
CS180/280A Discussion #1
Konpat

Credits:
Justin, Chung Min

Welcome!!

Me: Konpat Preechakul

Diffusion models & Representation learning

Scene understanding
Machine learning

“Learning abstractions from pixels”

Reminders

Proj1 due Fri 9/12 11:59pm

OH dates are released!

Worksheets online:

Slides

Discussions this year!

- Practical practice (for Projs) + Conceptual understanding (for exams)

- Collaborative! Move to be near someone! :)

- Minimal laptop. We want you to go through with your hand!

- Worksheet problems are in scope for exams. Bonus questions are intended

to be hard.

- Note: these are new this year! (Rough 🫣)

What are your questions?

Agenda

● Short lectures (15 mins)

● Problems 1 (7 mins) + Answer (3 mins)

● Problems 2 (7 mins) + Answer (3 mins)

● A bit more lectures (10 mins)

● A bit more problems (10 mins)

We need to learn how to 1) input, 2) store, and 3) manipulate 4) output images!

Storing data? Visualizing?

This discussion: Visual world Computers

What data structure are images?

An image is an array of pixe ls!

H

W

What data structure are images?

An image is an array of pixe ls!

Array of numbers!

num num …

hH

W w

Cell = pixel

What is a pixel?

H

W

150

140
130

Pixel

*RGB vs. BGR conventions

COLOR!

3 channels: red, green, blue

*Range (0 – 255)

Each color 8 bits

Total 24-bit color

Pixel is not always 3 numbers!

Grayscale!

1 channels: intensity

0 255125

Pixel can be something else!

180 190 170

Depth!

3 (feet)

2.5 (feet)

2 primary formats:

- uint8, 0->255 scaling

- float, 0->1.0 scaling

Be careful converting!
>>> img = cv2.imread(“img.jpg”)

>>> print(img.shape) # shape (1080, 1920, 3)

>>> print(img.dtype) # np.uint8

>>> print(img.min(), img.max()) # 0 255

>>> plt.imshow(img)

Inspecting images

*Let me show you…

d

>>> img = cv2.imread(“img.jpg”) # shape (1080, 1920, 3)

Pixel layout in an array

Pixels stored along channels.

BGR

(H,W,C) C=3 “channel-last”

… or (C,H,W) “channel-first”

Pixel

(H,W) or (H,W,1)

Grayscale

Singleton dim.

Pixel

*BGR is a bit hard to visualize actually…

Good news: many image operations are just array operations!

So fast, so easy

Let’s start: Color channel manipulation (1.3 Slicing)

>>> img[...,0] >>> img[...,1] >>> img[...,2]>>> img

150

101

105

105

Blue
101

Green

150

Red

*Reminds of Proj 1!

>>> img = img[:, :, [2,1,0]]

BGR => RGB (1.3 Slicing)

d

BGR

0
1

2 RGB

(H,W,C) C=3

0
1

2

*Easier to plot. Show on notebook

Indexing conventions (1.3 Slicing)

j
i

Index into arrays like i,j in a matrix, not like x,y in a coordinate plane!

H

W

0

H-1

0 W-1

img[H/2, W/2]

img[0, W]

Cropping images (1.3 Slicing)

>>> left_half = img[:, :100, :]

>>> bottom_half = img[100:]

*Let me show you guys

:100

100:

: (colon)

>>> vertical = np.concatenate([angjoo,alyosha],axis=0)

Joining images (1.2 Stack & Concat)

angjoo alyosha

axis 0

axis 1

axis 0

axis 1

np.concatenate([angjoo,alyosha],axis=0)

Joining images (1.2 Stack & Concat)

angjoo alyosha

axis 0

axis 1

axis 0

axis 0

axis 1 axis 1

np.concatenate([angjoo,alyosha],axis=1)

>>> video = np.stack([frame1, frame2 , ...], axis=0)

What are videos? (1.2 Stack & Concat)

Videos are just arrays of batches of images!

video

(T,H,W,C)

video[0] video[5] video[11] video[15]

(H,W,C)

>>> video = np.stack([frame1, frame2 , ...], axis=0)

What are videos? (1.2 Stack & Concat)

Videos are just arrays of batches of images!

Video being

played

(T,H,W,C)

Actual video

“Cube”

(T,H,W,C)

np.array([1, 2, 3])

np.full(shape , value)

array.astype(type)

type: np.uint8, np.float32, np.float64

array[i, j], array[i:j]

np.concatenate([a ,b], axis=?)

np.stack([a, b], axis=?)

(Then we will go over quickly)

NumPy basics: do Problems 1.1-1.3 (5 mins) with the people around

you!

Pixel operations: Do Problems 2.1-2.5 & 2.9 (5 mins)

np.flip(img, axis=?)

np.transpose(img, axes=[…]).

img.transpose(…)

img.astype(…)

np.mean(img, axis=?)

img.mean(?)

(Then we will go over quickly).

>>> a = np.array([1, 2, 3]) # shape (3,)

>>> b = np.array(2) # shape ()!

>>> print(a * b) # [2.0,4.0,6.0] shape (3,)

Broadcasting: automatically repeat elements to match!

Rule for figuring out behavior:

1. Line up array shapes starting from the right

2. For each axis:

a. If shapes match, continue to the left

b. If shapes don’t match and one is 1, stretch its values to fit the larger

c. If shapes don’t match and neither are 1, throw an error

Broadcasting

A = (2, 3)

B = (2, 1, 1)

A = (2, 3)

B = (2, 2, 3)

A = (1, 2, 3)

B = (2, 2, 3)

A = (2, 2, 3)

B = (2, 2, 3)

A = (2, 3)

B = (2, 1, 3)

Broadcast: Do Problems 3.1-3.3 (5 mins)

Rule for figuring out behavior:

1. Line up array shapes starting from the right

2. For each axis:

a. If shapes match, continue to the left

b. If shapes don’t match and one is 1, stretch its values to fit the larger

c. If shapes don’t match and neither are 1, throw an error

“Vectorization” means doing things with native NumPy >>
Python loops

Much faster when possible!

Native C (low overhead) vs Python (high overhead)

Example (averaging):

Vectorization: No Loops!

SLOW

for i in range(H):

for j in range(W):

out[i,j,:] = (ang[i,j] + aly[i,j])/2.0

Fast out=(ang + aly)/2.0

Avg.

“Vectorization” means writing things with native NumPy operations rather than for

loops

np.mean(…)

np.sum(…)

Vectorization: do Problems 4.1, 4.3!

Thanks for coming!

Explore (the full sheet): Bonus & Einsum & Finish the rest.

Many times we want to shuffle the order of axes or combine them.

Remember arrays are row-major!

Manipulating shapes (5)

Do problems 5.1 => 5.3

Einsum

einsum examples!

>>> a = np.arange(4) # (4,)

>>> b = np.arange(4) # (4,)

>>> np.einsum('i,i->i', a, b)

>>> np.einsum('i,j->ij', a, b)

>>> np.einsum('...i,...i->...', a, b)

array([0, 1, 4, 9]) # (4,)

array([[0, 0, 0, 0],

[0, 1, 2, 3],

[0, 2, 4, 6],

[0, 3, 6, 9]]) # (4, 4)

np.int64(14) # (,)

	Slide 2: CS180/280A Discussion #1
	Slide 3: Welcome!!
	Slide 4: Me: Konpat Preechakul 🖐️
	Slide 5: Reminders
	Slide 6: Discussions this year!
	Slide 7: Agenda
	Slide 9: This discussion: Visual world 🤝 Computers
	Slide 10: What data structure are images?
	Slide 11: What data structure are images?
	Slide 12: What is a pixel?
	Slide 13: Pixel is not always 3 numbers!
	Slide 14: Pixel can be something else!
	Slide 16: Inspecting images
	Slide 17: Pixel layout in an array
	Slide 18: Good news: many image operations are just array operations!
	Slide 20: Let’s start: Color channel manipulation (1.3 Slicing)
	Slide 21: BGR => RGB (1.3 Slicing)
	Slide 22: Indexing conventions (1.3 Slicing)
	Slide 23: Cropping images (1.3 Slicing)
	Slide 24: Joining images (1.2 Stack & Concat)
	Slide 25: Joining images (1.2 Stack & Concat)
	Slide 26: What are videos? (1.2 Stack & Concat)
	Slide 27: What are videos? (1.2 Stack & Concat)
	Slide 29: NumPy basics: do Problems 1.1-1.3 (5 mins) with the people around you!
	Slide 30: Pixel operations: Do Problems 2.1-2.5 & 2.9 (5 mins)
	Slide 31: Broadcasting: automatically repeat elements to match!
	Slide 32: Broadcasting
	Slide 33: Broadcast: Do Problems 3.1-3.3 (5 mins)
	Slide 35: Vectorization: No Loops!
	Slide 36: Vectorization: do Problems 4.1, 4.3!
	Slide 37: Thanks for coming!
	Slide 38: Manipulating shapes (5)
	Slide 39: Einsum
	Slide 40: einsum examples!

