CS 180 Discussion #3

Filters & Frequencies!

Disc 2 Feedback Form

Agenda!

Today we'll cover:

- Convolution + filters
- Frequency analysis

Logistics:

- HW 2 released!

Move to a person next to you, And introduce yourself (2) (1 min)

"Hi what's your name?"

"What's your favorite fruit?"

"Where are you heading to after this?"

Convolutions

Input signal: | -1 | 0 | 1 | 0 | 0 | Filter: | -1 | 0 | 1

Input signal: -1 0 1 0 Filter: -1 0 1

Flip filter

Padding

Padding

<- output

Input signal: -1 0 1 0 Filter: -1 0 1

Flip filter

Output = sequence of dot products

dot-product

Input signal: -1 0 1 0 Filter: -1 0 1

Flip filter

Output = sequence of dot products

dot-product

Input signal: -1 0 1 0 Filter: -1 0 1

Flip filter

Output = sequence of dot products

Input signal: -1 0 1 0 Filter: -1 0 1

Flip filter

Output = sequence of dot products

Input signal: -1 0 1 0 Filter: -1 0 1

Flip filter

Output = sequence of dot products

Input signal: -1 0 1 0 Filter: -1 0 1

Flip filter

Output = sequence of dot products

Commutative!

2D Convolutions

Same thing in 2D

For each output pixel: slide filter over input, compute dot product

Flip filter:

Problem #1

Sobels:

-1	0	+1
-2	0	+2
-1	0	+1

Gx

Frequencies!

Reading FFT plots

Which is easier to represent in frequency space?

Edges are very high frequency

Image Frequencies!

Frequency amplitudes map

*Diagonally symmetrical

*Same storage size. H x W pixels = num(amplitudes) + num(phase)!

Component 2/25217 — frame 1/150

Crop in frequency space

Crop in frequency space

Matching images with frequencies

Matching images with frequencies

Phase plots can be hard to understand...

Amplitude Spectrum

Phase map: (Hard to understand 😔)

From lecture.

Problems 2.1a, 2.1d

Demo!

https://cal-cs180.github.io/fa25/fft-tool.html

Low-pass = Convolve with Gaussian

Image

*How to get Gaussian filter?

3b1b has great visuals if you want to dive deeper!

CS 180 Discussion #3

Filters & Frequencies!

Disc 2 Feedback Form

