SfM / MVS / NeRF..

A lot of slides from
Noah Snavely +
Shree Nayar’s YT
series: First
principals of
Computer Vision

CS180: Intro to Computer Vision and Comp. Photo
Angjoo Kanazawa & Alexei Efros, UC Berkeley, Fall 2025
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How to estimate the camera?

e 1. Estimate the fundamental/essential matrix
with correspondences!

e 2. Another method: Calibration



Problem: Solve for the camera

 What are the camerea parameters?
— Extrinsics (R, T)
— Intrinsics (K)

e How am | situated in the world + what is the

shape of the ray I World origin

| Focal length
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Calibration

* Definition: Solve for camera using a known 3D
structure + where it is in the image

* |nvasive / active
, . .
 Can’t be done on existing pictures I World origi
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Only have to do it once if
the cameras are static




How to calibrate the camera?

x=K[R t]|X
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If we know the points in 3D we can estimate the camera!!




Step 1: With a known 3D object

1. Take a picture of an object with known 3D
geometry

2. ldentify correspondences

Slide from Shree Nayar



How do we calibrate a camera?
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Method: Set up a linear system
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* Solve for m’s entries using linear least squares
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Similar to how you
solved for
homography!



Can we factorize M backto K[R | T]?

* Yes.

* Why? because K and R have a very special form:

* QR decomposition

* Practically, use camera calibration packages
(there is a good one in OpenCV)



Inserting a 3D known object...

e Also called “Tsai’scalibration” requires non-coplanar 3D
points, is not very practical...

* Modern day calibration uses a planar calibration target

* Developed in 2000 by Zhang at Microsoft research

Zhang, A flexible new technique for camera calibration, IEEE Transactior
on Pattern Analysis and Machine Intelligence, 2000



Doesn’t plane give you homography?

* Yes! If it’s a plane, it’s only a homography, so
instead of recovering 3x4 matrix, you will
recover 3x3 in Zhang’s method

* The 3x3 gives first two columns of Rand T
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You will use Aruco tags




In practice: Step O

* Calibrate your intrinsics first, also estimates
lens distortion (cv2.calibrateCamera)




Cv2.undistort()
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Step 2: Estimate camera with PnP

cv2.solvePnP()

* PnP — “Perspective-n-Point” problem:

* Estimate extrinsic parameters given n
correspondences

Minimize reprojection loss with non-linear least squares

manHxl — K[RTI]X ||

In general you do DLT first (Ax=0), then use that as
initialization, or do other algorithms like Efficient PnP



Putting it all together

e Structure-from-Motion: You know nothing!
(except ok maybe intrinsics)
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(after that): Neural Rendering

3D Representation
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A form of multi-view stereo, more on this in the NeRF lecture.




if you know 2 you get the other:
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Camera Calibration; aka
Perspective-n-Point
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Stereo (w/2 cameras); aka
Triangulation
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You can easily get correspondence via
projection from 3D points + Camera

3D Points
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Correspondences < |




Ultimate: Structure-from-Motion

D Points
(Structure)

1= 1=l

Camera
(Motion)

Correspondences

Start from nothing known (except maybe intrinsics), exploit the
relationship to slowly get the right answer



Photo Tourism

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring
photo collections in 3D," SIGGRAPH 2006

https://youtu.be/mTBPGuUPLI5Y



http://phototour.cs.washington.edu/Photo_Tourism.pdf
https://youtu.be/mTBPGuPLI5Y

Structure from motion
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Reconstruction (side)
(top)

* Input: images with points in correspondence
pi; = (UipVi

* Output

* structure: 3D location x; for each point p,
* motion: camera parameters R;, t; possibly K;

* Objective function: minimize reprojection error



Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).
Total reconstruction time: 23 hours

Number of cores: 352
Building Rome in a Day, Agarwal et al. ICCV 2009



Large-scale structure from motion
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Rome’s Colosseum
Building Rome in a Day, Agarwal et al. ICCV 2009



First step: Correspondence

* Feature detection and matching



Feature detection

Detect features using SIFT [Lowe, [JCV 2004]




Feature detection

Detect features using SIFT [Lowe, [JCV 2004]




Feature matching

Match features between each pair of images




Feature matching

Refine matching using RANSAC to estimate fundamental
matrix between each pair




Correspondence estimation

* Link up pairwise matches to form connected components of
matches across several images

Image 4



The story so far...
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Images with feature correspondence




Review: Points and cameras

* Point: 3D position in space (X ;)

\

* Camera (C};):

— A 3D position (C;) R fz 7, °
— A 3D orientation (R,;) ¢
— Intrinsic parameters C;

(focal length, aspect ratio, ...)
— 7 parameters (3+3+1) in total



Structure from motion

X3 minimize

g(R, T, X)

non-linear least squares

Camera 2

RZ’tZ



Structure from motion

* Minimize sum of squared reprojection errors:

g(X,R,T) = ZZW” |Pcx. R, )—[”;,‘j]HZ

=1 j=1-—--

pred/cted observed
l image location image location
indicator variable:
is point j visible in image j ?

