CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

NumPy and Image Processing Primer Written by:

Discussion #1 Justin, Chung Min

Learning Objectives

Today, we will learn that images are just arrays — so it’s time to learn how to use NumPy. You
might be rusty with NumPy from that class you took years ago, or it’s the first time you’ve really
used it seriously. This time, ideally, using NumPy should start to feel like second nature.
Hopefully, by the end of the hour, you will feel comfortable with handling images in the form
of arrays, and get to practice some practical coding knowledge for upcoming CS180/280A projects.
If you feel comfortable with NumPy, feel free to look at the challenge questions uploaded online!

Logistics

1. Project 1 is out! due Fri. Sep. 12, 11:59PM.

1 Warmup!

1.1 shape and dtype

The two most important properties of arrays are their shape and dtype. A common terminology
mixup is in referring to the mathematical concept of dimension, which refers to how big a given
axis is, and the shape which refers to how many axes and how big each one is of an array.x2

Problem 1.1: What is the shape of a 3x3 matrix in NumPy? A 3-dimension row vector? Column
vector?

A 3x3 matrix has shape (3, 3). A 3-element row vector has shape (1, 3). A 3-element column
vector has shape (3, 1).

What are the shape, dtype, values of the following one-liners:
(a) np.full((10, 10, 3), 255.2)

Shape: (10, 10, 3), dtype: float64, values: all 255.2

(b) np.full((10, 10, 3), 255.2).astype(np.uint8)

Shape: (10, 10, 3), dtype: uint8, values: all 255. The float 255.2 gets truncated to 255 when
cast to uint8.

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

(c) np.full((10, 10, 3), 256.0).astype(np.uint8)

Shape: (10, 10, 3), dtype: uint8, values: all 0. Since uint8 range is 0-255, 256 overflows and
wraps to 0.

(d) np.array([0.1, 0.2, 0.3]).astype(np.uint8)

Shape: (3,), dtype: uint8, values: [0, 0, 0]. Floats between 0 and 1 get truncated to 0 when
cast to uint8.

Note: casting from float to uint8 is the source of lots of hidden project bugs, be careful!

1.2 stack vs concatenate

Joining arrays together is usually done with these helper functions, let’s remind ourselves how they
work.

Problem 1.2: Suppose I have imgl and img2 which are both shape (100,100,3). What shape
do the following evaluate to?

(a) np.stack([imgl, img2], axis=0)

(2, 100, 100, 3) - Creates a new dimension at axis 0, stacking the images.

(b) np.stack([imgl, img2], axis=1)

(100, 2, 100, 3) - Creates a new dimension at axis 1, between height and width.

(c) np.concatenate([imgl, img2], axis=0)

(200, 100, 3) - Joins along axis 0, doubling the height (stacking vertically).

(d) np.concatenate([imgl, img2], axis=1)

(100, 200, 3) - Joins along axis 1, doubling the width (placing side by side).

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

1.3 Slicing

Slicing is how we obtain smaller chunks of arrays from a larger one, including for manipulating
their values. Slicing can also be done with indices or mask arrays for logical operations!

Problem 1.3: What’s the difference between arr[0] and arr[0:1] for a 2D array?

arr [0] returns a 1D array (the first row), while arr[0:1] returns a 2D array with shape (1,
width) - preserves the row dimension.

Problem 1.4: How would you set all elements in the first row of a 2D array to zero?

arr[0, :] = Oorarr[0] =0

Problem 1.5: Given a floating point array arr, how do you set all values above 1 to exactly 1.07

arr[arr > 1] = 1.0 - Uses boolean indexing to select and modify elements.

1.4 Singleton dimensions

One confusing aspect of arrays is that data can have dimensions of size 1 (for example depth
images!), which are very important for downstream ops.

Problem 1.6: What’s the shape of np.array([1,2,3]1)7 np.array([[1], [2],[3]11)7

np.array([1,2,3]) has shape (3,) - 1D array. np.array([[1],[2], [3]1]) has shape (3,1) -
2D column vector.

Problem 1.7: What happens when you use np.squeeze() on an array of shape (1,5,1,3)7

Returns shape (5,3) - removes all singleton dimensions (size 1).

Problem 1.8: How do you add a singleton dimension at axis=0 to an array of shape (4,4)7

np.expand dims(arr, axis=0) or arr[np.newaxis, :, :] - both create shape (1,4,4).

Problem 1.9: Given arr = np.array([[[1,2,3]1]]), what’s its shape? What is np.squeeze (arr)?

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

Shape is (1,1,3). np.squeeze (arr) returns shape (3,) - array([1,2,3]).

Problem 1.10: How could you replicate np.stack([arrl, arr2], axis=1) usingonly np.expand dims ()
and np.concatenate()?

np.concatenate([np.expand dims(arrl, axis=1), np.expand dims(arr2, axis=1)], axis=1)
- First add singleton dimensions at axis 1, then concatenate along that axis.

2 Pixels!

Typically, an image will be represented as a shape (height, width, rgb) array. These are typi-
cally abbreviated (h, w, c) (c for channel). There are two datatypes commonly used: uint8 with
values between 0 and 255, and float with values between 0.0 and 1.0. Some libraries like OpenCV
default to BGR channel ordering, which will make your images look funny if you visualize with
another library! Another convention is channel-first (CHW) vs channel-last (HWC).

2.1 Convention Confusion

Nobody likes these convention headaches, but they’re important to be comfortable with to get to
the fun part of CV! Suppose I start from a uint8 img with channel-last BGR conventions.

Problem 2.1: What is the shape of img?

(H, W, 3) - Height x Width x 3 channels (BGR)

Problem 2.2: How would I set all the red components of the pixels to 07

img[:, :, 2] = 0 - Red is channel 2 in BGR format

Problem 2.3: How would I shift from a BGR to RGB format? (Hint: use np.f1lip)

img rgb = np.flip(img, axis=2) - Flips channels: BGR — RGB

Problem 2.4: How would I convert from channel-last to channel-first? (Hint: use np.transpose

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

img chf = img.transpose(2, 0, 1) - (H,W,C) — (C,H,W)

Problem 2.5: How would I convert from uint8 format to float? (Be careful of the ranges!)

img float = img.astype(np.float32) / 255 - Converts [0,255] — [0,1]. It’s important to
cast to float32 first to avoid truncation! (Alternatively, you don’t need to cast if dividing by a
float (255.0)).

Note: it may seem pedantic, but what you just did is a common pattern for converting from OpenCV
conventions to PyTorch conventions for machine learning applications.

2.2 Beautiful Batches

When working with multiple images, it’s very common to use an initial dimension called a “batch”
dimension. Let’s suppose I have a list of 100 float images in HWC, RGB ordering called img list.

Problem 2.6: Convert the list into a batch

batch = np.stack(img list, axis=0) - Creates (100, H, W, 3)

Problem 2.7: Create a minibatch of the last 32 images.

minibatch = batch[-32:] - Last 32 images from the batch

Problem 2.8: Convert this minibatch to channel-first ordering (batch dim always stays first!)

minibatch_chf = minibatch.transpose(0, 3, 1, 2) - (32,H,W,3) — (32,3,H,W)

2.3 Video Motion Trail

Videos are just batches of images! I have a video of my cat chasing its tail called video with shape
(60,1080,1920,3) (T, H, W, RGB).

Problem 2.9: I would like to create an output image which blends the frames to create a motion
trail of this. What’s a one-liner in NumPy to do this?

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

motion trail = np.mean(video, axis=0) - Averages across time dimension

3 Will it broadcast?

When arrays don’t have the same shape, NumPy will implicitly adapt the shapes of the inputs
to allow arithmetic operations, this is called shape broadcasting. See https://numpy.org/doc/
stable/user/basics.broadcasting.html for the official documentation around this behavior.
The main thing to remember is that broadcasting goes from right to left along axes, and singleton
axes will automatically be repeated to match the shape of the other operand at that axis.

For this problem, c=np.arange(3) .reshape((3,1)), r=np.arange(3) .reshape((1,3)), and
X=np.ones((3,3)).

Problem 3.1: What are the shape and values of the following operations?

(a) c +

Shape: (3,3), Values: [[0,1,2], [1,2,3], [2,3,4]] - Each element of ¢ added to each element of r.

(b) Xxc:

Shape: (3,3), Values: [[0,0,0], [1,1,1], [2,2,2]] - Each row of X multiplied by corresponding
element of c.

(c) Xx*r:

Shape: (3,3), Values: [[0,1,2], [0,1,2], [0,1,2]] - Each column of X multiplied by corresponding
element of r.

(d) X +

Shape: (3,3), Values: [[1,2,3], [1,2,3], [1,2,3]] - r broadcasted across all rows of X (since X is all
ones).

(e)r + X

https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

Shape: (3,3), Values: [[1,2,3], [1,2,3], [1,2,3]] - Same as X + r due to commutativity of addition.

Remember: the * operator is not a matriz multiply!

Problem 3.2: Which of the following expressions throw an error for the indicated shape arrays?
For the ones that work, what are their shapes?

(a) (2, 3) + (3,)

Works. Shape: (2, 3) - The (3,) broadcasts to each row of the (2,3) array.

(b) (2, 3) + (3, 2)

Error. Incompatible shapes - neither dimension matches and neither has size 1.

(c) (2, 3) + (2, 3, 1)

Error. Aligning from right: (2,3) — (1,2,3) vs (2,3,1). The middle dimensions (2 vs 3) are
incompatible - neither is 1 and they don’t match.

(d) 2, 3) + (2, 1, D

Works. Shape: (2, 2, 3) - The (2,3) becomes (1,2,3) and broadcasts with (2,1,1).

Problem 3.3: Standardization. Use what you know about broadcasting to scale the RGB values
of this batch by subtracting mean = [0.485, 0.456, 0.406] and dividing by std = [0.229,
0.224, 0.225]. (Remember the channel ordering is CHW!)

normalized = (minibatch_chf - mean[:, None, None]) / std[:, None, None] - Broad-
casting across spatial dims

Note: This per-channel scaling is ImageNet standardization (maintaining variance of 1) applied by
many neural networks today!

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

4 Vectorization Nation

The power of NumPy lies in its ability to perform operations on entire arrays at once, eliminating
the need for explicit loops. This is called vectorization, and it’s much faster than writing nested
for loops. Let’s practice converting loop-heavy code into vectorized operations.

Problem 4.1: Grayscale Conversion

img ts a numpy array with shape (h, w, 3) - RGB image
out is a numpy array with shape (h, w) - grayscale output
h, w = img.shape[:2]
for i in range(h):
for j in range(w):
out[i, j] = 0.299 * img[i, j, 0] + 0.587 * imgl[i, j, 1] + 0.114 * imgl[i, j, 2]

print (out)

Please rewrite without for loops:

out = 0.299 * img[:, :, 0] + 0.587 * img[:, :, 1] + 0.114 * img[:, :, 2]

Fun fact: These weights (0.299, 0.587, 0.114) aren’t arbitrary! They’re based on human visual
perception: our eyes are most sensitive to green, less to red, and least to blue. Simply averaging
RGB channels equally would produce a grayscale image that looks "wrong” to us.

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

Problem 4.2: Pixel Neighbor Averaging

img is a numpy array with shape (h, w)
out is a numpy array with shape (h, w)
h, w = img.shape
for i in range(l, h-1): # Note the ranges
for j in range(l, w-1): # Note the ranges
out[i, j1 = (imgli-1, j1 + imgli+1, j1 + imgli, j-11 + imgli, j+11) / 4.0

print (out)

Please rewrite without for loops:

out[1:-1, 1:-1] = (img[0:-2, 1:-1] + img[2:, 1:-1] + img[1:-1, 0:-2] + img[1:-1,
2:1) / 4.0

We approach this problem by “shifting” the array around, then averaging the shifted slices,
which is equivalent to averaging the neighbors. The slicing extracts all 4 neighbors at once:
img[0:-2, 1:-1] gets pixels above, img[2:, 1:-1] gets pixels below, img[1:-1, 0:-2] gets
left neighbors, and img[1:-1, 2:] gets right neighbors.

Problem 4.3: Mean-Squared Image Difference

a 1s a numpy array with shape (h, w)
b is a numpy array with shape (h, w)
out is a numpy array with shape (h, w)
h, w = a.shape
mse = O
for i in range(h):
for j in range(w):

mse += (ali, jl - bli, j1) *x 2

mse = mse/ (h*w)

print (mse)

Please rewrite without for loops:

mse = np.mean((a - b) *x* 2)

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

5 Bonus

5.1 Shape Shifting

Remember that NumPy arrays are by default row-major! This means that if you flatten an array
into 1 axis, the index of the resulting array will change fastest in the rightmost index, and so on.
Think of it like an n-dimension nested for loop, where the inner loop corresponds to the last axis.

