
Image Transformations + Warping

Some slides from Steve Seitz

CS180: Intro to Computer Vision and Comp. Photo

Alexei Efros & Angjoo Kanazawa, UC Berkeley, Fall 2025

The

Ambassador

s (Holbein),

1533

Logistics

If you are CE who made it into class, but originally

wanted to get into CS280A let me know.

Today you will learn how to do this:

Or this:

Or this!

You will learn how to make panoramas

Image Transformations

image filtering: change range of image

g(x) = T(f(x))

f

x

T

f

x

f

x

T

f

x

image warping: change domain of image

g(x) = f(T(x))

Image Transformations

T

T

f

f g

g

image filtering: change range of image

g(x) = T(f(x))

image warping: change domain of image

g(x) = f(T(x))

Parametric (global) warping

Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical

Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?

• Is the same for any point p

• can be described by just a few numbers (parameters)

Let’s represent a linear T as a matrix:

p’ = Mp

T

p = (x,y) p’ = (x’,y’)



















y

x

y

x
M

'

'

Scaling

Scaling a coordinate means multiplying each of its components by
a scalar

Uniform scaling means this scalar is the same for all components:

 2

Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5

Scaling

Scaling operation:

Or, in matrix form:

byy

axx





'

'



























y

x

b

a

y

x

0

0

'

'

scaling matrix S

What’s inverse of S?

2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()

2-D Rotation

This is easy to capture in matrix form:

Is this a linear transformation?

Even though sin() and cos() are nonlinear functions of ,

• x’ is a linear combination of x and y

• y’ is a linear combination of x and y

What is the inverse transformation?

• Rotation by –

• For rotation matrices

   

    














 










y

x

y

x





cossin

sincos

'

'

T
RR 1

R

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Identity?

yy
xx



'
'



















y
x

y
x

10
01

'
'

2D Scale around (0,0)?

ysy

xsx

y

x

*'

*'































y

x

s

s

y

x

y

x

0

0

'

'

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx

*cos*sin'
*sin*cos'


































y

x

y

x

cossin

sincos

'

'

2D Shear?

yxshy

yshxx

y

x





*'

*'



























y

x

sh

sh

y

x

y

x

1

1

'

'

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Mirror about Y axis?

yy
xx




'
'



















y
x

y
x

10
01

'
'

Reflection through (0,0)?

yy
xx




'
'
























y
x

y
x

10
01

'
'

All 2D Linear Transformations

Linear transformations are combinations of …

• Scale,

• Rotation,

• Shear, and

• Mirror/Reflection

Properties of linear transformations:

• Origin maps to origin

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition



























y

x

dc

ba

y

x

'

'































y
x

lk

ji

hg

fe
dc
ba

y
x
'
'

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Translation?

y

x

tyy

txx





'

'

Only linear 2D transformations

can be represented with a 2x2 matrix

NO!

Homogeneous Coordinates

Q: How can we represent translation as a 3x3

matrix?

A: Using the rightmost column:



















100

10

01

y

x

t

t

ranslationT

y

x

tyy

txx





'

'

Homogeneous Coordinates

Homogeneous coordinates

• represent coordinates in 2

dimensions with a 3-vector

















 








1

coords shomogeneou y

x

y

x

Homogeneous Coordinates

Add a 3rd coordinate to every 2D point

• (x, y, w) represents a point at location (x/w, y/w)

• (x, y, 0) represents a point at infinity

• (0, 0, 0) is not allowed

Convenient tool to

express translation

as a linear transform

1 2

1

2
(2,1,1) or (4,2,2) or (6,3,3)

x

y

Translation

Example of translation









































































11100

10

01

1

'

'

y

x

y

x

ty

tx

y

x

t

t

y

x

tx = 2

ty = 1

Homogeneous Coordinates

Basic 2D Transformations

Basic 2D transformations as 3x3 matrices























































1100

0cossin

0sincos

1

'

'

y

x

y

x



















































1100

10

01

1

'

'

y

x

t

t

y

x

y

x



















































1100

01

01

1

'

'

y

x

sh

sh

y

x

y

x

Translate

Rotate Shear



















































1100

00

00

1

'

'

y

x

s

s

y

x

y

x

Scale

Matrix Composition

Transformations can be combined by

matrix multiplication
























































































w

y
x

sy
sx

ty
tx

w

y
x

100

00
00

100
0cossin
0sincos

100

10
01

'

'
'

p’ = T(tx,ty) R() S(sx,sy) p

Does the order of multiplication matter?

Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Properties of affine transformations:

• Origin does not necessarily map to origin (translation!)