* Minimizing this function is called bundle
adjustment

— Optimized using non-linear least squares,
e.g. Levenberg-Marquardt



Solving structure from motion

Inputs: feature tracks Outputs: 3D cameras and points

* Challenges:

— Large number of parameters (1000’s of cameras,
millions of points)

— Very non-linear objective function



Solving structure from motion

Inputs: feature tracks

Camera
R.1,

Outputs: 3D cameras and points

cameraz .\ /7
Ryt

amera 3
Rt

* Important tool: Bundle Adjustment [Triggs et al. "00]
— Joint non-linear optimization of both cameras and points

— Very powerful, elegant tool
The bad news:

— Starting from a random initialization is very likely to give the

Wwrong answer

— Difficult to initialize all the cameras at once



Solving structure from motion

amera 3
Ryt,

Inputs: feature tracks Outputs: 3D cameras and points

* The good news:
— Structure from motion with two cameras is (relatively) easy
— Once we have an initial model, it’s easy to add new cameras
* |dea:
— Start with a small seed reconstruction, and grow



Incremental STM

e Automatically select an initial pair of images



1. Picking the initial pair

 We want a pair with many matches, but which
has as large a baseline as possible

¥’ large baseline
2 very few matches

¥ lots of matches
25 small baseline

¥ large baseline
¥~ lots of matches



Incremental SfM: Algorithm

1. Pick a strong initial pair of images
2. Initialize the model using two-frame SfM

3. While there are connected images remaining:

Pick the image which sees the most existing 3D points

a
b. Estimate the pose of that camera
c. Triangulate any new points

d

Run bundle adjustment



Visual Simultaneous Localization and
Mapping (V-SLAM)
e Main differences with SfM:

— Continuous visual input from sensor(s) over time
— Gives rise to problems such as loop closure
— Often the goal is to be online / real-time

Video from Daniel Cremer’s Lab



Now what, are we done”?

* What does SfM give you
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Sparse points!



What if we want solid models?
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Slide credit: Noah Snavely



Multi-View Stereo
(after STM), i.e. known camera



M U Iti_Vi EW Ste reO (Lots of calibrated images)

* |nput: calibrated images from several viewpoints
(known camera: intrinsics and extrinsics)

e QOutput: 3D Model

i '!I l
&
e/

y

4

Figures by Carlos Hernandez

In general, conducted in a controlled environment with
multi-camera setup that are all calibrated

Slide credit: Noah Snave
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Multi-view Stereo

Problem formulation: given several images of the
same object or scene, compute a representation of
its 3D shape

Binocular Stereo Multi-view stereo

Slide credit: Noah Snavely




Multi-view stereo: Basic idea




Multi-view stereo: Basic idea

Evaluate the likelihood of geometry at a particular depth
for a particular reference patch:

Corresponding
patches at depth
guess in other views

Patch from m
U -

reference View

reference view neighbor views



Multi-view stereo: Basic idea

Photometric
error
error across W
different

depths

depth

reference view neighbor views

Source: Y.
Furukawa



Multi-view stereo: Basic idea

Photometric
error
error across W
different

depths

depth

reference view neighbor views

Source: Y.
Furukawa



Multi-view stereo: Basic idea

Photometric
error across
different
depths

In this manner, solve for a depth map
over the whole reference view



Multi-view stereo: advantages over

2 view

e Can match windows using more than 1 other
image, giving a stronger match signal

* |f you have lots of potential images, can
choose the best subset of images to match
per reference image

* Can reconstruct a depth map for each
reference frame, and the merge into g~
complete 3D model



Choosing the baseline

all of these
points project
to the same
pair of pixels
width of
a pixel
Large Baseline Small Baseline

*What'’s the optimal baseline?
— Too small: large depth error
— Too large: difficult search problem

Slide credit: Noah Snavely












Volumetric stereo

Discretized
Scene Volume

Input Images
(Calibrated)

Goal: Assign RGB values to voxels in V
photo-consistent with images



Space Carving

Image 1 Image N

*Space Carving Algorithm

* Initialize to a volume V containing the true scene

Choose a voxel on the outside of the volume

Project to visible input images
Carve if not photo-consistent
Repeat until convergence

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999



http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf

Space Carving Results

Input Image (1 of 45) Reconstruction

ERy ‘--.:ﬁi__
Reconstruction Reconstruction

Source: S. Seitz



Tool for you: COLMAP

https://github.com/colmap/colmap

A general SfM + MVS pipeline



https://github.com/colmap/colmap

Multi-View Stereo
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Volumetric “Neura
Rendering

3D Points
(Structure)

Camera
(Motion)

Does not use explicit correspondences,
relies on reconstruction loss (Analysis-by-Synthesis)

Correspondences



Neural Radiance Fields




