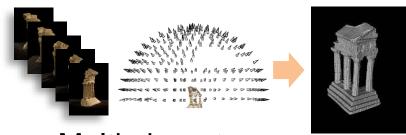
Figures by Carlos Hernandez

In general, conducted in a controlled environment with multi-camera setup that are all calibrated

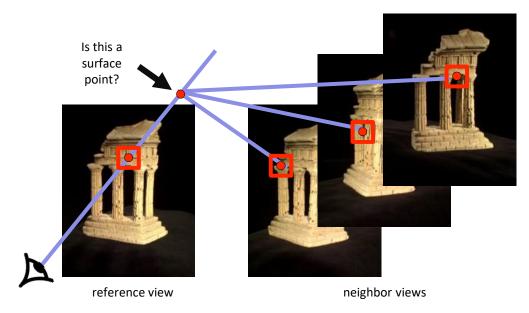


Multi-view Stereo

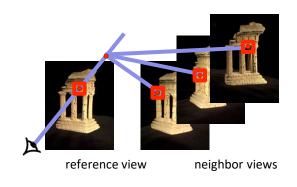
Problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

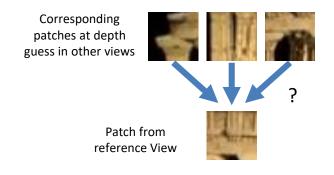


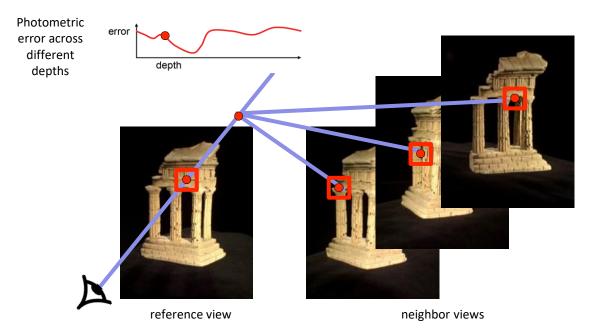
Multi-view stereo

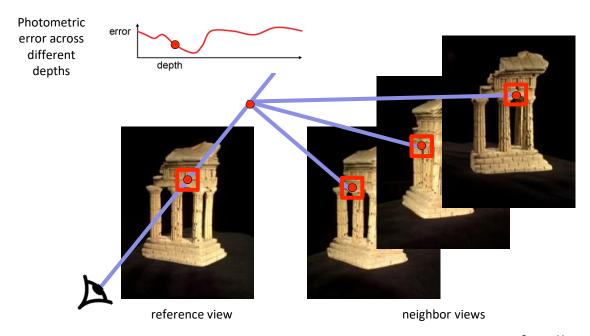


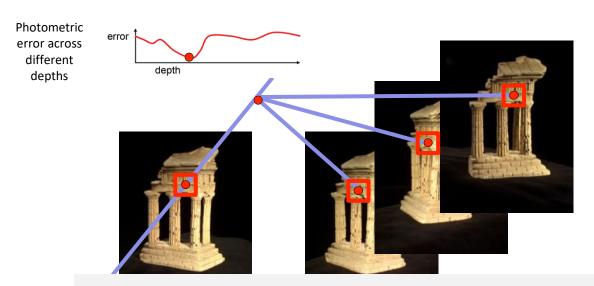
Evaluate the likelihood of geometry at a particular depth for a particular reference patch:









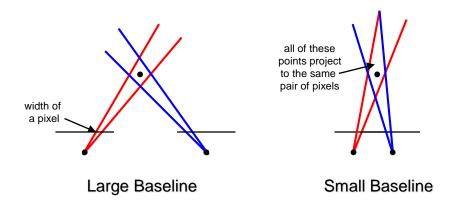


In this manner, solve for a depth map over the whole reference view

Multi-view stereo: advantages over 2 view

- Can match windows using more than 1 other image, giving a stronger match signal
- If you have lots of potential images, can choose the best subset of images to match per reference image
- Can reconstruct a depth map for each reference frame, and the merge into apure: Y. Furukawa complete 3D model

Choosing the baseline

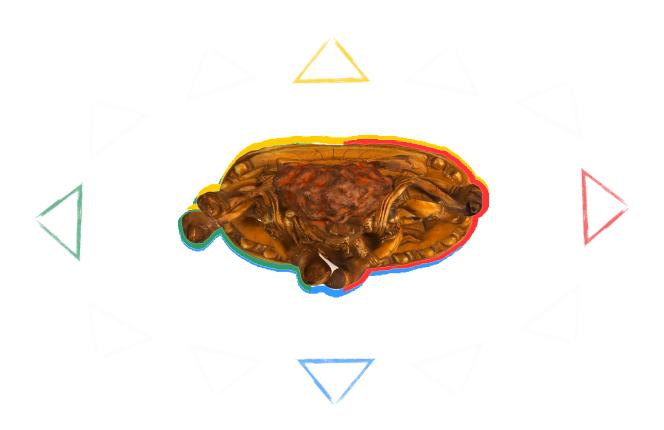


•What's the optimal baseline?

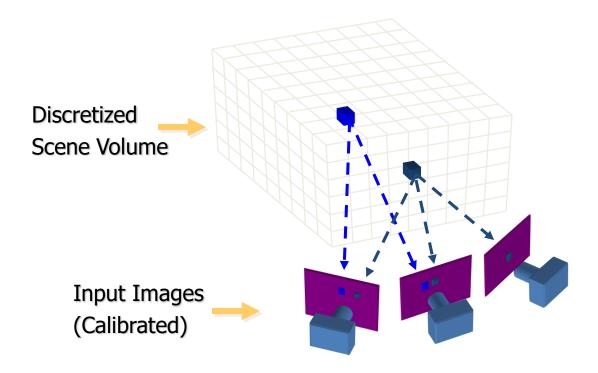
Too small: large depth error

Too large: difficult search problem

Slide credit: Noah Snavely



Volumetric stereo



Goal: Assign RGB values to voxels in V photo-consistent with images

Space Carving

Space Carving Algorithm

- Initialize to a volume V containing the true scene
- Choose a voxel on the outside of the volume
- Project to visible input images
- Carve if not photo-consistent
- Repeat until convergence

K. N. Kutulakos and S. M. Seitz, <u>A Theory of Shape by Space Carving</u>, *ICCV* 1999

Space Carving Results

Input Image (1 of 45)

Reconstruction

Reconstruction

Reconstruction

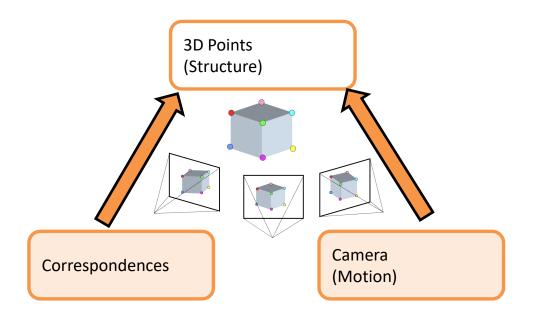
Source: S. Seitz

Tool for you: COLMAP

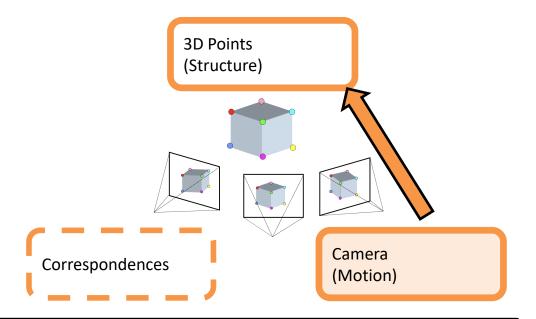
https://github.com/colmap/colmap

A general SfM + MVS pipeline

Multi-View Stereo

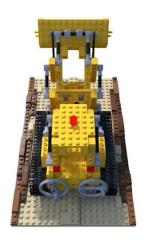


Volumetric "Neural" Rendering



Does not use explicit correspondences, relies on reconstruction loss (Analysis-by-Synthesis)

Neural Radiance Fields



Video from the original ECCV'20 paper