
SfM / MVS / NeRF..

A lot of slides from
Noah Snavely +
Shree Nayar’s YT
series: First
principals of
Computer Vision

CS180: Intro to Computer Vision and Comp. Photo

Angjoo Kanazawa & Alexei Efros, UC Berkeley, Fall 2025

End of last lecture: Camera from
Corresp

Camera
(Motion)

Correspondences

3D Points
(Structure)

How to estimate the camera?

• 1. Estimate the fundamental/essential matrix
with correspondences!

• 2. Another method: Calibration

Problem: Solve for the camera

• What are the camerea parameters?

– Extrinsics (R, T)

– Intrinsics (K)

• How am I situated in the world + what is the
shape of the ray

Camera Translation

Camera Rotation

World origin

Focal length

Calibration
• Definition: Solve for camera using a known 3D

structure + where it is in the image

• Invasive / active

• Can’t be done on existing pictures
World origin

Only have to do it once if
the cameras are static

How to calibrate the camera?





















































1

Z

Y

X

s

sv

su

 XtRKx 

If we know the points in 3D we can estimate the camera!!

Step 1: With a known 3D object

1. Take a picture of an object with known 3D
geometry

Slide from Shree Nayar

2. Identify correspondences

y’w
x’w

How do we calibrate a camera?

312.747 309.140 30.086

305.796 311.649 30.356

307.694 312.358 30.418

310.149 307.186 29.298

311.937 310.105 29.216

311.202 307.572 30.682

307.106 306.876 28.660

309.317 312.490 30.230

307.435 310.151 29.318

308.253 306.300 28.881

306.650 309.301 28.905

308.069 306.831 29.189

309.671 308.834 29.029

308.255 309.955 29.267

307.546 308.613 28.963

311.036 309.206 28.913

307.518 308.175 29.069

309.950 311.262 29.990

312.160 310.772 29.080

311.988 312.709 30.514

880 214

43 203

270 197

886 347

745 302

943 128

476 590

419 214

317 335

783 521

235 427

665 429

655 362

427 333

412 415

746 351

434 415

525 234

716 308

602 187





















































1

Z

Y

X

s

sv

su



































































































0

0

0

0

10000

00001

10000

00001

34

33

32

31

24

23

22

21

14

13

12

11

1111111111

1111111111

m

m

m

m

m

m

m

m

m

m

m

m

vZvYvXvZYX

uZuYuXuZYX

vZvYvXvZYX

uZuYuXuZYX

nnnnnnnnnn

nnnnnnnnnn

Method: Set up a linear system

• Solve for m’s entries using linear least squares

Ax=0 form





















































1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su

Similar to how you
solved for
homography!

Can we factorize M back to K [R | T]?
• Yes.

• Why? because K and R have a very special form:

• QR decomposition

• Practically, use camera calibration packages
(there is a good one in OpenCV)

Inserting a 3D known object…

• Also called “Tsai’scalibration” requires non-coplanar 3D
points, is not very practical…

• Modern day calibration uses a planar calibration target

• Developed in 2000 by Zhang at Microsoft research

Zhang, A flexible new technique for camera calibration, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2000

Doesn’t plane give you homography?

• Yes! If it’s a plane, it’s only a homography, so
instead of recovering 3x4 matrix, you will
recover 3x3 in Zhang’s method

• The 3x3 gives first two columns of R and T

You will use Aruco tags

In practice: Step 0
• Calibrate your intrinsics first, also estimates

lens distortion (cv2.calibrateCamera)

Step 1: Undistort your image
Cv2.undistort()

Step 2: Estimate camera with PnP

• PnP – “Perspective-n-Point” problem:

• Estimate extrinsic parameters given n
correspondences

min
𝑅,𝑇

෍ 𝑥𝑖 − 𝐾[𝑅 𝑇]𝑋 2

Minimize reprojection loss with non-linear least squares

In general you do DLT first (Ax=0), then use that as
initialization, or do other algorithms like Efficient PnP

cv2.solvePnP()

Putting it all together
• Structure-from-Motion: You know nothing!

