Transformations and Homographies

Discussion #5

Written by: Brent*, Konpat*

Topics

This worksheet covers 2D transformations, focusing on the homography transformation and how to derive the linear system needed to solve for homography parameters.

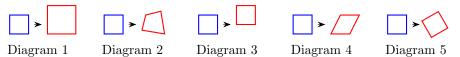
1 Matching Transformations (again)

Below are matrix structures for common 2D transformations and their visual effects on a square.

Matrix Structures:

A:
$$\begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix}$$
 B:
$$\begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$
 C:
$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$
 D:
$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$
 E:
$$\begin{bmatrix} \cos\theta & -\sin\theta & t_x \\ \sin\theta & \cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Visual Diagrams:



Match each transformation type below to: (i) a matrix structure, (ii) visual diagram, and (iii) a degree of freedom (DoF) count.

(a) Translation:

Matrix: C Diagram: 3 DoF: 2

(b) Rigid:

Matrix: E Diagram: 5 DoF: 3

(c) Similarity:

Matrix: A Diagram: 1 DoF: 4

(d) Affine:

Matrix: D Diagram: 4 DoF: 6

(e) Projective/Homography:

Matrix: B Diagram: 2 DoF: 8

2 Deriving the Homography Linear System

Given a point $[x, y, 1]^{\top}$ in the source plane and point $[u, v, 1]^{\top}$ in the target plane, recall that 2D homographies follow

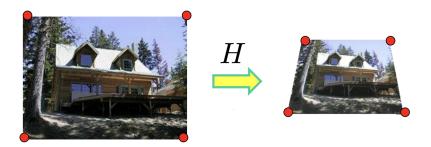
$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, \tag{1}$$

where $\lambda \in \mathbb{R}$ is a scalar factor and H is a 3×3 homography matrix:

$$H = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & 1 \end{bmatrix}. \tag{2}$$

Homographies are defined up to scale, so we can fix $h_9 = 1$ (if we assume $h_9 \neq 0$).

Computing H. In Project 3, we will solve for H from a set of point correspondences:



This can be done by setting up an ordinary least squares (OLS) problem that can be solved with functions like np.linalg.solve() or np.linalg.lstsq():

$$A\mathbf{h} = \mathbf{b},\tag{3}$$

where $\mathbf{h} = [h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8]^{\top}$ flattens the H matrix. Equivalently,

$$\begin{bmatrix} \mathbf{a}_{1}^{\top} \\ \mathbf{a}_{2}^{\top} \\ \vdots \end{bmatrix} \begin{bmatrix} h_{1} \\ h_{2} \\ \vdots \\ h_{8} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \end{bmatrix}. \tag{4}$$

Goal. We can solve for H by instantiating \mathbf{a}_i^{\top} and b_i for each row i. Let's give this a try!

Problem 2.1: Single Correspondence

We'll start by setting up a system of equations. Consider a single correspondence pair: source point $[x, y, 1]^{\top}$ maps to target point $[u, v, 1]^{\top}$:

$$\begin{bmatrix} \lambda u \\ \lambda v \\ \lambda \end{bmatrix} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 (5)

(a) We can start by algebraically eliminating the λ term. Write expressions for u and v in terms of h_1, \ldots, h_8 , and x, y. (hint: division)

$$u = (h_1x + h_2y + h_3)/(h_7x + h_8y + 1)$$

$$v = (h_4x + h_5y + h_6)/(h_7x + h_8y + 1)$$

(b) Convert your two equations from Part (a) into linear equations in the form: $(...)h_1 + (...)h_2 + ... + (...)h_8 = (...)$. Why is this useful?

$$h_1x + h_2y + h_3 - uh_7x - uh_8y = u$$
$$h_4x + h_5y + h_6 - vh_7x - vh_8y = v$$

This is useful because it matches the form of rows of $A\mathbf{h} = \mathbf{b}!$

(c) What \mathbf{a}_1^{\top} , \mathbf{a}_2^{\top} , b_1 , and b_2 values does this correspondence pair produce?

$$\begin{bmatrix} x & y & 1 & 0 & 0 & 0 & -ux & -uy \\ 0 & 0 & 0 & x & y & 1 & -vx & -vy \end{bmatrix} \mathbf{h} = \begin{bmatrix} u \\ v \end{bmatrix}$$

The \mathbf{a}^{\top} vectors are the rows of the wide matrix, the b values are the scalars in the vector on the right side of the equality.

Problem 2.2: Multiple Correspondences

(a) Suppose we have multiple correspondence pairs: $(x_1, y_1) \rightarrow (u_1, v_1)$, $(x_2, y_2) \rightarrow (u_2, v_2)$, $(x_3, y_3) \rightarrow (u_3, v_3)$, $(x_4, y_4) \rightarrow (u_4, v_4)$. Fill in the blanks in this matrix system for 4 correspondence pairs:

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -u_1x_1 & -u_1y_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -v_1x_1 & -v_1y_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -u_2x_2 & -u_2y_2 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -v_2x_2 & -v_2y_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -u_3x_3 & -u_3y_3 \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -v_3x_3 & -v_3y_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -u_4x_4 & -u_4y_4 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -v_4x_4 & -v_4y_4 \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \\ h_5 \\ h_6 \\ h_7 \\ h_8 \end{bmatrix} = \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ h_3 \\ h_4 \\ h_5 \\ h_6 \\ h_7 \\ h_8 \end{bmatrix}$$

(b) How many point correspondences do we need at minimum to solve for the homography H? Why?

We need a minimum of 4 point correspondences.

Reasoning: We have 8 unknowns, so we need at least 8 equations to have a unique solution. Since each correspondence gives 2 equations, we need $8 \div 2 = 4$ correspondences.

(c) Can we still solve the system if we have more than the minimum number of correspondences? What happens?

Yes! If we have more than 4 correspondences, we get an overdetermined system (more equations than unknowns). We can still solve this using least squares methods to find the best-fit homography that minimizes the total error.

(d) How many point correspondences are needed to solve for each of the following 2D transformations?

Translation: 1

Rigid: 2

Similarity: 2

Affine: 3

General rule: Each correspondence gives 2 equations (one for x, one for y). To solve for a transformation with n degrees of freedom, we need at least $\lceil n/2 \rceil$ correspondences.