3D Coordinates and Epipolar Geometry

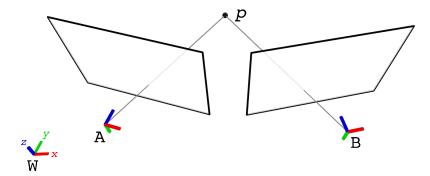
Discussion #8

Written by: Brent*, Konpat*, Chung Min*

This worksheet reviews 3D transformations and the basics of epipolar geometry.

1 Rigid Transforms

Let's consider a point p and three coordinate frames: the world W, camera A, and camera B:



Notation. We'll denote the coordinates of p in the world frame $p_W \in \mathbb{R}^3$. The extrinsics¹ of camera A and B can be written as T_{WA} and T_{WB} respectively, where

$$\begin{bmatrix} p_{\mathbf{W}} \\ 1 \end{bmatrix} = T_{\mathbf{W}\mathbf{A}} \begin{bmatrix} p_{\mathbf{A}} \\ 1 \end{bmatrix}.$$

(a) The same point p can be written as either $p_{\rm W}$, $p_{\rm A}$, and $p_{\rm B}$. In words, what is the difference between these three vectors?

(b) Express $p_{\rm W}$ in terms of $p_{\rm A}$ and $T_{\rm WA}$.

¹Following the "world-from-camera" / "camera-to-world" convention.

(c) Express $p_{\rm B}$ in terms of $p_{\rm W}$ and $T_{\rm WB}$.

(d) How would you compute a transform that converts coordinates relative to camera B from camera A, in terms of T_{WA} and T_{WB} ?

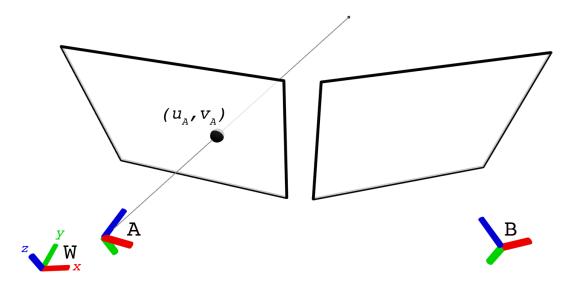
(e) Consider the case where camera A has intrinsics $K \in \mathbb{R}^{3\times 3}$. Given p_W , K, and T_{WA} , what are the image-space coordinates (u, v) of p viewed from camera A? You can leave your solution in homogeneous coordinates.

(f) Let $T \in SE(3)$ be composed of rotation $R \in SO(3)$ and $t \in \mathbb{R}^3$. We know that rotation matrices are orthonormal; $R^{-1} = R^{\top}$. Use this fact to derive an expression for the inverse T^{-1} without using matrix inversion.

2 Rays and Epipolar Geometry

3D computer vision algorithms typically begin with 2D observations, like coordinates extracted from corner and feature detectors.

We once again have cameras A and B, located in the world frame W. Consider the case where we observe a feature in the image from camera A, located at 2D coordinates (u_A, v_A) :



The pixel at (u_A, v_A) corresponds to the projection of an unknown 3D point in the scene, p.

- (a) Annotate the figure above with 3 possible locations for p.
- (b) Annotate the image plane of camera B with the projection of your points from part (a). What pattern do these projected 2D points follow?

(c) Given (u_A, v_A) and intrinsics $K \in \mathbb{R}^{3 \times 3}$, write an expression for all possible values of $p_A \in \mathbb{R}^3$.

(d) Given (u_A, v_A) , $K \in \mathbb{R}^{3 \times 3}$, T_{WA} , and T_{WB} , what are all possible coordinates for $p_B \in \mathbb{R}^3$?

(e) Given the same inputs as part (d), how would you find all possible values of the point projected onto the image of camera B, (u_B, v_B) ? Describe an approach in words.