Transformations and Homographies

Discussion #5

Written by: Brent*, Konpat*

Topics

This worksheet covers 2D transformations, focusing on the homography transformation and how to derive the linear system needed to solve for homography parameters.

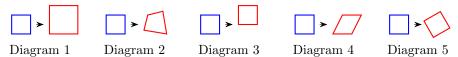
1 Matching Transformations (again)

Below are matrix structures for common 2D transformations and their visual effects on a square.

Matrix Structures:

A:
$$\begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix}$$
 B:
$$\begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$
 C:
$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$
 D:
$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$
 E:
$$\begin{bmatrix} \cos\theta & -\sin\theta & t_x \\ \sin\theta & \cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Visual Diagrams:



Match each transformation type below to: (i) a matrix structure, (ii) visual diagram, and (iii) a degree of freedom (DoF) count.

(a) Translation:

Matrix: _____ Diagram: ____ DoF: ____

(b) Rigid:

Matrix: _____ Diagram: ____ DoF: ____

(c) Similarity:

Matrix: _____ Diagram: ____ DoF: ____

(d) Affine:

Matrix: _____ Diagram: ____ DoF: ____

(e) Projective/Homography:

Matrix: _____ Diagram: ____ DoF: ____

2 Deriving the Homography Linear System

Given a point $[x, y, 1]^{\top}$ in the source plane and point $[u, v, 1]^{\top}$ in the target plane, recall that 2D homographies follow

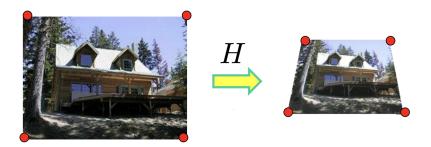
$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, \tag{1}$$

where $\lambda \in \mathbb{R}$ is a scalar factor and H is a 3×3 homography matrix:

$$H = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & 1 \end{bmatrix}. \tag{2}$$

Homographies are defined up to scale, so we can fix $h_9 = 1$ (if we assume $h_9 \neq 0$).

Computing H. In Project 3, we will solve for H from a set of point correspondences:



This can be done by setting up an ordinary least squares (OLS) problem that can be solved with functions like np.linalg.solve() or np.linalg.lstsq():

$$A\mathbf{h} = \mathbf{b},\tag{3}$$

where $\mathbf{h} = [h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8]^{\top}$ flattens the H matrix. Equivalently,

$$\begin{bmatrix} \mathbf{a}_{1}^{\top} \\ \mathbf{a}_{2}^{\top} \\ \vdots \end{bmatrix} \begin{bmatrix} h_{1} \\ h_{2} \\ \vdots \\ h_{8} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \end{bmatrix}. \tag{4}$$

Goal. We can solve for H by instantiating \mathbf{a}_i^{\top} and b_i for each row i. Let's give this a try!

Problem 2.1: Single Correspondence

We'll start by setting up a system of equations. Consider a single correspondence pair: source point $[x, y, 1]^{\top}$ maps to target point $[u, v, 1]^{\top}$:

$$\begin{bmatrix} \lambda u \\ \lambda v \\ \lambda \end{bmatrix} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 (5)

(a) We can start by algebraically eliminating the λ term. Write expressions for u and v in terms of h_1, \ldots, h_8 , and x, y. (hint: division)

(b) Convert your two equations from Part (a) into linear equations in the form: $(...)h_1 + (...)h_2 + ... + (...)h_8 = (...)$. Why is this useful?

(c) What \mathbf{a}_1^{\top} , \mathbf{a}_2^{\top} , b_1 , and b_2 values does this correspondence pair produce?

Problem 2.2: Multiple Correspondences

(a) Suppose we have multiple correspondence pairs: $(x_1, y_1) \rightarrow (u_1, v_1)$, $(x_2, y_2) \rightarrow (u_2, v_2)$, $(x_3, y_3) \rightarrow (u_3, v_3)$, $(x_4, y_4) \rightarrow (u_4, v_4)$. Fill in the blanks in this matrix system for 4 correspondence pairs:

Γ :	x_1	y_1	1	0	0	0	 		[]
	0	0	0	x_1	y_1	1	 	$\lceil h_1 \rceil$	
	x_2	y_2	1				 	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
-							 	$ h_4 _{-}$	
-							 	$\left egin{array}{c} h_5 \\ h_6 \end{array} ight $	
_							 	$\left \begin{array}{c} n_6 \\ h_7 \end{array}\right $	
							 	$\lfloor h_8 \rfloor$	
L							 		<u>[</u>]

(b) How many point correspondences do we need at minimum to solve for the homography H? Why?

(c) Can we still solve the system if we have more than the minimum number of correspondences? What happens?

(d) How many point correspondences are needed to solve for each of the following 2D transformations?

Translation:

Rigid:

Similarity:

Affine: