Flow Matching

Discussion #10

Written by: Justin, Konpat

1 Warmup: Noise Shapes

At their core, diffusion and flow matching models sample from a base probability distribution (usually Gaussian noise) and transport it to a target data distribution.

Note: In this sheet we use the "flow" formulation. Don't confuse it with the "diffusion" one! For each task below, state the shape of the input noise x_0 (a.k.a. x_{noise}).

- **0)** Generating a grayscale, 1920×1080 image
- 1) Generating a random point (x, y) within a square

2 Visualizing Flow in 2D

We want to train a flow matching model to generate samples from a data distribution consisting of exactly two points, A = (-1,0) and B = (1,0) (50% probability each).

1.0) Define the noise region. Sketch in the plot above the contour of $\mathcal{N}(0,1)$ at 1-std deviation (to roughly denote the high probability region of the noise).

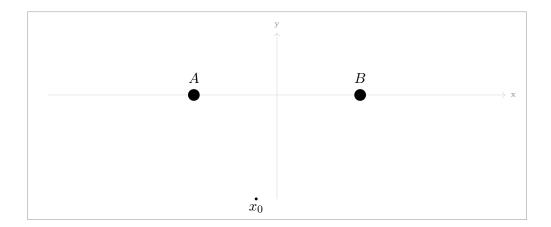
Conditional Flow During each iteration of diffusion model training, we select a data point d (either A or B) at random and combine it with random noise r according to timestep $t \in [0, 1]$ like $x_t = d \cdot t + (1 - t) \cdot r$.

- **1.1** Pick **one** "random" x_0 (full noise) and **plot** them in the chart.
- **1.2** Say $x_1 = A$, plot $x_{0.9}$.
- **1.3** For all point x_t 's, **draw** the velocity vector $(x_{\text{clean}} x_{\text{noise}})$ at each point.

Marginal Flow. Our diffusion model models marginal flow, which for a given x_t is the **weighted** average over all conditional flows from the datapoints we train on.

- **1.4** For the point x_0 , **plot** marginal flows (roughly).
- **1.5** For the point $x_{0.9}$, **plot** marginal flows (roughly).
- **1.6** In English, explain the direction of the marginal flow at t = 0 and t = 0.9.

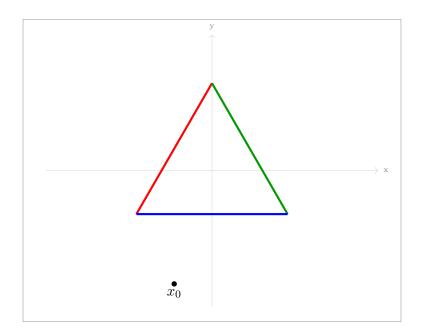
1.7 Start from x_0 , draw out the flow sampling procedure with 4 sampling steps. (Hint: follow the marginal flow at each step)



1.8 What if I wanted to generate samples of point A twice as frequently as point B? How could I modify the standard training pipeline to achieve this?

3 Conditioning and Guidance

Now suppose we want to draw from a distribution corresponding to sides of a triangle (think of this like our little image manifold). In addition, we want to *control* what type of point our model generates: red, green, or blue. (not the color, but the location)



3.1 Adding control. The most common way to control diffusion models is by additional *conditioning* input, like language, to the model.

Explain how one could sample from a specific color without additional model input by changing training.

Classifier-Free Guidance (CFG) modifies the vector field to nudge samples more towards red compared to an unconditional sample:

$$\tilde{u_{\theta}}(x,t,c) = u_{\theta}(x,t,\varnothing) + w \cdot (u_{\theta}(x,t,y) - u_{\theta}(x,t,\varnothing))$$

where u_{θ} is our neural network model, which learns marginal flow.

- **3.2 Prompted Flow: Draw** in the diagram where $u_{\theta}(x, t, red)$ and $u_{\theta}(x, t, qreen)$ point.
- **3.3 Unprompted Flow: Draw** in the diagram where $v(x_0, t, \emptyset)$ points
- **3.4 Guidance: Draw** the CFG vector $\tilde{u_{\theta}}$ for a large w. How does it differ from the standard prompted vector?