Problem 5.1: What does np.array([[1,2,3],[4,5,6]]).flatten() print?

[1 2345 6] - Flattens in row-major order (rightmost index changes fastest).

Problem 5.2: Given arr = np.arange(6) .reshape(2,3), what does arr[:, 0] return? arr[0,
117

arr[:,0] returns [0 3] (first column). arr[0,:] returns [0 1 2] (first row).

Problem 5.3: seq has shape (6,) laid out like [0,0,0,1,1,1]. I'd like to convert it to a (3,2)
array where the column vectors are labeled 0 or 1.

(i) Why won’t naively reshaping work?

(ii) What’s the correct way to convert it? (transpose() will be useful)

(i) Naive seq.reshape(3,2) gives [[0,0],]0,1],[1,1]] - each row mixes labels. We want columns
to be pure Os or 1s. (ii) seq.reshape(2,3).transpose() - First make (2,3) with each row
being one label: [[0,0,0],[1,1,1]], then transpose to get columns as labels: [[0,1],[0,1],]0,1]].

Problem 5.4: img has shape (6,6) broken into four quadrants like img[:3,:3]1=0; img[:3,3:]1=1;
img[3:,:3]=2; img[3:,3:]1=3. Convert this into an array tiles of shape (2,2,3,3) where each
of tiles[i,j,...] returns all of one number and tiles[0,0] returns all 0.

img.reshape(2,3,2,3) .transpose(0,2,1,3) - First reshape to (2,3,2,3) which creates 2x2
blocks of 3x3 tiles, but in wrong order. Then transpose axes (0,2,1,3) to group the spatial
dimensions correctly: tiles[0,0] gets top-left quadrant, tiles[0,1] gets top-right, etc.

5.2 einsum

einsum is a magical operation that folds large tensor operations into one specification, named for
notation invented by Albert Einstein! It allows complicated reshape, dot-product, and reduction
operations to be specified in a string of characters which are executed very efficiently. It takes as

10

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

input N arrays and outputs one. The core principle is to separate operations into 1) which axes to
iterate over, 2) which axes to multiply together in the output, and 3) which axes to reduce (sum)
over.

This is captured by a string of the form ¢ [arrl_indices], [arr2_indices]->[output_indices].
Any indices missing in the output will be implicitly summed together, and any indices which
match between arrl and arr2 will have their values element-wise multiplied (their dimensions
must match!)

For example, suppose we have a row vector r, column vector ¢, and square matrix X.

1. The outer product of r and ¢ would be: einsum(‘ij,ki -> jk’, r, c) or equivalently
einsum(‘ij,jk->ik’, ¢, r)

2. The matrix product X x X would be einsum(‘ij, jk->ik’,X,X)

3. Batched multiplication can be specified with ... before or after the notation: for example
“...1ij,...jk->...ik’ means “I don’t care what the shapes are before the last 2 axes, just
treat the last 2 axes as a matrix and multiply them”. In this case they must be broadcastable
together!

4. You can use einsum to reduce a single axis of an array: einsum(‘ij->i’,X) is equivalent to
np.sum(X, axis=1)

Problem B.0: einsum basics Suppose I had r and ¢ from the example above but they were both
shape (3,).
(a): How could I compute the outer product without broadcasting?

np.einsum(‘i,j->ij’, r, c) - Creates a 2D outer product matrix where each element is rli]
e[,

(b): What about the dot product?

np.einsum(‘i,i->’, r, c) - Sums over matching indices to compute r[0]*c[0] + r[1]*c[1] +
r[2]*c[2].

(c): What about the Hadamard (element-wise) product?

np.einsum(‘i,i->i’, r, c) - Element-wise multiplication without summing, returns array
[r[O*c[0], x[1]*c[1], r[2]*c[2]].

Problem B.1: Multi-headed attention

11

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

You may have heard of the transformer neural network architecture (the T in ChatGPT). A
core operation inside this network is called multi-headed attention. One fundamental operation
here is to multiply two big tensors Q and K together in a specific way. Initially, their shapes are B,
L, H, D, and we would like to create an LxL matrix taking the outer-product of each element in Q
to K along the L dimension. The resulting shape is B, L, L, H, where the D dimension disappears
since it is involved in the dot product. Write this operation in one line with einsum.

np.einsum(‘blhd,bkhd->blkh’, Q, K) - Performs dot product along D dimension between
each position | in Q and position k in K, keeping batch B and head H dimensions intact.