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition

• Models change of basis

Will the last coordinate w always be 1?












































w

y
x

fed
cba

w

y
x

100

'
'

Projective Transformations/Homography

Projective transformations …

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis












































w

y
x

ihg

fed
cba

w

y
x

'

'
'

Another way to think about transformation

j =(0,1)

i =(1,0)

q

q=4i+3j = (4,3) p=4u+3v

v =(vx,vy)

u=(ux,uy)

p

Same point represented using a Different Basis

uv-basisij-basis

Linear Transformations as Change of Basis

Any linear transformation is a basis!!!

j =(0,1)

i =(1,0)

pij = 4u+3v

pi=4ux+3vx

pj=4uy+3vy

v =(vx,vy)

u=(ux,uy)

puv pij

puv = (4,3)

puvpij 














yy

xx

yy

xx

vu

vu

vu

vu

3

4

Transformation from uv to ij basis

What’s the inverse transform?

• How can we change from any basis to any basis?

• What if the basis are orthogonal?

v =(vx,vy)

u=(ux,uy)

puv

j =(0,1)

i =(1,0)

pij = (5,4)

pij

puv = (px,py) = ?= pxu + pyv

pijpuv



























yy

xx

yy

xx

vu

vu

vu

vu

4

5
-1-1

Projection onto orthogonal basis

v =(vx,vy)

u=(ux,uy)

puv

j =(0,1)

i =(1,0)

pij = (5,4)

pij

puv = (u·pij, v·pij)

pijpuv















yx

yx

yy

xx

vv

uu

vv

uu

4

5

2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member

D'Arcy Thompson
http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html

http://en.wikipedia.org/wiki/D'Arcy_Thompson

Importance of shape and structure in

evolution

Slide by Durand and Freeman

Image Transforms in Biology

http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html
http://en.wikipedia.org/wiki/D'Arcy_Thompson

Now the fun stuff

Picture of Ayuna when she was a baby

How do we go from this to this image??

Break

Now the fun stuff

How do we go from this to this image??

Now the fun stuff

Picture of Ayuna when she was a baby

How do we go from this to this image??

Now the fun stuff

Picture of Ayuna when she was a baby

How do we go from this to this image??

Crop +

enlarge

Warping Pixels

Given a coordinate transform (x’,y’) = T(x,y) and a

source image f(x,y), how do we compute a

transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

The Magic of imresize

So how to do it? Say the goal is to reduce the image size

exactly by half

- Take every other pixel!

- This is like transforming every other pixel to a new location

f(x,y) g(x’,y’)

Forward warping

Send each pixel f(x,y) to its corresponding location

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q: what if pixel lands “between” two pixels?

y y’

f(x,y) g(x’,y’)

Forward warping

Send each pixel f(x,y) to its corresponding location

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q: what if pixel lands “between” two pixels?

y y’

A: distribute color among neighboring pixels (x’,y’)

– Known as “splatting” (Check out griddata in Matlab)

– Generally, a very bad idea. Why?

Can we do better?

What if we want to make the image bigger?

Can we do better?

What if we want to make the image bigger?

Go backwards!

𝑇−1

f(x,y) g(x’,y’)
x

y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location

(x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q: what if pixel comes from “between” two pixels?

y’

A: Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic

– Check out interp2 in Matlab / Python

What do we need to watch out for??

Step 0 of any sampling:

Aliasing!!

1. Gaussian filter

2. Find the inverse warping

3. Interpolate

Recall 1D interpolation:

Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation
Help interp2

http://en.wikipedia.org/wiki/Bilinear_interpolation

Bilinear Interpolation

Figure credit: https://medium.com/data-science/spatial-transformer-networks-tutorial-part-2-bilinear-interpolation-371e1d5f164f

Recovering Transformations

What if we know f and g and want to recover the

transform T?

• e.g. better align images from Project 1

• willing to let user provide correspondences

– How many do we need?

x x’

T(x,y)

y y’

f(x,y) g(x’,y’)

?

Translation: # correspondences?

How many correspondences needed for translation?

How many Degrees of Freedom?

What is the transformation matrix?

x x’

T(x,y)

y y’

?























100

'10

'01

yy

xx

pp

pp

M

Euclidian: # correspondences?

How many correspondences needed for translation+rotation?

How many DOF?

x x’

T(x,y)

y y’

?

Affine: # correspondences?

How many correspondences needed for affine?

How many DOF?

x x’

T(x,y)

y y’

?












































w

y
x

fed
cba

w

y
x

100

'
'

Projective: # correspondences?

How many correspondences needed for projective/homography?

How many DOF?

x x’

T(x,y)

y y’

?












































w

y
x

ihg

fed
cba

w

y
x

'

'
'

Next project: Panorama stitching

1. Compute the homography

2. Warp the image

