
CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

NumPy and Image Processing Primer

Discussion #1

Written by:

Justin, Chung Min

Learning Objectives

Today, we will learn that images are just arrays – so it’s time to learn how to use NumPy. You
might be rusty with NumPy from that class you took years ago, or it’s the first time you’ve really
used it seriously. This time, ideally, using NumPy should start to feel like second nature.

Hopefully, by the end of the hour, you will feel comfortable with handling images in the form
of arrays, and get to practice some practical coding knowledge for upcoming CS180/280A projects.
If you feel comfortable with NumPy, feel free to look at the challenge questions uploaded online!

Logistics

1. Project 1 is out! due Fri. Sep. 12, 11:59PM.

1 Warmup!

1.1 shape and dtype

The two most important properties of arrays are their shape and dtype. A common terminology
mixup is in referring to the mathematical concept of dimension, which refers to how big a given
axis is, and the shape which refers to how many axes and how big each one is of an array.x2

Problem 1.1: What is the shape of a 3x3 matrix in NumPy? A 3-dimension row vector? Column
vector?

What are the shape, dtype, values of the following one-liners:

(a) np.full((10, 10, 3), 255.2)

(b) np.full((10, 10, 3), 255.2).astype(np.uint8)

(c) np.full((10, 10, 3), 256.0).astype(np.uint8)

(d) np.array([0.1, 0.2, 0.3]).astype(np.uint8)

Note: casting from float to uint8 is the source of lots of hidden project bugs, be careful!

1

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

1.2 stack vs concatenate

Joining arrays together is usually done with these helper functions, let’s remind ourselves how they
work.

Problem 1.2: Suppose I have img1 and img2 which are both shape (100,100,3). What shape
do the following evaluate to?

(a) np.stack([img1, img2], axis=0)

(b) np.stack([img1, img2], axis=1)

(c) np.concatenate([img1, img2], axis=0)

(d) np.concatenate([img1, img2], axis=1)

1.3 Slicing

Slicing is how we obtain smaller chunks of arrays from a larger one, including for manipulating
their values. Slicing can also be done with indices or mask arrays for logical operations!

Problem 1.3: What’s the di↵erence between arr[0] and arr[0:1] for a 2D array?

Problem 1.4: How would you set all elements in the first row of a 2D array to zero?

Problem 1.5: Given a floating point array arr, how do you set all values above 1 to exactly 1.0?

1.4 Singleton dimensions

One confusing aspect of arrays is that data can have dimensions of size 1 (for example depth
images!), which are very important for downstream ops.

Problem 1.6: What’s the shape of np.array([1,2,3])? np.array([[1],[2],[3]])?

Problem 1.7: What happens when you use np.squeeze() on an array of shape (1,5,1,3)?

Problem 1.8: How do you add a singleton dimension at axis=0 to an array of shape (4,4)?

Problem 1.9: Given arr = np.array([[[1,2,3]]]), what’s its shape? What is np.squeeze(arr)?

2

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

Problem 1.10: How could you replicate np.stack([arr1, arr2], axis=1) using only np.expand dims()

and np.concatenate()?

2 Pixels!

Typically, an image will be represented as a shape (height, width, rgb) array. These are typi-
cally abbreviated (h, w, c) (c for channel). There are two datatypes commonly used: uint8 with
values between 0 and 255, and float with values between 0.0 and 1.0. Some libraries like OpenCV
default to BGR channel ordering, which will make your images look funny if you visualize with
another library! Another convention is channel-first (CHW) vs channel-last (HWC).

2.1 Convention Confusion

Nobody likes these convention headaches, but they’re important to be comfortable with to get to
the fun part of CV! Suppose I start from a uint8 img with channel-last BGR conventions.

Problem 2.1: What is the shape of img?

Problem 2.2: How would I set all the red components of the pixels to 0?

Problem 2.3: How would I shift from a BGR to RGB format? (Hint: use np.flip)

Problem 2.4: How would I convert from channel-last to channel-first? (Hint: use np.transpose

Problem 2.5: How would I convert from uint8 format to float? (Be careful of the ranges!)

Note: it may seem pedantic, but what you just did is a common pattern for converting from OpenCV

conventions to PyTorch conventions for machine learning applications.

