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5 Bonus

5.1 Shape Shifting

Remember that NumPy arrays are by default row-major! This means that if you flatten an array
into 1 axis, the index of the resulting array will change fastest in the rightmost index, and so on.
Think of it like an n-dimension nested for loop, where the inner loop corresponds to the last axis.

Problem 5.1: What does np.array([[1,2,3],[4,5,6]]).flatten() print?

Problem 5.2: Given arr = np.arange(6) .reshape(2,3), what does arr[:, 0] return? arr [0,
217

Problem 5.3: seq has shape (6,) laid out like [0,0,0,1,1,1]. I’d like to convert it to a (3,2)
array where the column vectors are labeled 0 or 1.

(i) Why won’t naively reshaping work?

(i) What’s the correct way to convert it? (transpose() will be useful)

Problem 5.4: img has shape (6,6) broken into four quadrants like img[:3,:3]1=0; img[:3,3:]=1;
img[3:,:3]=2; img[3:,3:]=3. Convert this into an array tiles of shape (2,2,3,3) where each
of tiles[i,j,...] returns all of one number and tiles[0,0] returns all 0.

5.2 einsum

einsum is a magical operation that folds large tensor operations into one specification, named for
notation invented by Albert Einstein! It allows complicated reshape, dot-product, and reduction
operations to be specified in a string of characters which are executed very efficiently. It takes as
input N arrays and outputs one. The core principle is to separate operations into 1) which axes to
iterate over, 2) which axes to multiply together in the output, and 3) which axes to reduce (sum)
over.

This is captured by a string of the form ¢ [arrl_indices], [arr2_indices]->[output_indices].
Any indices missing in the output will be implicitly summed together, and any indices which
match between arrl and arr2 will have their values element-wise multiplied (their dimensions
must match!)

For example, suppose we have a row vector r, column vector ¢, and square matrix X.

1. The outer product of r and ¢ would be: einsum(‘ij,ki -> jk’, r, c) or equivalently
einsum(‘ij,jk->ik’, ¢, r)

2. The matrix product X x X would be einsum(‘ij, jk->ik’,X,X)
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3. Batched multiplication can be specified with ... before or after the notation: for example
“...ij,...jk=>...ik’> means “I don’t care what the shapes are before the last 2 axes, just
treat the last 2 axes as a matrix and multiply them”. In this case they must be broadcastable
together!

4. You can use einsum to reduce a single axis of an array: einsum(‘ij->i’,X) is equivalent to
np.sum(X, axis=1)

Problem B.0: einsum basics Suppose I had r and ¢ from the example above but they were both
shape (3,).
(a): How could I compute the outer product without broadcasting?

(b): What about the dot product?

(c): What about the Hadamard (element-wise) product?

Problem B.1: Multi-headed attention

You may have heard of the transformer neural network architecture (the T in ChatGPT). A
core operation inside this network is called multi-headed attention. One fundamental operation
here is to multiply two big tensors Q and K together in a specific way. Initially, their shapes are B,
L, H, D, and we would like to create an LxL matrix taking the outer-product of each element in Q
to K along the L dimension. The resulting shape is B, L, L, H, where the D dimension disappears
since it is involved in the dot product. Write this operation in one line with einsum.

Problem B.2: Vector-quantization
Suppose I have a set of vectors called codes of shape (N, D), and a vector of examples of shape
(E,D). I would like to compute the nearest neighbor vector in codes for each vector in examples.

(a) First, find the all-pairs dot product similarities between codes and examples.

(b) Next, use this to compute the nearest code ID for each example. (Hint: use np.argmax to find
the most similar for each)

(c) What if T wanted to use L2 distance instead of dot product? (Hint: this is cumbersome to do
with einsum, there’s an easier way without it)
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5.3 einops

A wonderful library for managing the shapes of arrays is einops, which provides the function
rearrange which can be used to manipulate array shapes with strings! For example, shufling HWC
to CHW can be done with rearrange (img, ‘height width ¢ -> ¢ height width’). This can
make debugging code much easier, since it is essentially self-commenting. You can also reshape/-
expand axes by grouping them with (...) for example to stack all video frames into one big batch
dimension one could do rearrange(video, ‘B TH W C -> (B T) H W C’). You can also go the
other direction by specifying the values of these shapes as input to rearrange: rearrange (batch,
‘BT) HWC ->BTHWC’, B=32, T=100) (einops will throw an error if these shapes don’t
work out).

Problem B.3: Let’s do Problem 5.4 again, but with einops! Convert an image img of shape (B,
C, H, W) into tiles (B, NH x NW, C, H’, W’) where H = NH x H> and W = NW x W’

Problem B.4: Suppose I have an image pyramid of shape (4,200,200,3). How can I rearrange
this into a 400x400 image for visualization?

5.4 Vectorization challenges

Problem B.5: Image Downsampling
Downsampling reduces image resolution by averaging pixels. Convert the following unvectorized
code that downsamples by averaging 2x2 blocks:

# img ts a numpy array with shape (h, w) where h and w are even
# out is a numpy array with shape (h//2, w//2)

h, w = img.shape

h_new, w.new =h // 2, w // 2

out = np.zeros((h_new, w_new))

for i in range(h_new):
for j in range(w_new):
# Average 2z2 blocks
out[i, jl = (img[2+*i, 2x%j] + img[2*i, 2*%j+1] +
img[2%i+1, 2%j] + img[2*i+1, 2%j+1]) / 4.0

print (out.shape) # Should be (h//2, w//2)

Please rewrite without for loops using array slicing operations:

Hint: arr[0::2, 0::2] extracts every other element starting from (0,0).
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