(except ok maybe intrinsics)

Camera
(Motion)

Correspondences

3D Points
(Structure)

(after that): Neural Rendering

Camera
(Motion)

Correspondences

3D Representation
(Structure)

A form of multi-view stereo, more on this in the NeRF lecture.

if you know 2 you get the other:

Camera
(Motion)

Correspondences

3D Points
(Structure)

Camera Calibration; aka
Perspective-n-Point

Camera
(Motion)

Correspondences

3D Points
(Structure)

Stereo (w/2 cameras); aka
Triangulation

Camera
(Motion)

Correspondences

3D Points
(Structure)

You can easily get correspondence via
projection from 3D points + Camera

Camera
(Motion)

3D Points
(Structure)

Correspondences

Ultimate: Structure-from-Motion

Camera
(Motion)

Correspondences

3D Points
(Structure)

Start from nothing known (except maybe intrinsics), exploit the
relationship to slowly get the right answer

Photo Tourism

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring

photo collections in 3D," SIGGRAPH 2006

https://youtu.be/mTBPGuPLI5Y

http://phototour.cs.washington.edu/Photo_Tourism.pdf
https://youtu.be/mTBPGuPLI5Y

Structure from motion

• Input: images with points in correspondence
pi,j = (ui,j,vi,j)

• Output
• structure: 3D location xi for each point pi
• motion: camera parameters Rj , tj possibly Kj

• Objective function: minimize reprojection error

Reconstruction (side)
(top)

Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).
Total reconstruction time: 23 hours
Number of cores: 352

Building Rome in a Day, Agarwal et al. ICCV 2009

Large-scale structure from motion

Rome’s Colosseum

Building Rome in a Day, Agarwal et al. ICCV 2009

First step: Correspondence

• Feature detection and matching

Feature detection
Detect features using SIFT [Lowe, IJCV 2004]

Feature detection
Detect features using SIFT [Lowe, IJCV 2004]

Feature matching
Match features between each pair of images

Feature matching
Refine matching using RANSAC to estimate fundamental

matrix between each pair

Correspondence estimation

• Link up pairwise matches to form connected components of
matches across several images

Image 1 Image 2 Image 3 Image 4

The story so far…

Feature detection

Matching + track generation

Input images

Images with feature correspondence

Review: Points and cameras

• Point: 3D position in space ()

• Camera ():

– A 3D position ()

– A 3D orientation ()

– Intrinsic parameters
(focal length, aspect ratio, …)

– 7 parameters (3+3+1) in total

Structure from motion

Camera 1

Camera 2

Camera 3

R1,t1

R2,t2

R3,t3

X1

X4

X3

X2

X5

X6

X7

minimize

g(R,T,X)

p1,1

p1,2

p1,3

non-linear least squares

Structure from motion

• Minimize sum of squared reprojection errors:

• Minimizing this function is called bundle
adjustment
– Optimized using non-linear least squares,

e.g. Levenberg-Marquardt

predicted
image location

observed
image location

indicator variable:
is point i visible in image j ?

Solving structure from motion

• Challenges:

– Large number of parameters (1000’s of cameras,
millions of points)

– Very non-linear objective function

Inputs: feature tracks Outputs: 3D cameras and points

Solving structure from motion

Inputs: feature tracks Outputs: 3D cameras and points

• Important tool: Bundle Adjustment [Triggs et al. ’00]
– Joint non-linear optimization of both cameras and points

– Very powerful, elegant tool

• The bad news:
– Starting from a random initialization is very likely to give the

wrong answer

– Difficult to initialize all the cameras at once

Solving structure from motion

Inputs: feature tracks Outputs: 3D cameras and points

• The good news:

– Structure from motion with two cameras is (relatively) easy

– Once we have an initial model, it’s easy to add new cameras

• Idea:

– Start with a small seed reconstruction, and grow

Incremental SfM

• Automatically select an initial pair of images

1. Picking the initial pair
• We want a pair with many matches, but which

has as large a baseline as possible

lots of matches
small baseline

very few matches
large baseline

lots of matches
large baseline

Incremental SfM: Algorithm

1. Pick a strong initial pair of images

2. Initialize the model using two-frame SfM

3. While there are connected images remaining:

a. Pick the image which sees the most existing 3D points

b. Estimate the pose of that camera

c. Triangulate any new points

d. Run bundle adjustment

Visual Simultaneous Localization and
Mapping (V-SLAM)

• Main differences with SfM:

– Continuous visual input from sensor(s) over time

– Gives rise to problems such as loop closure

– Often the goal is to be online / real-time

Video from Daniel Cremer’s Lab

Now what, are we done?

• What does SfM give you

Sparse points!!! Why?

What if we want solid models?

Slide credit: Noah Snavely

Multi-View Stereo
(after SfM), i.e. known camera

Multi-view Stereo (Lots of calibrated images)

• Input: calibrated images from several viewpoints
(known camera: intrinsics and extrinsics)

• Output: 3D Model

Figures by Carlos Hernandez

Slide credit: Noah Snavely

In general, conducted in a controlled environment with
multi-camera setup that are all calibrated

Multi-view Stereo

Binocular Stereo Multi-view stereo

Problem formulation: given several images of the

same object or scene, compute a representation of

its 3D shape

Slide credit: Noah Snavely

reference view neighbor views

Source: Y.

Furukawa

Is this a
surface
point?

Multi-view stereo: Basic idea

Source: Y.

Furukawa

reference view neighbor views

Multi-view stereo: Basic idea

Patch from
reference View

Corresponding
patches at depth

guess in other views

Evaluate the likelihood of geometry at a particular depth
for a particular reference patch:

?

reference view neighbor views

Source: Y.

Furukawa

Multi-view stereo: Basic idea

Photometric
error across

different
depths

reference view neighbor views

Source: Y.

Furukawa

Photometric
error across

different
depths

Multi-view stereo: Basic idea

reference view neighbor views

Source: Y.

Furukawa

In this manner, solve for a depth map
over the whole reference view

Photometric
error across

different
depths

Multi-view stereo: Basic idea

Multi-view stereo: advantages over
2 view

• Can match windows using more than 1 other
image, giving a stronger match signal

• If you have lots of potential images, can
choose the best subset of images to match
per reference image

• Can reconstruct a depth map for each
reference frame, and the merge into a
complete 3D model

Source: Y. Furukawa

width of

a pixel

Choosing the baseline

•What’s the optimal baseline?
– Too small: large depth error
– Too large: difficult search problem

Large Baseline Small Baseline

all of these

points project

to the same

pair of pixels

Slide credit: Noah Snavely

Single depth map often isn’t
enough

Source: N. Snavely

Really want full coverage

Source: N. Snavely

Idea: Combine many depth maps

Source: N. Snavely

Volumetric stereo

Discretized

Scene Volume

Input Images

(Calibrated)

Goal: Assign RGB values to voxels in V
photo-consistent with images

Space Carving

•Space Carving Algorithm

Image 1 Image N

…...

• Initialize to a volume V containing the true scene

• Repeat until convergence

• Choose a voxel on the outside of the volume

• Carve if not photo-consistent

• Project to visible input images

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999

http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf

Space Carving Results

Input Image (1 of 45) Reconstruction

ReconstructionReconstruction Source: S. Seitz

Tool for you: COLMAP

https://github.com/colmap/colmap

A general SfM + MVS pipeline

https://github.com/colmap/colmap

Multi-View Stereo

Camera
(Motion)

Correspondences

3D Points
(Structure)

Volumetric “Neural”
Rendering

Camera
(Motion)

Correspondences

3D Points
(Structure)

Does not use explicit correspondences,
relies on reconstruction loss (Analysis-by-Synthesis)

Neural Radiance Fields

Video from the original ECCV’20 paper