Problem B.2: Vector-quantization
Suppose I have a set of vectors called codes of shape (N, D), and a vector of examples of shape
(E,D). I would like to compute the nearest neighbor vector in codes for each vector in examples.

(a) First, find the all-pairs dot product similarities between codes and examples.

similarities = np.einsum(‘nd,ed->ne’, codes, examples) - Computes dot product be-
tween each code vector (N) and each example vector (E), resulting in (N,E) similarity matrix.

(b) Next, use this to compute the nearest code ID for each example. (Hint: use np.argmax to find
the most similar for each)

nearest_codes = np.argmax(similarities, axis=0) - For each example (column), finds
the code (row) with highest similarity.

(c) What if I wanted to use L2 distance instead of dot product? (Hint: this is cumbersome to do
with einsum, there’s an easier way without it)

distances = np.linalg.norm(codes[:, None, :] - examples[None, :, :], axis=2) then
np.argmin(distances, axis=0) - Broadcasting creates (N,E,D), compute L2 norm along D,
then find minimum distance for each example.

5.3 einops

A wonderful library for managing the shapes of arrays is einops, which provides the function
rearrange which can be used to manipulate array shapes with strings! For example, shufling HWC
to CHW can be done with rearrange (img, ‘height width ¢ -> ¢ height width’). This can

12

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

make debugging code much easier, since it is essentially self-commenting. You can also reshape/-
expand axes by grouping them with (...) for example to stack all video frames into one big batch
dimension one could do rearrange(video, ‘B TH W C -> (B T) H W C’). You can also go the
other direction by specifying the values of these shapes as input to rearrange: rearrange (batch,
‘BT) HWC ->BTHWC’, B=32, T=100) (einops will throw an error if these shapes don’t
work out).

Problem B.3: Let’s do Problem 5.4 again, but with einops! Convert an image img of shape (B,
C, H, W) into tiles (B, NH x NW, C, H’, W’) where H = NH x H> and W = NW x W’.

rearrange(img, ‘B C (NH H.prime) (NW W_prime) -> B (NH NW) C H_prime W_prime’, NH=NH,
NW=NW) - Decomposes spatial dimensions into tiles and flattens tile positions.

Problem B.4: Suppose I have an image pyramid of shape (4,200,200,3). How can I rearrange
this into a 400x400 image for visualization?

rearrange(img, ‘(nm) HW C -> (n H) (m W) C’, n=2, m=2) - Arranges 4 images in a
2x2 grid, combining them into a single 400x400 visualization.

5.4 Vectorization challenges

Problem B.5: Image Downsampling
Downsampling reduces image resolution by averaging pixels. Convert the following unvectorized
code that downsamples by averaging 2x2 blocks:

img is a numpy array with shape (h, w) where h and w are even
out is a numpy array with shape (h//2, w//2)

h, w = img.shape

h_new, w.new = h // 2, w // 2

out = np.zeros((h_new, w_new))

for i in range(h_new):
for j in range(w_new):
Average 2z2 blocks
out[i, j] = (imgl[2*i, 2*j] + img[2xi, 2%j+1] +
img[2%i+1, 2%j] + img[2*i+1, 2%j+11) / 4.0

print (out.shape) # Should be (h//2, w//2)

Please rewrite without for loops using array slicing operations:

Hint: arr[0::2, 0::2] extracts every other element starting from (0,0).

13

CS180/280A: Intro to Comp. Vision and Comp. Photography Discussion #1

out = (img[0::2, 0::2] + img[0::2, 1::2] + img[1::2, 0::2] + img[1::2, 1::2]) /
4.0

This extracts the four corners of each 2x2 block: top-left [0::2, 0::2], top-right [0::2,
1::2], bottom-left [1::2, 0::2], and bottom-right [1::2, 1::2], then averages them.

14

	Warmup!
	shape and dtype
	stack vs concatenate
	Slicing
	Singleton dimensions

	Pixels!
	Convention Confusion
	Beautiful Batches
	Video Motion Trail

	Will it broadcast?
	Vectorization Nation
	Bonus
	Shape Shifting
	einsum
	einops
	Vectorization challenges