2.2 Beautiful Batches

When working with multiple images, it’s very common to use an initial dimension called a “batch”
dimension. Let’s suppose I have a list of 100 float images in HWC, RGB ordering called img list.

Problem 2.6: Convert the list into a batch

Problem 2.7: Create a minibatch of the last 32 images.

3

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

Problem 2.8: Convert this minibatch to channel-first ordering (batch dim always stays first!)

2.3 Video Motion Trail

Videos are just batches of images! I have a video of my cat chasing its tail called video with shape
(60,1080,1920,3) (T, H, W, RGB).

Problem 2.9: I would like to create an output image which blends the frames to create a motion
trail of this. What’s a one-liner in NumPy to do this?

3 Will it broadcast?

When arrays don’t have the same shape, NumPy will implicitly adapt the shapes of the inputs
to allow arithmetic operations, this is called shape broadcasting. See https://numpy.org/doc/

stable/user/basics.broadcasting.html for the o�cial documentation around this behavior.
The main thing to remember is that broadcasting goes from right to left along axes, and singleton
axes will automatically be repeated to match the shape of the other operand at that axis.

For this problem, c=np.arange(3).reshape((3,1)), r=np.arange(3).reshape((1,3)), and
X=np.ones((3,3)).

Problem 3.1: What are the shape and values of the following operations?

(a) c + r:

(b) X*c:

(c) X*r:

(d) X + r:

(e) r + X:

Remember: the * operator is not a matrix multiply!

Problem 3.2: Which of the following expressions throw an error for the indicated shape arrays?
For the ones that work, what are their shapes?

(a) (2, 3) + (3,)

4

https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

(b) (2, 3) + (3, 2)

(c) (2, 3) + (2, 3, 1)

(d) (2, 3) + (2, 1, 1)

Problem 3.3: Standardization. Use what you know about broadcasting to scale the RGB values
of this batch by subtracting mean = [0.485, 0.456, 0.406] and dividing by std = [0.229,

0.224, 0.225]. (Remember the channel ordering is CHW!)

Note: This per-channel scaling is ImageNet standardization (maintaining variance of 1) applied by

many neural networks today!

4 Vectorization Nation

The power of NumPy lies in its ability to perform operations on entire arrays at once, eliminating
the need for explicit loops. This is called vectorization, and it’s much faster than writing nested
for loops. Let’s practice converting loop-heavy code into vectorized operations.

Problem 4.1: Grayscale Conversion

img is a numpy array with shape (h, w, 3) - RGB image
out is a numpy array with shape (h, w) - grayscale output
h, w = img.shape[:2]
for i in range(h):

for j in range(w):
out[i, j] = 0.299 * img[i, j, 0] + 0.587 * img[i, j, 1] + 0.114 * img[i, j, 2]

print(out)

Please rewrite without for loops:

Fun fact: These weights (0.299, 0.587, 0.114) aren’t arbitrary! They’re based on human visual

perception: our eyes are most sensitive to green, less to red, and least to blue. Simply averaging

RGB channels equally would produce a grayscale image that looks ”wrong” to us.

5

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

Problem 4.2: Pixel Neighbor Averaging

img is a numpy array with shape (h, w)
out is a numpy array with shape (h, w)
h, w = img.shape
for i in range(1, h-1): # Note the ranges

for j in range(1, w-1): # Note the ranges
out[i, j] = (img[i-1, j] + img[i+1, j] + img[i, j-1] + img[i, j+1]) / 4.0

print(out)

Please rewrite without for loops:

Problem 4.3: Mean-Squared Image Di↵erence

a is a numpy array with shape (h, w)
b is a numpy array with shape (h, w)
out is a numpy array with shape (h, w)
h, w = a.shape
mse = 0
for i in range(h):

for j in range(w):
mse += (a[i, j] - b[i, j]) ** 2

mse = mse/(h*w)

print(mse)

Please rewrite without for loops:

6

	Warmup!
	shape and dtype
	stack vs concatenate
	Slicing
	Singleton dimensions

	Pixels!
	Convention Confusion
	Beautiful Batches
	Video Motion Trail

	Will it broadcast?
	Vectorization Nation
	Bonus
	Shape Shifting
	einsum
	einops
	Vectorization challenges

